| /* |
| * An async IO implementation for Linux |
| * Written by Benjamin LaHaise <bcrl@kvack.org> |
| * |
| * Implements an efficient asynchronous io interface. |
| * |
| * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. |
| * Copyright 2018 Christoph Hellwig. |
| * |
| * See ../COPYING for licensing terms. |
| */ |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/time.h> |
| #include <linux/aio_abi.h> |
| #include <linux/export.h> |
| #include <linux/syscalls.h> |
| #include <linux/backing-dev.h> |
| #include <linux/refcount.h> |
| #include <linux/uio.h> |
| |
| #include <linux/sched/signal.h> |
| #include <linux/fs.h> |
| #include <linux/file.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/percpu.h> |
| #include <linux/slab.h> |
| #include <linux/timer.h> |
| #include <linux/aio.h> |
| #include <linux/highmem.h> |
| #include <linux/workqueue.h> |
| #include <linux/security.h> |
| #include <linux/eventfd.h> |
| #include <linux/blkdev.h> |
| #include <linux/compat.h> |
| #include <linux/migrate.h> |
| #include <linux/ramfs.h> |
| #include <linux/percpu-refcount.h> |
| #include <linux/mount.h> |
| #include <linux/pseudo_fs.h> |
| |
| #include <linux/uaccess.h> |
| #include <linux/nospec.h> |
| |
| #include "internal.h" |
| |
| #define KIOCB_KEY 0 |
| |
| #define AIO_RING_MAGIC 0xa10a10a1 |
| #define AIO_RING_COMPAT_FEATURES 1 |
| #define AIO_RING_INCOMPAT_FEATURES 0 |
| struct aio_ring { |
| unsigned id; /* kernel internal index number */ |
| unsigned nr; /* number of io_events */ |
| unsigned head; /* Written to by userland or under ring_lock |
| * mutex by aio_read_events_ring(). */ |
| unsigned tail; |
| |
| unsigned magic; |
| unsigned compat_features; |
| unsigned incompat_features; |
| unsigned header_length; /* size of aio_ring */ |
| |
| |
| struct io_event io_events[]; |
| }; /* 128 bytes + ring size */ |
| |
| /* |
| * Plugging is meant to work with larger batches of IOs. If we don't |
| * have more than the below, then don't bother setting up a plug. |
| */ |
| #define AIO_PLUG_THRESHOLD 2 |
| |
| #define AIO_RING_PAGES 8 |
| |
| struct kioctx_table { |
| struct rcu_head rcu; |
| unsigned nr; |
| struct kioctx __rcu *table[] __counted_by(nr); |
| }; |
| |
| struct kioctx_cpu { |
| unsigned reqs_available; |
| }; |
| |
| struct ctx_rq_wait { |
| struct completion comp; |
| atomic_t count; |
| }; |
| |
| struct kioctx { |
| struct percpu_ref users; |
| atomic_t dead; |
| |
| struct percpu_ref reqs; |
| |
| unsigned long user_id; |
| |
| struct __percpu kioctx_cpu *cpu; |
| |
| /* |
| * For percpu reqs_available, number of slots we move to/from global |
| * counter at a time: |
| */ |
| unsigned req_batch; |
| /* |
| * This is what userspace passed to io_setup(), it's not used for |
| * anything but counting against the global max_reqs quota. |
| * |
| * The real limit is nr_events - 1, which will be larger (see |
| * aio_setup_ring()) |
| */ |
| unsigned max_reqs; |
| |
| /* Size of ringbuffer, in units of struct io_event */ |
| unsigned nr_events; |
| |
| unsigned long mmap_base; |
| unsigned long mmap_size; |
| |
| struct page **ring_pages; |
| long nr_pages; |
| |
| struct rcu_work free_rwork; /* see free_ioctx() */ |
| |
| /* |
| * signals when all in-flight requests are done |
| */ |
| struct ctx_rq_wait *rq_wait; |
| |
| struct { |
| /* |
| * This counts the number of available slots in the ringbuffer, |
| * so we avoid overflowing it: it's decremented (if positive) |
| * when allocating a kiocb and incremented when the resulting |
| * io_event is pulled off the ringbuffer. |
| * |
| * We batch accesses to it with a percpu version. |
| */ |
| atomic_t reqs_available; |
| } ____cacheline_aligned_in_smp; |
| |
| struct { |
| spinlock_t ctx_lock; |
| struct list_head active_reqs; /* used for cancellation */ |
| } ____cacheline_aligned_in_smp; |
| |
| struct { |
| struct mutex ring_lock; |
| wait_queue_head_t wait; |
| } ____cacheline_aligned_in_smp; |
| |
| struct { |
| unsigned tail; |
| unsigned completed_events; |
| spinlock_t completion_lock; |
| } ____cacheline_aligned_in_smp; |
| |
| struct page *internal_pages[AIO_RING_PAGES]; |
| struct file *aio_ring_file; |
| |
| unsigned id; |
| }; |
| |
| /* |
| * First field must be the file pointer in all the |
| * iocb unions! See also 'struct kiocb' in <linux/fs.h> |
| */ |
| struct fsync_iocb { |
| struct file *file; |
| struct work_struct work; |
| bool datasync; |
| struct cred *creds; |
| }; |
| |
| struct poll_iocb { |
| struct file *file; |
| struct wait_queue_head *head; |
| __poll_t events; |
| bool cancelled; |
| bool work_scheduled; |
| bool work_need_resched; |
| struct wait_queue_entry wait; |
| struct work_struct work; |
| }; |
| |
| /* |
| * NOTE! Each of the iocb union members has the file pointer |
| * as the first entry in their struct definition. So you can |
| * access the file pointer through any of the sub-structs, |
| * or directly as just 'ki_filp' in this struct. |
| */ |
| struct aio_kiocb { |
| union { |
| struct file *ki_filp; |
| struct kiocb rw; |
| struct fsync_iocb fsync; |
| struct poll_iocb poll; |
| }; |
| |
| struct kioctx *ki_ctx; |
| kiocb_cancel_fn *ki_cancel; |
| |
| struct io_event ki_res; |
| |
| struct list_head ki_list; /* the aio core uses this |
| * for cancellation */ |
| refcount_t ki_refcnt; |
| |
| /* |
| * If the aio_resfd field of the userspace iocb is not zero, |
| * this is the underlying eventfd context to deliver events to. |
| */ |
| struct eventfd_ctx *ki_eventfd; |
| }; |
| |
| /*------ sysctl variables----*/ |
| static DEFINE_SPINLOCK(aio_nr_lock); |
| static unsigned long aio_nr; /* current system wide number of aio requests */ |
| static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ |
| /*----end sysctl variables---*/ |
| #ifdef CONFIG_SYSCTL |
| static struct ctl_table aio_sysctls[] = { |
| { |
| .procname = "aio-nr", |
| .data = &aio_nr, |
| .maxlen = sizeof(aio_nr), |
| .mode = 0444, |
| .proc_handler = proc_doulongvec_minmax, |
| }, |
| { |
| .procname = "aio-max-nr", |
| .data = &aio_max_nr, |
| .maxlen = sizeof(aio_max_nr), |
| .mode = 0644, |
| .proc_handler = proc_doulongvec_minmax, |
| }, |
| }; |
| |
| static void __init aio_sysctl_init(void) |
| { |
| register_sysctl_init("fs", aio_sysctls); |
| } |
| #else |
| #define aio_sysctl_init() do { } while (0) |
| #endif |
| |
| static struct kmem_cache *kiocb_cachep; |
| static struct kmem_cache *kioctx_cachep; |
| |
| static struct vfsmount *aio_mnt; |
| |
| static const struct file_operations aio_ring_fops; |
| static const struct address_space_operations aio_ctx_aops; |
| |
| static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) |
| { |
| struct file *file; |
| struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); |
| if (IS_ERR(inode)) |
| return ERR_CAST(inode); |
| |
| inode->i_mapping->a_ops = &aio_ctx_aops; |
| inode->i_mapping->i_private_data = ctx; |
| inode->i_size = PAGE_SIZE * nr_pages; |
| |
| file = alloc_file_pseudo(inode, aio_mnt, "[aio]", |
| O_RDWR, &aio_ring_fops); |
| if (IS_ERR(file)) |
| iput(inode); |
| return file; |
| } |
| |
| static int aio_init_fs_context(struct fs_context *fc) |
| { |
| if (!init_pseudo(fc, AIO_RING_MAGIC)) |
| return -ENOMEM; |
