blob: 78c2f3c6dce019c6ede3342a0e30783ffd0aa959 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_context.h"
#include "pvr_device.h"
#include "pvr_drv.h"
#include "pvr_gem.h"
#include "pvr_hwrt.h"
#include "pvr_job.h"
#include "pvr_mmu.h"
#include "pvr_power.h"
#include "pvr_rogue_fwif.h"
#include "pvr_rogue_fwif_client.h"
#include "pvr_stream.h"
#include "pvr_stream_defs.h"
#include "pvr_sync.h"
#include <drm/drm_exec.h>
#include <drm/drm_gem.h>
#include <linux/types.h>
#include <uapi/drm/pvr_drm.h>
static void pvr_job_release(struct kref *kref)
{
struct pvr_job *job = container_of(kref, struct pvr_job, ref_count);
xa_erase(&job->pvr_dev->job_ids, job->id);
pvr_hwrt_data_put(job->hwrt);
pvr_context_put(job->ctx);
WARN_ON(job->paired_job);
pvr_queue_job_cleanup(job);
pvr_job_release_pm_ref(job);
kfree(job->cmd);
kfree(job);
}
/**
* pvr_job_put() - Release reference on job
* @job: Target job.
*/
void
pvr_job_put(struct pvr_job *job)
{
if (job)
kref_put(&job->ref_count, pvr_job_release);
}
/**
* pvr_job_process_stream() - Build job FW structure from stream
* @pvr_dev: Device pointer.
* @cmd_defs: Stream definition.
* @stream: Pointer to command stream.
* @stream_size: Size of command stream, in bytes.
* @job: Pointer to job.
*
* Caller is responsible for freeing the output structure.
*
* Returns:
* * 0 on success,
* * -%ENOMEM on out of memory, or
* * -%EINVAL on malformed stream.
*/
static int
pvr_job_process_stream(struct pvr_device *pvr_dev, const struct pvr_stream_cmd_defs *cmd_defs,
void *stream, u32 stream_size, struct pvr_job *job)
{
int err;
job->cmd = kzalloc(cmd_defs->dest_size, GFP_KERNEL);
if (!job->cmd)
return -ENOMEM;
job->cmd_len = cmd_defs->dest_size;
err = pvr_stream_process(pvr_dev, cmd_defs, stream, stream_size, job->cmd);
if (err)
kfree(job->cmd);
return err;
}
static int pvr_fw_cmd_init(struct pvr_device *pvr_dev, struct pvr_job *job,
const struct pvr_stream_cmd_defs *stream_def,
u64 stream_userptr, u32 stream_len)
{
void *stream;
int err;
stream = kzalloc(stream_len, GFP_KERNEL);
if (!stream)
return -ENOMEM;
if (copy_from_user(stream, u64_to_user_ptr(stream_userptr), stream_len)) {
err = -EFAULT;
goto err_free_stream;
}
err = pvr_job_process_stream(pvr_dev, stream_def, stream, stream_len, job);
err_free_stream:
kfree(stream);
return err;
}
static u32
convert_geom_flags(u32 in_flags)
{
u32 out_flags = 0;
if (in_flags & DRM_PVR_SUBMIT_JOB_GEOM_CMD_FIRST)
out_flags |= ROGUE_GEOM_FLAGS_FIRSTKICK;
if (in_flags & DRM_PVR_SUBMIT_JOB_GEOM_CMD_LAST)
out_flags |= ROGUE_GEOM_FLAGS_LASTKICK;
if (in_flags & DRM_PVR_SUBMIT_JOB_GEOM_CMD_SINGLE_CORE)
out_flags |= ROGUE_GEOM_FLAGS_SINGLE_CORE;
return out_flags;
}
static u32
convert_frag_flags(u32 in_flags)
{
u32 out_flags = 0;
if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_SINGLE_CORE)
out_flags |= ROGUE_FRAG_FLAGS_SINGLE_CORE;