| fc->s_iflags |= SB_I_NOEXEC; |
| return 0; |
| } |
| |
| /* aio_setup |
| * Creates the slab caches used by the aio routines, panic on |
| * failure as this is done early during the boot sequence. |
| */ |
| static int __init aio_setup(void) |
| { |
| static struct file_system_type aio_fs = { |
| .name = "aio", |
| .init_fs_context = aio_init_fs_context, |
| .kill_sb = kill_anon_super, |
| }; |
| aio_mnt = kern_mount(&aio_fs); |
| if (IS_ERR(aio_mnt)) |
| panic("Failed to create aio fs mount."); |
| |
| kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); |
| kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); |
| aio_sysctl_init(); |
| return 0; |
| } |
| __initcall(aio_setup); |
| |
| static void put_aio_ring_file(struct kioctx *ctx) |
| { |
| struct file *aio_ring_file = ctx->aio_ring_file; |
| struct address_space *i_mapping; |
| |
| if (aio_ring_file) { |
| truncate_setsize(file_inode(aio_ring_file), 0); |
| |
| /* Prevent further access to the kioctx from migratepages */ |
| i_mapping = aio_ring_file->f_mapping; |
| spin_lock(&i_mapping->i_private_lock); |
| i_mapping->i_private_data = NULL; |
| ctx->aio_ring_file = NULL; |
| spin_unlock(&i_mapping->i_private_lock); |
| |
| fput(aio_ring_file); |
| } |
| } |
| |
| static void aio_free_ring(struct kioctx *ctx) |
| { |
| int i; |
| |
| /* Disconnect the kiotx from the ring file. This prevents future |
| * accesses to the kioctx from page migration. |
| */ |
| put_aio_ring_file(ctx); |
| |
| for (i = 0; i < ctx->nr_pages; i++) { |
| struct page *page; |
| pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, |
| page_count(ctx->ring_pages[i])); |
| page = ctx->ring_pages[i]; |
| if (!page) |
| continue; |
| ctx->ring_pages[i] = NULL; |
| put_page(page); |
| } |
| |
| if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { |
| kfree(ctx->ring_pages); |
| ctx->ring_pages = NULL; |
| } |
| } |
| |
| static int aio_ring_mremap(struct vm_area_struct *vma) |
| { |
| struct file *file = vma->vm_file; |
| struct mm_struct *mm = vma->vm_mm; |
| struct kioctx_table *table; |
| int i, res = -EINVAL; |
| |
| spin_lock(&mm->ioctx_lock); |
| rcu_read_lock(); |
| table = rcu_dereference(mm->ioctx_table); |
| if (!table) |
| goto out_unlock; |
| |
| for (i = 0; i < table->nr; i++) { |
| struct kioctx *ctx; |
| |
| ctx = rcu_dereference(table->table[i]); |
| if (ctx && ctx->aio_ring_file == file) { |
| if (!atomic_read(&ctx->dead)) { |
| ctx->user_id = ctx->mmap_base = vma->vm_start; |
| res = 0; |
| } |
| break; |
| } |
| } |
| |
| out_unlock: |
| rcu_read_unlock(); |
| spin_unlock(&mm->ioctx_lock); |
| return res; |
| } |
| |
| static const struct vm_operations_struct aio_ring_vm_ops = { |
| .mremap = aio_ring_mremap, |
| #if IS_ENABLED(CONFIG_MMU) |
| .fault = filemap_fault, |
| .map_pages = filemap_map_pages, |
| .page_mkwrite = filemap_page_mkwrite, |
| #endif |
| }; |
| |
| static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| vm_flags_set(vma, VM_DONTEXPAND); |
| vma->vm_ops = &aio_ring_vm_ops; |
| return 0; |
| } |
| |
| static const struct file_operations aio_ring_fops = { |
| .mmap = aio_ring_mmap, |
| }; |
| |
| #if IS_ENABLED(CONFIG_MIGRATION) |
| static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, |
| struct folio *src, enum migrate_mode mode) |
| { |
| struct kioctx *ctx; |
| unsigned long flags; |
| pgoff_t idx; |
| int rc; |
| |
| /* |
| * We cannot support the _NO_COPY case here, because copy needs to |
| * happen under the ctx->completion_lock. That does not work with the |
| * migration workflow of MIGRATE_SYNC_NO_COPY. |
| */ |
| if (mode == MIGRATE_SYNC_NO_COPY) |
| return -EINVAL; |
| |
| rc = 0; |
| |
| /* mapping->i_private_lock here protects against the kioctx teardown. */ |
| spin_lock(&mapping->i_private_lock); |
| ctx = mapping->i_private_data; |
| if (!ctx) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* The ring_lock mutex. The prevents aio_read_events() from writing |
| * to the ring's head, and prevents page migration from mucking in |
| * a partially initialized kiotx. |
| */ |
| if (!mutex_trylock(&ctx->ring_lock)) { |
| rc = -EAGAIN; |
| goto out; |
| } |
| |
| idx = src->index; |
| if (idx < (pgoff_t)ctx->nr_pages) { |
| /* Make sure the old folio hasn't already been changed */ |
| if (ctx->ring_pages[idx] != &src->page) |
| rc = -EAGAIN; |
| } else |
| rc = -EINVAL; |
| |
| if (rc != 0) |
| goto out_unlock; |
| |
| /* Writeback must be complete */ |
| BUG_ON(folio_test_writeback(src)); |
| folio_get(dst); |
| |
| rc = folio_migrate_mapping(mapping, dst, src, 1); |
| if (rc != MIGRATEPAGE_SUCCESS) { |
| folio_put(dst); |
| goto out_unlock; |
| } |
| |
| /* Take completion_lock to prevent other writes to the ring buffer |
| * while the old folio is copied to the new. This prevents new |
| * events from being lost. |
| */ |
| spin_lock_irqsave(&ctx->completion_lock, flags); |
| folio_migrate_copy(dst, src); |
| BUG_ON(ctx->ring_pages[idx] != &src->page); |
| ctx->ring_pages[idx] = &dst->page; |
| spin_unlock_irqrestore(&ctx->completion_lock, flags); |
| |
| /* The old folio is no longer accessible. */ |
| folio_put(src); |
| |
| out_unlock: |
| mutex_unlock(&ctx->ring_lock); |
| out: |
| spin_unlock(&mapping->i_private_lock); |
| return rc; |
| } |
| #else |
| #define aio_migrate_folio NULL |
| #endif |
| |
| static const struct address_space_operations aio_ctx_aops = { |
| .dirty_folio = noop_dirty_folio, |
| .migrate_folio = aio_migrate_folio, |
| }; |
| |
| static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) |
| { |
| struct aio_ring *ring; |
| struct mm_struct *mm = current->mm; |
| unsigned long size, unused; |
| int nr_pages; |
| int i; |
| struct file *file; |
| |
| /* Compensate for the ring buffer's head/tail overlap entry */ |
| nr_events += 2; /* 1 is required, 2 for good luck */ |
| |
| size = sizeof(struct aio_ring); |
| size += sizeof(struct io_event) * nr_events; |
| |
| nr_pages = PFN_UP(size); |
| if (nr_pages < 0) |
| return -EINVAL; |
| |
| file = aio_private_file(ctx, nr_pages); |
| if (IS_ERR(file)) { |
| ctx->aio_ring_file = NULL; |
| return -ENOMEM; |
| } |
| |
| ctx->aio_ring_file = file; |
| nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) |
| / sizeof(struct io_event); |
| |
| ctx->ring_pages = ctx->internal_pages; |
| if (nr_pages > AIO_RING_PAGES) { |
| ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), |
| GFP_KERNEL); |
| if (!ctx->ring_pages) { |
| put_aio_ring_file(ctx); |
| return -ENOMEM; |
| } |
| } |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page; |
| page = find_or_create_page(file->f_mapping, |
| i, GFP_USER | __GFP_ZERO); |
| if (!page) |
| break; |
| pr_debug("pid(%d) page[%d]->count=%d\n", |
| current->pid, i, page_count(page)); |
| SetPageUptodate(page); |
| unlock_page(page); |
| |
| ctx->ring_pages[i] = page; |
| } |
| ctx->nr_pages = i; |
| |
| if (unlikely(i != nr_pages)) { |
| aio_free_ring(ctx); |
| return -ENOMEM; |
| } |
| |
| ctx->mmap_size = nr_pages * PAGE_SIZE; |
| pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); |
| |
| if (mmap_write_lock_killable(mm)) { |
| ctx->mmap_size = 0; |
| aio_free_ring(ctx); |
| return -EINTR; |
| } |
| |
| ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, |