if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_DEPTHBUFFER)
out_flags |= ROGUE_FRAG_FLAGS_DEPTHBUFFER;
if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_STENCILBUFFER)
out_flags |= ROGUE_FRAG_FLAGS_STENCILBUFFER;
if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_PREVENT_CDM_OVERLAP)
out_flags |= ROGUE_FRAG_FLAGS_PREVENT_CDM_OVERLAP;
if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_SCRATCHBUFFER)
out_flags |= ROGUE_FRAG_FLAGS_SCRATCHBUFFER;
if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_GET_VIS_RESULTS)
out_flags |= ROGUE_FRAG_FLAGS_GET_VIS_RESULTS;
if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_DISABLE_PIXELMERGE)
out_flags |= ROGUE_FRAG_FLAGS_DISABLE_PIXELMERGE;
return out_flags;
}
static int
pvr_geom_job_fw_cmd_init(struct pvr_job *job,
struct drm_pvr_job *args)
{
struct rogue_fwif_cmd_geom *cmd;
int err;
if (args->flags & ~DRM_PVR_SUBMIT_JOB_GEOM_CMD_FLAGS_MASK)
return -EINVAL;
if (job->ctx->type != DRM_PVR_CTX_TYPE_RENDER)
return -EINVAL;
if (!job->hwrt)
return -EINVAL;
job->fw_ccb_cmd_type = ROGUE_FWIF_CCB_CMD_TYPE_GEOM;
err = pvr_fw_cmd_init(job->pvr_dev, job, &pvr_cmd_geom_stream,
args->cmd_stream, args->cmd_stream_len);
if (err)
return err;
cmd = job->cmd;
cmd->cmd_shared.cmn.frame_num = 0;
cmd->flags = convert_geom_flags(args->flags);
pvr_fw_object_get_fw_addr(job->hwrt->fw_obj, &cmd->cmd_shared.hwrt_data_fw_addr);
return 0;
}
static int
pvr_frag_job_fw_cmd_init(struct pvr_job *job,
struct drm_pvr_job *args)
{
struct rogue_fwif_cmd_frag *cmd;
int err;
if (args->flags & ~DRM_PVR_SUBMIT_JOB_FRAG_CMD_FLAGS_MASK)
return -EINVAL;
if (job->ctx->type != DRM_PVR_CTX_TYPE_RENDER)
return -EINVAL;
if (!job->hwrt)
return -EINVAL;
job->fw_ccb_cmd_type = (args->flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_PARTIAL_RENDER) ?
ROGUE_FWIF_CCB_CMD_TYPE_FRAG_PR :
ROGUE_FWIF_CCB_CMD_TYPE_FRAG;
err = pvr_fw_cmd_init(job->pvr_dev, job, &pvr_cmd_frag_stream,
args->cmd_stream, args->cmd_stream_len);
if (err)
return err;
cmd = job->cmd;
cmd->cmd_shared.cmn.frame_num = 0;
cmd->flags = convert_frag_flags(args->flags);
pvr_fw_object_get_fw_addr(job->hwrt->fw_obj, &cmd->cmd_shared.hwrt_data_fw_addr);
return 0;
}
static u32
convert_compute_flags(u32 in_flags)
{
u32 out_flags = 0;
if (in_flags & DRM_PVR_SUBMIT_JOB_COMPUTE_CMD_PREVENT_ALL_OVERLAP)
out_flags |= ROGUE_COMPUTE_FLAG_PREVENT_ALL_OVERLAP;
if (in_flags & DRM_PVR_SUBMIT_JOB_COMPUTE_CMD_SINGLE_CORE)
out_flags |= ROGUE_COMPUTE_FLAG_SINGLE_CORE;
return out_flags;
}
static int
pvr_compute_job_fw_cmd_init(struct pvr_job *job,
struct drm_pvr_job *args)
{
struct rogue_fwif_cmd_compute *cmd;
int err;
if (args->flags & ~DRM_PVR_SUBMIT_JOB_COMPUTE_CMD_FLAGS_MASK)
return -EINVAL;
if (job->ctx->type != DRM_PVR_CTX_TYPE_COMPUTE)
return -EINVAL;
job->fw_ccb_cmd_type = ROGUE_FWIF_CCB_CMD_TYPE_CDM;