| PROT_READ | PROT_WRITE, |
| MAP_SHARED, 0, 0, &unused, NULL); |
| mmap_write_unlock(mm); |
| if (IS_ERR((void *)ctx->mmap_base)) { |
| ctx->mmap_size = 0; |
| aio_free_ring(ctx); |
| return -ENOMEM; |
| } |
| |
| pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); |
| |
| ctx->user_id = ctx->mmap_base; |
| ctx->nr_events = nr_events; /* trusted copy */ |
| |
| ring = page_address(ctx->ring_pages[0]); |
| ring->nr = nr_events; /* user copy */ |
| ring->id = ~0U; |
| ring->head = ring->tail = 0; |
| ring->magic = AIO_RING_MAGIC; |
| ring->compat_features = AIO_RING_COMPAT_FEATURES; |
| ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; |
| ring->header_length = sizeof(struct aio_ring); |
| flush_dcache_page(ctx->ring_pages[0]); |
| |
| return 0; |
| } |
| |
| #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) |
| #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) |
| #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) |
| |
| void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) |
| { |
| struct aio_kiocb *req; |
| struct kioctx *ctx; |
| unsigned long flags; |
| |
| /* |
| * kiocb didn't come from aio or is neither a read nor a write, hence |
| * ignore it. |
| */ |
| if (!(iocb->ki_flags & IOCB_AIO_RW)) |
| return; |
| |
| req = container_of(iocb, struct aio_kiocb, rw); |
| |
| if (WARN_ON_ONCE(!list_empty(&req->ki_list))) |
| return; |
| |
| ctx = req->ki_ctx; |
| |
| spin_lock_irqsave(&ctx->ctx_lock, flags); |
| list_add_tail(&req->ki_list, &ctx->active_reqs); |
| req->ki_cancel = cancel; |
| spin_unlock_irqrestore(&ctx->ctx_lock, flags); |
| } |
| EXPORT_SYMBOL(kiocb_set_cancel_fn); |
| |
| /* |
| * free_ioctx() should be RCU delayed to synchronize against the RCU |
| * protected lookup_ioctx() and also needs process context to call |
| * aio_free_ring(). Use rcu_work. |
| */ |
| static void free_ioctx(struct work_struct *work) |
| { |
| struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, |
| free_rwork); |
| pr_debug("freeing %p\n", ctx); |
| |
| aio_free_ring(ctx); |
| free_percpu(ctx->cpu); |
| percpu_ref_exit(&ctx->reqs); |
| percpu_ref_exit(&ctx->users); |
| kmem_cache_free(kioctx_cachep, ctx); |
| } |
| |
| static void free_ioctx_reqs(struct percpu_ref *ref) |
| { |
| struct kioctx *ctx = container_of(ref, struct kioctx, reqs); |
| |
| /* At this point we know that there are no any in-flight requests */ |
| if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) |
| complete(&ctx->rq_wait->comp); |
| |
| /* Synchronize against RCU protected table->table[] dereferences */ |
| INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); |
| queue_rcu_work(system_wq, &ctx->free_rwork); |
| } |
| |
| /* |
| * When this function runs, the kioctx has been removed from the "hash table" |
| * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - |
| * now it's safe to cancel any that need to be. |
| */ |
| static void free_ioctx_users(struct percpu_ref *ref) |
| { |
| struct kioctx *ctx = container_of(ref, struct kioctx, users); |
| struct aio_kiocb *req; |
| |
| spin_lock_irq(&ctx->ctx_lock); |
| |
| while (!list_empty(&ctx->active_reqs)) { |
| req = list_first_entry(&ctx->active_reqs, |
| struct aio_kiocb, ki_list); |
| req->ki_cancel(&req->rw); |
| list_del_init(&req->ki_list); |
| } |
| |
| spin_unlock_irq(&ctx->ctx_lock); |
| |
| percpu_ref_kill(&ctx->reqs); |
| percpu_ref_put(&ctx->reqs); |
| } |
| |
| static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) |
| { |
| unsigned i, new_nr; |
| struct kioctx_table *table, *old; |
| struct aio_ring *ring; |
| |
| spin_lock(&mm->ioctx_lock); |
| table = rcu_dereference_raw(mm->ioctx_table); |
| |
| while (1) { |
| if (table) |
| for (i = 0; i < table->nr; i++) |
| if (!rcu_access_pointer(table->table[i])) { |
| ctx->id = i; |
| rcu_assign_pointer(table->table[i], ctx); |
| spin_unlock(&mm->ioctx_lock); |
| |
| /* While kioctx setup is in progress, |
| * we are protected from page migration |
| * changes ring_pages by ->ring_lock. |
| */ |
| ring = page_address(ctx->ring_pages[0]); |
| ring->id = ctx->id; |
| return 0; |
| } |
| |
| new_nr = (table ? table->nr : 1) * 4; |
| spin_unlock(&mm->ioctx_lock); |
| |
| table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); |
| if (!table) |
| return -ENOMEM; |
| |
| table->nr = new_nr; |
| |
| spin_lock(&mm->ioctx_lock); |
| old = rcu_dereference_raw(mm->ioctx_table); |
| |
| if (!old) { |
| rcu_assign_pointer(mm->ioctx_table, table); |
| } else if (table->nr > old->nr) { |
| memcpy(table->table, old->table, |
| old->nr * sizeof(struct kioctx *)); |
| |
| rcu_assign_pointer(mm->ioctx_table, table); |
| kfree_rcu(old, rcu); |
| } else { |
| kfree(table); |
| table = old; |
| } |
| } |
| } |
| |
| static void aio_nr_sub(unsigned nr) |
| { |
| spin_lock(&aio_nr_lock); |
| if (WARN_ON(aio_nr - nr > aio_nr)) |
| aio_nr = 0; |
| else |
| aio_nr -= nr; |
| spin_unlock(&aio_nr_lock); |
| } |
| |
| /* ioctx_alloc |
| * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. |
| */ |
| static struct kioctx *ioctx_alloc(unsigned nr_events) |
| { |
| struct mm_struct *mm = current->mm; |
| struct kioctx *ctx; |
| int err = -ENOMEM; |
| |
| /* |
| * Store the original nr_events -- what userspace passed to io_setup(), |
| * for counting against the global limit -- before it changes. |
| */ |
| unsigned int max_reqs = nr_events; |
| |
| /* |
| * We keep track of the number of available ringbuffer slots, to prevent |
| * overflow (reqs_available), and we also use percpu counters for this. |
| * |
| * So since up to half the slots might be on other cpu's percpu counters |
| * and unavailable, double nr_events so userspace sees what they |
| * expected: additionally, we move req_batch slots to/from percpu |
| * counters at a time, so make sure that isn't 0: |
| */ |
| nr_events = max(nr_events, num_possible_cpus() * 4); |
| nr_events *= 2; |
| |
| /* Prevent overflows */ |
| if (nr_events > (0x10000000U / sizeof(struct io_event))) { |
| pr_debug("ENOMEM: nr_events too high\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (!nr_events || (unsigned long)max_reqs > aio_max_nr) |
| return ERR_PTR(-EAGAIN); |
| |
| ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); |
| if (!ctx) |
| return ERR_PTR(-ENOMEM); |
| |
| ctx->max_reqs = max_reqs; |
| |
| spin_lock_init(&ctx->ctx_lock); |
| spin_lock_init(&ctx->completion_lock); |
| mutex_init(&ctx->ring_lock); |
| /* Protect against page migration throughout kiotx setup by keeping |
| * the ring_lock mutex held until setup is complete. */ |
| mutex_lock(&ctx->ring_lock); |
| init_waitqueue_head(&ctx->wait); |
| |
| INIT_LIST_HEAD(&ctx->active_reqs); |
| |
| if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) |
| goto err; |
| |
| if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) |
| goto err; |
| |
| ctx->cpu = alloc_percpu(struct kioctx_cpu); |
| if (!ctx->cpu) |
| goto err; |
| |
| err = aio_setup_ring(ctx, nr_events); |
| if (err < 0) |
| goto err; |
| |
| atomic_set(&ctx->reqs_available, ctx->nr_events - 1); |
| ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); |
| if (ctx->req_batch < 1) |
| ctx->req_batch = 1; |
| |
| /* limit the number of system wide aios */ |
| spin_lock(&aio_nr_lock); |