err = pvr_fw_cmd_init(job->pvr_dev, job, &pvr_cmd_compute_stream,
args->cmd_stream, args->cmd_stream_len);
if (err)
return err;
cmd = job->cmd;
cmd->common.frame_num = 0;
cmd->flags = convert_compute_flags(args->flags);
return 0;
}
static u32
convert_transfer_flags(u32 in_flags)
{
u32 out_flags = 0;
if (in_flags & DRM_PVR_SUBMIT_JOB_TRANSFER_CMD_SINGLE_CORE)
out_flags |= ROGUE_TRANSFER_FLAGS_SINGLE_CORE;
return out_flags;
}
static int
pvr_transfer_job_fw_cmd_init(struct pvr_job *job,
struct drm_pvr_job *args)
{
struct rogue_fwif_cmd_transfer *cmd;
int err;
if (args->flags & ~DRM_PVR_SUBMIT_JOB_TRANSFER_CMD_FLAGS_MASK)
return -EINVAL;
if (job->ctx->type != DRM_PVR_CTX_TYPE_TRANSFER_FRAG)
return -EINVAL;
job->fw_ccb_cmd_type = ROGUE_FWIF_CCB_CMD_TYPE_TQ_3D;
err = pvr_fw_cmd_init(job->pvr_dev, job, &pvr_cmd_transfer_stream,
args->cmd_stream, args->cmd_stream_len);
if (err)
return err;
cmd = job->cmd;
cmd->common.frame_num = 0;
cmd->flags = convert_transfer_flags(args->flags);
return 0;
}
static int
pvr_job_fw_cmd_init(struct pvr_job *job,
struct drm_pvr_job *args)
{
switch (args->type) {
case DRM_PVR_JOB_TYPE_GEOMETRY:
return pvr_geom_job_fw_cmd_init(job, args);
case DRM_PVR_JOB_TYPE_FRAGMENT:
return pvr_frag_job_fw_cmd_init(job, args);
case DRM_PVR_JOB_TYPE_COMPUTE:
return pvr_compute_job_fw_cmd_init(job, args);
case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
return pvr_transfer_job_fw_cmd_init(job, args);
default:
return -EINVAL;
}
}
/**
* struct pvr_job_data - Helper container for pairing jobs with the
* sync_ops supplied for them by the user.
*/
struct pvr_job_data {
/** @job: Pointer to the job. */
struct pvr_job *job;
/** @sync_ops: Pointer to the sync_ops associated with @job. */
struct drm_pvr_sync_op *sync_ops;
/** @sync_op_count: Number of members of @sync_ops. */
u32 sync_op_count;
};
/**
* prepare_job_syncs() - Prepare all sync objects for a single job.
* @pvr_file: PowerVR file.
* @job_data: Precreated job and sync_ops array.
* @signal_array: xarray to receive signal sync objects.
*
* Returns:
* * 0 on success, or
* * Any error code returned by pvr_sync_signal_array_collect_ops(),
* pvr_sync_add_deps_to_job(), drm_sched_job_add_resv_dependencies() or
* pvr_sync_signal_array_update_fences().
*/
static int
prepare_job_syncs(struct pvr_file *pvr_file,
struct pvr_job_data *job_data,
struct xarray *signal_array)
{
struct dma_fence *done_fence;
int err = pvr_sync_signal_array_collect_ops(signal_array,
from_pvr_file(pvr_file),
job_data->sync_op_count,
job_data->sync_ops);
if (err)
return err;
err = pvr_sync_add_deps_to_job(pvr_file, &job_data->job->base,
job_data->sync_op_count,
job_data->sync_ops, signal_array);
if (err)
return err;
if (job_data->job->hwrt) {
/* The geometry job writes the HWRT region headers, which are
* then read by the fragment job.
*/
struct drm_gem_object *obj =
gem_from_pvr_gem(job_data->job->hwrt->fw_obj->gem);
enum dma_resv_usage usage =
dma_resv_usage_rw(job_data->job->type ==
DRM_PVR_JOB_TYPE_GEOMETRY);
dma_resv_lock(obj->resv, NULL);
err = drm_sched_job_add_resv_dependencies(&job_data->job->base,
obj->resv, usage);
dma_resv_unlock(obj->resv);
if (err)
return err;
}
/* We need to arm the job to get the job done fence. */
done_fence = pvr_queue_job_arm(job_data->job);
err = pvr_sync_signal_array_update_fences(signal_array,
job_data->sync_op_count,
job_data->sync_ops,
done_fence);
return err;
}
/**
* prepare_job_syncs_for_each() - Prepare all sync objects for an array of jobs.
* @pvr_file: PowerVR file.
* @job_data: Array of precreated jobs and their sync_ops.
* @job_count: Number of jobs.
* @signal_array: xarray to receive signal sync objects.
*
* Returns:
* * 0 on success, or
* * Any error code returned by pvr_vm_bind_job_prepare_syncs().
*/
static int
prepare_job_syncs_for_each(struct pvr_file *pvr_file,
struct pvr_job_data *job_data,
u32 *job_count,
struct xarray *signal_array)
{
for (u32 i = 0; i < *job_count; i++) {
int err = prepare_job_syncs(pvr_file, &job_data[i],
signal_array);
if (err) {
*job_count = i;
return err;
}
}
return 0;
}
static struct pvr_job *
create_job(struct pvr_device *pvr_dev,
struct pvr_file *pvr_file,
struct drm_pvr_job *args)
{
struct pvr_job *job = NULL;
int err;
if (!args->cmd_stream || !args->cmd_stream_len)
return ERR_PTR(-EINVAL);
if (args->type != DRM_PVR_JOB_TYPE_GEOMETRY &&
args->type != DRM_PVR_JOB_TYPE_FRAGMENT &&
(args->hwrt.set_handle || args->hwrt.data_index))
return ERR_PTR(-EINVAL);
job = kzalloc(sizeof(*job), GFP_KERNEL);
if (!job)
return ERR_PTR(-ENOMEM);
kref_init(&job->ref_count);
job->type = args->type;
job->pvr_dev = pvr_dev;
err = xa_alloc(&pvr_dev->job_ids, &job->id, job, xa_limit_32b, GFP_KERNEL);
if (err)
goto err_put_job;
job->ctx = pvr_context_lookup(pvr_file, args->context_handle);
if (!job->ctx) {
err = -EINVAL;
goto err_put_job;
}
if (args->hwrt.set_handle) {
job->hwrt = pvr_hwrt_data_lookup(pvr_file, args->hwrt.set_handle,
args->hwrt.data_index);
if (!job->hwrt) {
err = -EINVAL;
goto err_put_job;
}
}
err = pvr_job_fw_cmd_init(job, args);
if (err)
goto err_put_job;
err = pvr_queue_job_init(job);
if (err)
goto err_put_job;
return job;
err_put_job:
pvr_job_put(job);
return ERR_PTR(err);
}
/**
* pvr_job_data_fini() - Cleanup all allocs used to set up job submission.
* @job_data: Job data array.
* @job_count: Number of members of @job_data.
*/
static void
pvr_job_data_fini(struct pvr_job_data *job_data, u32 job_count)
{
for (u32 i = 0; i < job_count; i++) {
pvr_job_put(job_data[i].job);
kvfree(job_data[i].sync_ops);
}
}
/**
* pvr_job_data_init() - Init an array of created jobs, associating them with
* the appropriate sync_ops args, which will be copied in.
* @pvr_dev: Target PowerVR device.
* @pvr_file: Pointer to PowerVR file structure.
* @job_args: Job args array copied from user.
* @job_count: Number of members of @job_args.
* @job_data_out: Job data array.