| if (aio_nr + ctx->max_reqs > aio_max_nr || |
| aio_nr + ctx->max_reqs < aio_nr) { |
| spin_unlock(&aio_nr_lock); |
| err = -EAGAIN; |
| goto err_ctx; |
| } |
| aio_nr += ctx->max_reqs; |
| spin_unlock(&aio_nr_lock); |
| |
| percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ |
| percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ |
| |
| err = ioctx_add_table(ctx, mm); |
| if (err) |
| goto err_cleanup; |
| |
| /* Release the ring_lock mutex now that all setup is complete. */ |
| mutex_unlock(&ctx->ring_lock); |
| |
| pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", |
| ctx, ctx->user_id, mm, ctx->nr_events); |
| return ctx; |
| |
| err_cleanup: |
| aio_nr_sub(ctx->max_reqs); |
| err_ctx: |
| atomic_set(&ctx->dead, 1); |
| if (ctx->mmap_size) |
| vm_munmap(ctx->mmap_base, ctx->mmap_size); |
| aio_free_ring(ctx); |
| err: |
| mutex_unlock(&ctx->ring_lock); |
| free_percpu(ctx->cpu); |
| percpu_ref_exit(&ctx->reqs); |
| percpu_ref_exit(&ctx->users); |
| kmem_cache_free(kioctx_cachep, ctx); |
| pr_debug("error allocating ioctx %d\n", err); |
| return ERR_PTR(err); |
| } |
| |
| /* kill_ioctx |
| * Cancels all outstanding aio requests on an aio context. Used |
| * when the processes owning a context have all exited to encourage |
| * the rapid destruction of the kioctx. |
| */ |
| static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, |
| struct ctx_rq_wait *wait) |
| { |
| struct kioctx_table *table; |
| |
| spin_lock(&mm->ioctx_lock); |
| if (atomic_xchg(&ctx->dead, 1)) { |
| spin_unlock(&mm->ioctx_lock); |
| return -EINVAL; |
| } |
| |
| table = rcu_dereference_raw(mm->ioctx_table); |
| WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); |
| RCU_INIT_POINTER(table->table[ctx->id], NULL); |
| spin_unlock(&mm->ioctx_lock); |
| |
| /* free_ioctx_reqs() will do the necessary RCU synchronization */ |
| wake_up_all(&ctx->wait); |
| |
| /* |
| * It'd be more correct to do this in free_ioctx(), after all |
| * the outstanding kiocbs have finished - but by then io_destroy |
| * has already returned, so io_setup() could potentially return |
| * -EAGAIN with no ioctxs actually in use (as far as userspace |
| * could tell). |
| */ |
| aio_nr_sub(ctx->max_reqs); |
| |
| if (ctx->mmap_size) |
| vm_munmap(ctx->mmap_base, ctx->mmap_size); |
| |
| ctx->rq_wait = wait; |
| percpu_ref_kill(&ctx->users); |
| return 0; |
| } |
| |
| /* |
| * exit_aio: called when the last user of mm goes away. At this point, there is |
| * no way for any new requests to be submited or any of the io_* syscalls to be |
| * called on the context. |
| * |
| * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on |
| * them. |
| */ |
| void exit_aio(struct mm_struct *mm) |
| { |
| struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); |
| struct ctx_rq_wait wait; |
| int i, skipped; |
| |
| if (!table) |
| return; |
| |
| atomic_set(&wait.count, table->nr); |
| init_completion(&wait.comp); |
| |
| skipped = 0; |
| for (i = 0; i < table->nr; ++i) { |
| struct kioctx *ctx = |
| rcu_dereference_protected(table->table[i], true); |
| |
| if (!ctx) { |
| skipped++; |
| continue; |
| } |
| |
| /* |
| * We don't need to bother with munmap() here - exit_mmap(mm) |
| * is coming and it'll unmap everything. And we simply can't, |
| * this is not necessarily our ->mm. |
| * Since kill_ioctx() uses non-zero ->mmap_size as indicator |
| * that it needs to unmap the area, just set it to 0. |
| */ |
| ctx->mmap_size = 0; |
| kill_ioctx(mm, ctx, &wait); |
| } |
| |
| if (!atomic_sub_and_test(skipped, &wait.count)) { |
| /* Wait until all IO for the context are done. */ |
| wait_for_completion(&wait.comp); |
| } |
| |
| RCU_INIT_POINTER(mm->ioctx_table, NULL); |
| kfree(table); |
| } |
| |
| static void put_reqs_available(struct kioctx *ctx, unsigned nr) |
| { |
| struct kioctx_cpu *kcpu; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| kcpu = this_cpu_ptr(ctx->cpu); |
| kcpu->reqs_available += nr; |
| |
| while (kcpu->reqs_available >= ctx->req_batch * 2) { |
| kcpu->reqs_available -= ctx->req_batch; |
| atomic_add(ctx->req_batch, &ctx->reqs_available); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| static bool __get_reqs_available(struct kioctx *ctx) |
| { |
| struct kioctx_cpu *kcpu; |
| bool ret = false; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| kcpu = this_cpu_ptr(ctx->cpu); |
| if (!kcpu->reqs_available) { |
| int avail = atomic_read(&ctx->reqs_available); |
| |
| do { |
| if (avail < ctx->req_batch) |
| goto out; |
| } while (!atomic_try_cmpxchg(&ctx->reqs_available, |
| &avail, avail - ctx->req_batch)); |
| |
| kcpu->reqs_available += ctx->req_batch; |
| } |
| |
| ret = true; |
| kcpu->reqs_available--; |
| out: |
| local_irq_restore(flags); |
| return ret; |
| } |
| |
| /* refill_reqs_available |
| * Updates the reqs_available reference counts used for tracking the |
| * number of free slots in the completion ring. This can be called |
| * from aio_complete() (to optimistically update reqs_available) or |
| * from aio_get_req() (the we're out of events case). It must be |
| * called holding ctx->completion_lock. |
| */ |
| static void refill_reqs_available(struct kioctx *ctx, unsigned head, |
| unsigned tail) |
| { |
| unsigned events_in_ring, completed; |
| |
| /* Clamp head since userland can write to it. */ |
| head %= ctx->nr_events; |
| if (head <= tail) |
| events_in_ring = tail - head; |
| else |
| events_in_ring = ctx->nr_events - (head - tail); |
| |
| completed = ctx->completed_events; |
| if (events_in_ring < completed) |
| completed -= events_in_ring; |
| else |
| completed = 0; |
| |
| if (!completed) |
| return; |
| |
| ctx->completed_events -= completed; |
| put_reqs_available(ctx, completed); |
| } |
| |
| /* user_refill_reqs_available |
| * Called to refill reqs_available when aio_get_req() encounters an |
| * out of space in the completion ring. |
| */ |
| static void user_refill_reqs_available(struct kioctx *ctx) |
| { |
| spin_lock_irq(&ctx->completion_lock); |
| if (ctx->completed_events) { |
| struct aio_ring *ring; |
| unsigned head; |
| |
| /* Access of ring->head may race with aio_read_events_ring() |
| * here, but that's okay since whether we read the old version |
| * or the new version, and either will be valid. The important |
| * part is that head cannot pass tail since we prevent |
| * aio_complete() from updating tail by holding |
| * ctx->completion_lock. Even if head is invalid, the check |
| * against ctx->completed_events below will make sure we do the |
| * safe/right thing. |
| */ |
| ring = page_address(ctx->ring_pages[0]); |
| head = ring->head; |
| |
| refill_reqs_available(ctx, head, ctx->tail); |
| } |
| |
| spin_unlock_irq(&ctx->completion_lock); |
| } |
| |
| static bool get_reqs_available(struct kioctx *ctx) |
| { |
| if (__get_reqs_available(ctx)) |
| return true; |
| user_refill_reqs_available(ctx); |
| return __get_reqs_available(ctx); |
| } |
| |
| /* aio_get_req |
| * Allocate a slot for an aio request. |
| * Returns NULL if no requests are free. |
| * |
| * The refcount is initialized to 2 - one for the async op completion, |
| * one for the synchronous code that does this. |
| */ |
| static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) |
| { |
| struct aio_kiocb *req; |
| |
| req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); |
| if (unlikely(!req)) |
| return NULL; |
| |
| if (unlikely(!get_reqs_available(ctx))) { |
| kmem_cache_free(kiocb_cachep, req); |
| return NULL; |
| } |
| |
| percpu_ref_get(&ctx->reqs); |
| req->ki_ctx = ctx; |
| INIT_LIST_HEAD(&req->ki_list); |
| refcount_set(&req->ki_refcnt, 2); |
| req->ki_eventfd = NULL; |
| return req; |
| } |
| |
| static struct kioctx *lookup_ioctx(unsigned long ctx_id) |
| { |
| struct aio_ring __user *ring = (void __user *)ctx_id; |
| struct mm_struct *mm = current->mm; |
| struct kioctx *ctx, *ret = NULL; |
| struct kioctx_table *table; |
| unsigned id; |
| |
| if (get_user(id, &ring->id)) |
| return NULL; |
| |
| rcu_read_lock(); |
| table = rcu_dereference(mm->ioctx_table); |
| |
| if (!table || id >= table->nr) |
| goto out; |
| |
| id = array_index_nospec(id, table->nr); |
| ctx = rcu_dereference(table->table[id]); |
| if (ctx && ctx->user_id == ctx_id) { |
| if (percpu_ref_tryget_live(&ctx->users)) |
| ret = ctx; |
| } |
| out: |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| static inline void iocb_destroy(struct aio_kiocb *iocb) |
| { |
| if (iocb->ki_eventfd) |
| eventfd_ctx_put(iocb->ki_eventfd); |
| if (iocb->ki_filp) |
| fput(iocb->ki_filp); |
| percpu_ref_put(&iocb->ki_ctx->reqs); |
| kmem_cache_free(kiocb_cachep, iocb); |
| } |
| |
| struct aio_waiter { |
| struct wait_queue_entry w; |
| size_t min_nr; |
| }; |
| |
| /* aio_complete |
| * Called when the io request on the given iocb is complete. |
| */ |
| static void aio_complete(struct aio_kiocb *iocb) |
| { |
| struct kioctx *ctx = iocb->ki_ctx; |
| struct aio_ring *ring; |
| struct io_event *ev_page, *event; |
| unsigned tail, pos, head, avail; |
| unsigned long flags; |
| |
| /* |
| * Add a completion event to the ring buffer. Must be done holding |
| * ctx->completion_lock to prevent other code from messing with the tail |
| * pointer since we might be called from irq context. |
| */ |
| spin_lock_irqsave(&ctx->completion_lock, flags); |
| |
| tail = ctx->tail; |
| pos = tail + AIO_EVENTS_OFFSET; |
| |
| if (++tail >= ctx->nr_events) |
| tail = 0; |
| |
| ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); |
| event = ev_page + pos % AIO_EVENTS_PER_PAGE; |
| |
| *event = iocb->ki_res; |
| |
| flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); |
| |
| pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, |
| (void __user *)(unsigned long)iocb->ki_res.obj, |
| iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); |
| |
| /* after flagging the request as done, we |
| * must never even look at it again |
| */ |
| smp_wmb(); /* make event visible before updating tail */ |
| |
| ctx->tail = tail; |
| |
| ring = page_address(ctx->ring_pages[0]); |
| head = ring->head; |
| ring->tail = tail; |
| flush_dcache_page(ctx->ring_pages[0]); |
| |
| ctx->completed_events++; |
| if (ctx->completed_events > 1) |
| refill_reqs_available(ctx, head, tail); |
| |
| avail = tail > head |
| ? tail - head |
| : tail + ctx->nr_events - head; |
| spin_unlock_irqrestore(&ctx->completion_lock, flags); |
| |
| pr_debug("added to ring %p at [%u]\n", iocb, tail); |
| |
| /* |
| * Check if the user asked us to deliver the result through an |
| * eventfd. The eventfd_signal() function is safe to be called |
| * from IRQ context. |
| */ |
| if (iocb->ki_eventfd) |
| eventfd_signal(iocb->ki_eventfd); |
| |
| /* |
| * We have to order our ring_info tail store above and test |
| * of the wait list below outside the wait lock. This is |
| * like in wake_up_bit() where clearing a bit has to be |
| * ordered with the unlocked test. |
| */ |
| smp_mb(); |
| |
| if (waitqueue_active(&ctx->wait)) { |
| struct aio_waiter *curr, *next; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ctx->wait.lock, flags); |
| list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry) |
| if (avail >= curr->min_nr) { |
| list_del_init_careful(&curr->w.entry); |
| wake_up_process(curr->w.private); |
| } |
| spin_unlock_irqrestore(&ctx->wait.lock, flags); |
| } |
| } |
| |
| static inline void iocb_put(struct aio_kiocb *iocb) |
| { |
| if (refcount_dec_and_test(&iocb->ki_refcnt)) { |
| aio_complete(iocb); |
| iocb_destroy(iocb); |
| } |
| } |
| |
| /* aio_read_events_ring |
| * Pull an event off of the ioctx's event ring. Returns the number of |
| * events fetched |
| */ |
| static long aio_read_events_ring(struct kioctx *ctx, |
| struct io_event __user *event, long nr) |
| { |
| struct aio_ring *ring; |
| unsigned head, tail, pos; |
| long ret = 0; |
| int copy_ret; |
| |
| /* |
| * The mutex can block and wake us up and that will cause |
| * wait_event_interruptible_hrtimeout() to schedule without sleeping |
| * and repeat. This should be rare enough that it doesn't cause |
| * peformance issues. See the comment in read_events() for more detail. |
| */ |
| sched_annotate_sleep(); |
| mutex_lock(&ctx->ring_lock); |
| |
| /* Access to ->ring_pages here is protected by ctx->ring_lock. */ |
| ring = page_address(ctx->ring_pages[0]); |
| head = ring->head; |
| tail = ring->tail; |
| |
| /* |
| * Ensure that once we've read the current tail pointer, that |
| * we also see the events that were stored up to the tail. |
| */ |
| smp_rmb(); |
| |
| pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); |
| |
| if (head == tail) |
| goto out; |
| |
| head %= ctx->nr_events; |
| tail %= ctx->nr_events; |
| |
| while (ret < nr) { |
| long avail; |
| struct io_event *ev; |
| struct page *page; |
| |
| avail = (head <= tail ? tail : ctx->nr_events) - head; |
| if (head == tail) |
| break; |
| |
| pos = head + AIO_EVENTS_OFFSET; |
| page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; |
| pos %= AIO_EVENTS_PER_PAGE; |
| |
| avail = min(avail, nr - ret); |
| avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); |
| |
| ev = page_address(page); |
| copy_ret = copy_to_user(event + ret, ev + pos, |
| sizeof(*ev) * avail); |
| |
| if (unlikely(copy_ret)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| ret += avail; |
| head += avail; |
| head %= ctx->nr_events; |
| } |
| |
| ring = page_address(ctx->ring_pages[0]); |
| ring->head = head; |
| flush_dcache_page(ctx->ring_pages[0]); |
| |
| pr_debug("%li h%u t%u\n", ret, head, tail); |
| out: |
| mutex_unlock(&ctx->ring_lock); |
| |
| return ret; |
| } |
| |
| static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, |
| struct io_event __user *event, long *i) |
| { |
| long ret = aio_read_events_ring(ctx, event + *i, nr - *i); |
| |
| if (ret > 0) |
| *i += ret; |
| |
| if (unlikely(atomic_read(&ctx->dead))) |
| ret = -EINVAL; |
| |
| if (!*i) |
| *i = ret; |
| |
| return ret < 0 || *i >= min_nr; |
| } |
| |
| static long read_events(struct kioctx *ctx, long min_nr, long nr, |
| struct io_event __user *event, |
| ktime_t until) |
| { |
| struct hrtimer_sleeper t; |
| struct aio_waiter w; |
| long ret = 0, ret2 = 0; |
| |
| /* |
| * Note that aio_read_events() is being called as the conditional - i.e. |
| * we're calling it after prepare_to_wait() has set task state to |
| * TASK_INTERRUPTIBLE. |
| * |
| * But aio_read_events() can block, and if it blocks it's going to flip |