*/
static int pvr_job_data_init(struct pvr_device *pvr_dev,
struct pvr_file *pvr_file,
struct drm_pvr_job *job_args,
u32 *job_count,
struct pvr_job_data *job_data_out)
{
int err = 0, i = 0;
for (; i < *job_count; i++) {
job_data_out[i].job =
create_job(pvr_dev, pvr_file, &job_args[i]);
err = PTR_ERR_OR_ZERO(job_data_out[i].job);
if (err) {
*job_count = i;
job_data_out[i].job = NULL;
goto err_cleanup;
}
err = PVR_UOBJ_GET_ARRAY(job_data_out[i].sync_ops,
&job_args[i].sync_ops);
if (err) {
*job_count = i;
/* Ensure the job created above is also cleaned up. */
i++;
goto err_cleanup;
}
job_data_out[i].sync_op_count = job_args[i].sync_ops.count;
}
return 0;
err_cleanup:
pvr_job_data_fini(job_data_out, i);
return err;
}
static void
push_jobs(struct pvr_job_data *job_data, u32 job_count)
{
for (u32 i = 0; i < job_count; i++)
pvr_queue_job_push(job_data[i].job);
}
static int
prepare_fw_obj_resv(struct drm_exec *exec, struct pvr_fw_object *fw_obj)
{
return drm_exec_prepare_obj(exec, gem_from_pvr_gem(fw_obj->gem), 1);
}
static int
jobs_lock_all_objs(struct drm_exec *exec, struct pvr_job_data *job_data,
u32 job_count)
{
for (u32 i = 0; i < job_count; i++) {
struct pvr_job *job = job_data[i].job;
/* Grab a lock on a the context, to guard against
* concurrent submission to the same queue.
*/
int err = drm_exec_lock_obj(exec,
gem_from_pvr_gem(job->ctx->fw_obj->gem));
if (err)
return err;
if (job->hwrt) {
err = prepare_fw_obj_resv(exec,
job->hwrt->fw_obj);
if (err)
return err;
}
}
return 0;
}
static int
prepare_job_resvs_for_each(struct drm_exec *exec, struct pvr_job_data *job_data,
u32 job_count)
{
drm_exec_until_all_locked(exec) {
int err = jobs_lock_all_objs(exec, job_data, job_count);
drm_exec_retry_on_contention(exec);
if (err)
return err;
}
return 0;
}
static void
update_job_resvs(struct pvr_job *job)
{
if (job->hwrt) {
enum dma_resv_usage usage = job->type == DRM_PVR_JOB_TYPE_GEOMETRY ?
DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
struct drm_gem_object *obj = gem_from_pvr_gem(job->hwrt->fw_obj->gem);
dma_resv_add_fence(obj->resv, &job->base.s_fence->finished, usage);
}
}
static void
update_job_resvs_for_each(struct pvr_job_data *job_data, u32 job_count)
{
for (u32 i = 0; i < job_count; i++)
update_job_resvs(job_data[i].job);
}
static bool can_combine_jobs(struct pvr_job *a, struct pvr_job *b)
{
struct pvr_job *geom_job = a, *frag_job = b;
struct dma_fence *fence;
unsigned long index;
/* Geometry and fragment jobs can be combined if they are queued to the
* same context and targeting the same HWRT.
*/
if (a->type != DRM_PVR_JOB_TYPE_GEOMETRY ||
b->type != DRM_PVR_JOB_TYPE_FRAGMENT ||
a->ctx != b->ctx ||
a->hwrt != b->hwrt)
return false;
xa_for_each(&frag_job->base.dependencies, index, fence) {
/* We combine when we see an explicit geom -> frag dep. */
if (&geom_job->base.s_fence->scheduled == fence)
return true;
}
return false;
}
static struct dma_fence *
get_last_queued_job_scheduled_fence(struct pvr_queue *queue,
struct pvr_job_data *job_data,
u32 cur_job_pos)
{
/* We iterate over the current job array in reverse order to grab the
* last to-be-queued job targeting the same queue.
*/
for (u32 i = cur_job_pos; i > 0; i--) {
struct pvr_job *job = job_data[i - 1].job;
if (job->ctx == queue->ctx && job->type == queue->type)
return dma_fence_get(&job->base.s_fence->scheduled);
}
/* If we didn't find any, we just return the last queued job scheduled
* fence attached to the queue.
*/
return dma_fence_get(queue->last_queued_job_scheduled_fence);
}
static int
pvr_jobs_link_geom_frag(struct pvr_job_data *job_data, u32 *job_count)
{
for (u32 i = 0; i < *job_count - 1; i++) {
struct pvr_job *geom_job = job_data[i].job;
struct pvr_job *frag_job = job_data[i + 1].job;
struct pvr_queue *frag_queue;
struct dma_fence *f;
if (!can_combine_jobs(job_data[i].job, job_data[i + 1].job))
continue;
/* The fragment job will be submitted by the geometry queue. We
* need to make sure it comes after all the other fragment jobs
* queued before it.
*/
frag_queue = pvr_context_get_queue_for_job(frag_job->ctx,
frag_job->type);
f = get_last_queued_job_scheduled_fence(frag_queue, job_data,
i);
if (f) {
int err = drm_sched_job_add_dependency(&geom_job->base,
f);
if (err) {
*job_count = i;
return err;
}
}
/* The KCCB slot will be reserved by the geometry job, so we can
* drop the KCCB fence on the fragment job.
*/
pvr_kccb_fence_put(frag_job->kccb_fence);
frag_job->kccb_fence = NULL;
geom_job->paired_job = frag_job;
frag_job->paired_job = geom_job;
/* Skip the fragment job we just paired to the geometry job. */
i++;
}
return 0;
}
/**
* pvr_submit_jobs() - Submit jobs to the GPU
* @pvr_dev: Target PowerVR device.
* @pvr_file: Pointer to PowerVR file structure.
* @args: Ioctl args.
*
* This initial implementation is entirely synchronous; on return the GPU will
* be idle. This will not be the case for future implementations.
*
* Returns:
* * 0 on success,
* * -%EFAULT if arguments can not be copied from user space, or
* * -%EINVAL on invalid arguments, or
* * Any other error.
*/
int
pvr_submit_jobs(struct pvr_device *pvr_dev, struct pvr_file *pvr_file,
struct drm_pvr_ioctl_submit_jobs_args *args)
{
struct pvr_job_data *job_data = NULL;
struct drm_pvr_job *job_args;
struct xarray signal_array;
u32 jobs_alloced = 0;
struct drm_exec exec;
int err;
if (!args->jobs.count)
return -EINVAL;
err = PVR_UOBJ_GET_ARRAY(job_args, &args->jobs);
if (err)
return err;
job_data = kvmalloc_array(args->jobs.count, sizeof(*job_data),
GFP_KERNEL | __GFP_ZERO);
if (!job_data) {
err = -ENOMEM;
goto out_free;
}
err = pvr_job_data_init(pvr_dev, pvr_file, job_args, &args->jobs.count,
job_data);
if (err)
goto out_free;
jobs_alloced = args->jobs.count;
/*
* Flush MMU if needed - this has been deferred until now to avoid
* overuse of this expensive operation.
*/
err = pvr_mmu_flush_exec(pvr_dev, false);
if (err)
goto out_job_data_cleanup;
drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT | DRM_EXEC_IGNORE_DUPLICATES, 0);
xa_init_flags(&signal_array, XA_FLAGS_ALLOC);
err = prepare_job_syncs_for_each(pvr_file, job_data, &args->jobs.count,
&signal_array);
if (err)
goto out_exec_fini;
err = prepare_job_resvs_for_each(&exec, job_data, args->jobs.count);
if (err)
goto out_exec_fini;
err = pvr_jobs_link_geom_frag(job_data, &args->jobs.count);
if (err)
goto out_exec_fini;
/* Anything after that point must succeed because we start exposing job
* finished fences to the outside world.
*/
update_job_resvs_for_each(job_data, args->jobs.count);
push_jobs(job_data, args->jobs.count);
pvr_sync_signal_array_push_fences(&signal_array);
err = 0;
out_exec_fini:
drm_exec_fini(&exec);
pvr_sync_signal_array_cleanup(&signal_array);
out_job_data_cleanup:
pvr_job_data_fini(job_data, jobs_alloced);
out_free:
kvfree(job_data);
kvfree(job_args);
return err;
}