| * the task state back to TASK_RUNNING. |
| * |
| * This should be ok, provided it doesn't flip the state back to |
| * TASK_RUNNING and return 0 too much - that causes us to spin. That |
| * will only happen if the mutex_lock() call blocks, and we then find |
| * the ringbuffer empty. So in practice we should be ok, but it's |
| * something to be aware of when touching this code. |
| */ |
| aio_read_events(ctx, min_nr, nr, event, &ret); |
| if (until == 0 || ret < 0 || ret >= min_nr) |
| return ret; |
| |
| hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| if (until != KTIME_MAX) { |
| hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns); |
| hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL); |
| } |
| |
| init_wait(&w.w); |
| |
| while (1) { |
| unsigned long nr_got = ret; |
| |
| w.min_nr = min_nr - ret; |
| |
| ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE); |
| if (!ret2 && !t.task) |
| ret2 = -ETIME; |
| |
| if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2) |
| break; |
| |
| if (nr_got == ret) |
| schedule(); |
| } |
| |
| finish_wait(&ctx->wait, &w.w); |
| hrtimer_cancel(&t.timer); |
| destroy_hrtimer_on_stack(&t.timer); |
| |
| return ret; |
| } |
| |
| /* sys_io_setup: |
| * Create an aio_context capable of receiving at least nr_events. |
| * ctxp must not point to an aio_context that already exists, and |
| * must be initialized to 0 prior to the call. On successful |
| * creation of the aio_context, *ctxp is filled in with the resulting |
| * handle. May fail with -EINVAL if *ctxp is not initialized, |
| * if the specified nr_events exceeds internal limits. May fail |
| * with -EAGAIN if the specified nr_events exceeds the user's limit |
| * of available events. May fail with -ENOMEM if insufficient kernel |
| * resources are available. May fail with -EFAULT if an invalid |
| * pointer is passed for ctxp. Will fail with -ENOSYS if not |
| * implemented. |
| */ |
| SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) |
| { |
| struct kioctx *ioctx = NULL; |
| unsigned long ctx; |
| long ret; |
| |
| ret = get_user(ctx, ctxp); |
| if (unlikely(ret)) |
| goto out; |
| |
| ret = -EINVAL; |
| if (unlikely(ctx || nr_events == 0)) { |
| pr_debug("EINVAL: ctx %lu nr_events %u\n", |
| ctx, nr_events); |
| goto out; |
| } |
| |
| ioctx = ioctx_alloc(nr_events); |
| ret = PTR_ERR(ioctx); |
| if (!IS_ERR(ioctx)) { |
| ret = put_user(ioctx->user_id, ctxp); |
| if (ret) |
| kill_ioctx(current->mm, ioctx, NULL); |
| percpu_ref_put(&ioctx->users); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) |
| { |
| struct kioctx *ioctx = NULL; |
| unsigned long ctx; |
| long ret; |
| |
| ret = get_user(ctx, ctx32p); |
| if (unlikely(ret)) |
| goto out; |
| |
| ret = -EINVAL; |
| if (unlikely(ctx || nr_events == 0)) { |
| pr_debug("EINVAL: ctx %lu nr_events %u\n", |
| ctx, nr_events); |
| goto out; |
| } |
| |
| ioctx = ioctx_alloc(nr_events); |
| ret = PTR_ERR(ioctx); |
| if (!IS_ERR(ioctx)) { |
| /* truncating is ok because it's a user address */ |
| ret = put_user((u32)ioctx->user_id, ctx32p); |
| if (ret) |
| kill_ioctx(current->mm, ioctx, NULL); |
| percpu_ref_put(&ioctx->users); |
| } |
| |
| out: |
| return ret; |
| } |
| #endif |
| |
| /* sys_io_destroy: |
| * Destroy the aio_context specified. May cancel any outstanding |
| * AIOs and block on completion. Will fail with -ENOSYS if not |
| * implemented. May fail with -EINVAL if the context pointed to |
| * is invalid. |
| */ |
| SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) |
| { |
| struct kioctx *ioctx = lookup_ioctx(ctx); |
| if (likely(NULL != ioctx)) { |
| struct ctx_rq_wait wait; |
| int ret; |
| |
| init_completion(&wait.comp); |
| atomic_set(&wait.count, 1); |
| |
| /* Pass requests_done to kill_ioctx() where it can be set |
| * in a thread-safe way. If we try to set it here then we have |
| * a race condition if two io_destroy() called simultaneously. |
| */ |
| ret = kill_ioctx(current->mm, ioctx, &wait); |
| percpu_ref_put(&ioctx->users); |
| |
| /* Wait until all IO for the context are done. Otherwise kernel |
| * keep using user-space buffers even if user thinks the context |
| * is destroyed. |
| */ |
| if (!ret) |
| wait_for_completion(&wait.comp); |
| |
| return ret; |
| } |
| pr_debug("EINVAL: invalid context id\n"); |
| return -EINVAL; |
| } |
| |
| static void aio_remove_iocb(struct aio_kiocb *iocb) |
| { |
| struct kioctx *ctx = iocb->ki_ctx; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ctx->ctx_lock, flags); |
| list_del(&iocb->ki_list); |
| spin_unlock_irqrestore(&ctx->ctx_lock, flags); |
| } |
| |
| static void aio_complete_rw(struct kiocb *kiocb, long res) |
| { |
| struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); |
| |
| if (!list_empty_careful(&iocb->ki_list)) |
| aio_remove_iocb(iocb); |
| |
| if (kiocb->ki_flags & IOCB_WRITE) { |
| struct inode *inode = file_inode(kiocb->ki_filp); |
| |
| if (S_ISREG(inode->i_mode)) |
| kiocb_end_write(kiocb); |
| } |
| |
| iocb->ki_res.res = res; |
| iocb->ki_res.res2 = 0; |
| iocb_put(iocb); |
| } |
| |
| static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) |
| { |
| int ret; |
| |
| req->ki_complete = aio_complete_rw; |
| req->private = NULL; |
| req->ki_pos = iocb->aio_offset; |
| req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW; |
| if (iocb->aio_flags & IOCB_FLAG_RESFD) |
| req->ki_flags |= IOCB_EVENTFD; |
| if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { |
| /* |
| * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then |
| * aio_reqprio is interpreted as an I/O scheduling |
| * class and priority. |
| */ |
| ret = ioprio_check_cap(iocb->aio_reqprio); |
| if (ret) { |
| pr_debug("aio ioprio check cap error: %d\n", ret); |
| return ret; |
| } |
| |
| req->ki_ioprio = iocb->aio_reqprio; |
| } else |
| req->ki_ioprio = get_current_ioprio(); |
| |
| ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); |
| if (unlikely(ret)) |
| return ret; |
| |
| req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ |
| return 0; |
| } |
| |
| static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, |
| struct iovec **iovec, bool vectored, bool compat, |
| struct iov_iter *iter) |
| { |
| void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; |
| size_t len = iocb->aio_nbytes; |
| |
| if (!vectored) { |
| ssize_t ret = import_ubuf(rw, buf, len, iter); |
| *iovec = NULL; |
| return ret; |
| } |
| |
| return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); |
| } |
| |
| static inline void aio_rw_done(struct kiocb *req, ssize_t ret) |
| { |
| switch (ret) { |
| case -EIOCBQUEUED: |
| break; |
| case -ERESTARTSYS: |
| case -ERESTARTNOINTR: |
| case -ERESTARTNOHAND: |
| case -ERESTART_RESTARTBLOCK: |
| /* |
| * There's no easy way to restart the syscall since other AIO's |
| * may be already running. Just fail this IO with EINTR. |
| */ |
| ret = -EINTR; |
| fallthrough; |
| default: |
| req->ki_complete(req, ret); |
| } |
| } |
| |
| static int aio_read(struct kiocb *req, const struct iocb *iocb, |
| bool vectored, bool compat) |
| { |
| struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; |
| struct iov_iter iter; |
| struct file *file; |
| int ret; |
| |
| ret = aio_prep_rw(req, iocb); |
| if (ret) |
| return ret; |
| file = req->ki_filp; |
| if (unlikely(!(file->f_mode & FMODE_READ))) |
| return -EBADF; |
| if (unlikely(!file->f_op->read_iter)) |
| return -EINVAL; |
| |
| ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); |
| if (ret < 0) |
| return ret; |
| ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); |
| if (!ret) |
| aio_rw_done(req, call_read_iter(file, req, &iter)); |
| kfree(iovec); |
| return ret; |
| } |
| |
| static int aio_write(struct kiocb *req, const struct iocb *iocb, |
| bool vectored, bool compat) |
| { |
| struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; |
| struct iov_iter iter; |
| struct file *file; |
| int ret; |
| |
| ret = aio_prep_rw(req, iocb); |
| if (ret) |
| return ret; |
| file = req->ki_filp; |
| |
| if (unlikely(!(file->f_mode & FMODE_WRITE))) |
| return -EBADF; |
| if (unlikely(!file->f_op->write_iter)) |
| return -EINVAL; |
| |
| ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); |
| if (ret < 0) |
| return ret; |
| ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); |
| if (!ret) { |
| if (S_ISREG(file_inode(file)->i_mode)) |
| kiocb_start_write(req); |
| req->ki_flags |= IOCB_WRITE; |
| aio_rw_done(req, call_write_iter(file, req, &iter)); |
| } |
| kfree(iovec); |
| return ret; |
| } |
| |
| static void aio_fsync_work(struct work_struct *work) |
| { |
| struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); |
| const struct cred *old_cred = override_creds(iocb->fsync.creds); |
| |
| iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); |
| revert_creds(old_cred); |
| put_cred(iocb->fsync.creds); |
| iocb_put(iocb); |
| } |
| |
| static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, |
| bool datasync) |
| { |
| if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || |
| iocb->aio_rw_flags)) |
| return -EINVAL; |
| |
| if (unlikely(!req->file->f_op->fsync)) |
| return -EINVAL; |
| |
| req->creds = prepare_creds(); |
| if (!req->creds) |
| return -ENOMEM; |
| |
| req->datasync = datasync; |
| INIT_WORK(&req->work, aio_fsync_work); |
| schedule_work(&req->work); |
| return 0; |
| } |
| |
| static void aio_poll_put_work(struct work_struct *work) |
| { |
| struct poll_iocb *req = container_of(work, struct poll_iocb, work); |
| struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); |
| |
| iocb_put(iocb); |
| } |
| |
| /* |
| * Safely lock the waitqueue which the request is on, synchronizing with the |
| * case where the ->poll() provider decides to free its waitqueue early. |
| * |
| * Returns true on success, meaning that req->head->lock was locked, req->wait |
| * is on req->head, and an RCU read lock was taken. Returns false if the |
| * request was already removed from its waitqueue (which might no longer exist). |
| */ |
| static bool poll_iocb_lock_wq(struct poll_iocb *req) |
| { |
| wait_queue_head_t *head; |
| |
| /* |
| * While we hold the waitqueue lock and the waitqueue is nonempty, |
| * wake_up_pollfree() will wait for us. However, taking the waitqueue |
| * lock in the first place can race with the waitqueue being freed. |
| * |
| * We solve this as eventpoll does: by taking advantage of the fact that |
| * all users of wake_up_pollfree() will RCU-delay the actual free. If |
| * we enter rcu_read_lock() and see that the pointer to the queue is |
| * non-NULL, we can then lock it without the memory being freed out from |
| * under us, then check whether the request is still on the queue. |
| * |
| * Keep holding rcu_read_lock() as long as we hold the queue lock, in |
| * case the caller deletes the entry from the queue, leaving it empty. |
| * In that case, only RCU prevents the queue memory from being freed. |
| */ |
| rcu_read_lock(); |
| head = smp_load_acquire(&req->head); |
| if (head) { |
| spin_lock(&head->lock); |
| if (!list_empty(&req->wait.entry)) |
| return true; |
| spin_unlock(&head->lock); |
| } |
| rcu_read_unlock(); |
| return false; |
| } |
| |
| static void poll_iocb_unlock_wq(struct poll_iocb *req) |
| { |
| spin_unlock(&req->head->lock); |
| rcu_read_unlock(); |
| } |
| |
| static void aio_poll_complete_work(struct work_struct *work) |
| { |
| struct poll_iocb *req = container_of(work, struct poll_iocb, work); |
| struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); |
| struct poll_table_struct pt = { ._key = req->events }; |
| struct kioctx *ctx = iocb->ki_ctx; |
| __poll_t mask = 0; |
| |
| if (!READ_ONCE(req->cancelled)) |
| mask = vfs_poll(req->file, &pt) & req->events; |
| |
| /* |
| * Note that ->ki_cancel callers also delete iocb from active_reqs after |
| * calling ->ki_cancel. We need the ctx_lock roundtrip here to |
| * synchronize with them. In the cancellation case the list_del_init |
| * itself is not actually needed, but harmless so we keep it in to |
| * avoid further branches in the fast path. |
| */ |
| spin_lock_irq(&ctx->ctx_lock); |
| if (poll_iocb_lock_wq(req)) { |
| if (!mask && !READ_ONCE(req->cancelled)) { |
| /* |
| * The request isn't actually ready to be completed yet. |
| * Reschedule completion if another wakeup came in. |
| */ |
| if (req->work_need_resched) { |
| schedule_work(&req->work); |
| req->work_need_resched = false; |
| } else { |
| req->work_scheduled = false; |
| } |
| poll_iocb_unlock_wq(req); |
| spin_unlock_irq(&ctx->ctx_lock); |
| return; |
| } |
| list_del_init(&req->wait.entry); |
| poll_iocb_unlock_wq(req); |
| } /* else, POLLFREE has freed the waitqueue, so we must complete */ |
| list_del_init(&iocb->ki_list); |
| iocb->ki_res.res = mangle_poll(mask); |
| spin_unlock_irq(&ctx->ctx_lock); |
| |
| iocb_put(iocb); |
| } |
| |
| /* assumes we are called with irqs disabled */ |
| static int aio_poll_cancel(struct kiocb *iocb) |
| { |
| struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); |
| struct poll_iocb *req = &aiocb->poll; |
| |
| if (poll_iocb_lock_wq(req)) { |
| WRITE_ONCE(req->cancelled, true); |
| if (!req->work_scheduled) { |
| schedule_work(&aiocb->poll.work); |
| req->work_scheduled = true; |
| } |
| poll_iocb_unlock_wq(req); |
| } /* else, the request was force-cancelled by POLLFREE already */ |
| |
| return 0; |
| } |
| |
| static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, |
| void *key) |
| { |
| struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); |
| struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); |
| __poll_t mask = key_to_poll(key); |
| unsigned long flags; |
| |
| /* for instances that support it check for an event match first: */ |
| if (mask && !(mask & req->events)) |
| return 0; |
| |
| /* |
| * Complete the request inline if possible. This requires that three |
| * conditions be met: |
| * 1. An event mask must have been passed. If a plain wakeup was done |
| * instead, then mask == 0 and we have to call vfs_poll() to get |
| * the events, so inline completion isn't possible. |
| * 2. The completion work must not have already been scheduled. |
| * 3. ctx_lock must not be busy. We have to use trylock because we |
| * already hold the waitqueue lock, so this inverts the normal |
| * locking order. Use irqsave/irqrestore because not all |
| * filesystems (e.g. fuse) call this function with IRQs disabled, |
| * yet IRQs have to be disabled before ctx_lock is obtained. |
| */ |
| if (mask && !req->work_scheduled && |
| spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { |
| struct kioctx *ctx = iocb->ki_ctx; |
| |
| list_del_init(&req->wait.entry); |
| list_del(&iocb->ki_list); |
| iocb->ki_res.res = mangle_poll(mask); |
| if (iocb->ki_eventfd && !eventfd_signal_allowed()) { |
| iocb = NULL; |
| INIT_WORK(&req->work, aio_poll_put_work); |
| schedule_work(&req->work); |
| } |
| spin_unlock_irqrestore(&ctx->ctx_lock, flags); |
| if (iocb) |
| iocb_put(iocb); |
| } else { |
| /* |
| * Schedule the completion work if needed. If it was already |
| * scheduled, record that another wakeup came in. |
| * |
| * Don't remove the request from the waitqueue here, as it might |
| * not actually be complete yet (we won't know until vfs_poll() |
| * is called), and we must not miss any wakeups. POLLFREE is an |
| * exception to this; see below. |
| */ |
| if (req->work_scheduled) { |
| req->work_need_resched = true; |
| } else { |
| schedule_work(&req->work); |
| req->work_scheduled = true; |
| } |
| |
| /* |
| * If the waitqueue is being freed early but we can't complete |
| * the request inline, we have to tear down the request as best |
| * we can. That means immediately removing the request from its |
| * waitqueue and preventing all further accesses to the |
| * waitqueue via the request. We also need to schedule the |
| * completion work (done above). Also mark the request as |
| * cancelled, to potentially skip an unneeded call to ->poll(). |
| */ |
| if (mask & POLLFREE) { |
| WRITE_ONCE(req->cancelled, true); |
| list_del_init(&req->wait.entry); |
| |
| /* |
| * Careful: this *must* be the last step, since as soon |
| * as req->head is NULL'ed out, the request can be |
| * completed and freed, since aio_poll_complete_work() |
| * will no longer need to take the waitqueue lock. |
| */ |
| smp_store_release(&req->head, NULL); |
| } |
| } |
| return 1; |
| } |
| |
| struct aio_poll_table { |
| struct poll_table_struct pt; |
| struct aio_kiocb *iocb; |
| bool queued; |
| int error; |
| }; |
| |
| static void |
| aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, |
| struct poll_table_struct *p) |
| { |
| struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); |
| |
| /* multiple wait queues per file are not supported */ |
| if (unlikely(pt->queued)) { |
| pt->error = -EINVAL; |
| return; |
| } |
| |
| pt->queued = true; |
| pt->error = 0; |
| pt->iocb->poll.head = head; |
| add_wait_queue(head, &pt->iocb->poll.wait); |
| } |
| |
| static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) |
| { |
| struct kioctx *ctx = aiocb->ki_ctx; |
| struct poll_iocb *req = &aiocb->poll; |
| struct aio_poll_table apt; |
| bool cancel = false; |
| __poll_t mask; |
| |
| /* reject any unknown events outside the normal event mask. */ |
| if ((u16)iocb->aio_buf != iocb->aio_buf) |
| return -EINVAL; |
| /* reject fields that are not defined for poll */ |
| if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) |
| return -EINVAL; |
| |
| INIT_WORK(&req->work, aio_poll_complete_work); |
| req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; |
| |
| req->head = NULL; |
| req->cancelled = false; |
| req->work_scheduled = false; |
| req->work_need_resched = false; |
| |
| apt.pt._qproc = aio_poll_queue_proc; |
| apt.pt._key = req->events; |
| apt.iocb = aiocb; |
| apt.queued = false; |
| apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ |
| |
| /* initialized the list so that we can do list_empty checks */ |
| INIT_LIST_HEAD(&req->wait.entry); |
| init_waitqueue_func_entry(&req->wait, aio_poll_wake); |
| |
| mask = vfs_poll(req->file, &apt.pt) & req->events; |
| spin_lock_irq(&ctx->ctx_lock); |
| if (likely(apt.queued)) { |
| bool on_queue = poll_iocb_lock_wq(req); |
| |
| if (!on_queue || req->work_scheduled) { |
| /* |
| * aio_poll_wake() already either scheduled the async |
| * completion work, or completed the request inline. |
| */ |
| if (apt.error) /* unsupported case: multiple queues */ |
| cancel = true; |
| apt.error = 0; |
| mask = 0; |
| } |
| if (mask || apt.error) { |
| /* Steal to complete synchronously. */ |
| list_del_init(&req->wait.entry); |
| } else if (cancel) { |
| /* Cancel if possible (may be too late though). */ |
| WRITE_ONCE(req->cancelled, true); |
| } else if (on_queue) { |
| /* |
| * Actually waiting for an event, so add the request to |
| * active_reqs so that it can be cancelled if needed. |
| */ |
| list_add_tail(&aiocb->ki_list, &ctx->active_reqs); |
| aiocb->ki_cancel = aio_poll_cancel; |
| } |
| if (on_queue) |
| poll_iocb_unlock_wq(req); |
| } |
| if (mask) { /* no async, we'd stolen it */ |
| aiocb->ki_res.res = mangle_poll(mask); |
| apt.error = 0; |
| } |
| spin_unlock_irq(&ctx->ctx_lock); |
| if (mask) |
| iocb_put(aiocb); |
| return apt.error; |
| } |
| |
| static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, |
| struct iocb __user *user_iocb, struct aio_kiocb *req, |
| bool compat) |
| { |
| req->ki_filp = fget(iocb->aio_fildes); |
| if (unlikely(!req->ki_filp)) |
| return -EBADF; |
| |
| if (iocb->aio_flags & IOCB_FLAG_RESFD) { |
| struct eventfd_ctx *eventfd; |
| /* |
| * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an |
| * instance of the file* now. The file descriptor must be |
| * an eventfd() fd, and will be signaled for each completed |
| * event using the eventfd_signal() function. |
| */ |
| eventfd = eventfd_ctx_fdget(iocb->aio_resfd); |
| if (IS_ERR(eventfd)) |
| return PTR_ERR(eventfd); |
| |
| req->ki_eventfd = eventfd; |
| } |
| |
| if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { |
| pr_debug("EFAULT: aio_key\n"); |
| return -EFAULT; |
| } |
| |
| req->ki_res.obj = (u64)(unsigned long)user_iocb; |
| req->ki_res.data = iocb->aio_data; |
| req->ki_res.res = 0; |
| req->ki_res.res2 = 0; |
| |
| switch (iocb->aio_lio_opcode) { |
| case IOCB_CMD_PREAD: |
| return aio_read(&req->rw, iocb, false, compat); |
| case IOCB_CMD_PWRITE: |
| return aio_write(&req->rw, iocb, false, compat); |
| case IOCB_CMD_PREADV: |
| return aio_read(&req->rw, iocb, true, compat); |
| case IOCB_CMD_PWRITEV: |
| return aio_write(&req->rw, iocb, true, compat); |
| case IOCB_CMD_FSYNC: |
| return aio_fsync(&req->fsync, iocb, false); |
| case IOCB_CMD_FDSYNC: |
| return aio_fsync(&req->fsync, iocb, true); |
| case IOCB_CMD_POLL: |
| return aio_poll(req, iocb); |
| default: |
| pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); |
| return -EINVAL; |
| } |
| } |
| |
| static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, |
| bool compat) |
| { |
| struct aio_kiocb *req; |
| struct iocb iocb; |
| int err; |
| |
| if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) |
| return -EFAULT; |
| |
| /* enforce forwards compatibility on users */ |
| if (unlikely(iocb.aio_reserved2)) { |
| pr_debug("EINVAL: reserve field set\n"); |
| return -EINVAL; |
| } |
| |
| /* prevent overflows */ |
| if (unlikely( |
| (iocb.aio_buf != (unsigned long)iocb.aio_buf) || |
| (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || |
| ((ssize_t)iocb.aio_nbytes < 0) |
| )) { |
| pr_debug("EINVAL: overflow check\n"); |
| return -EINVAL; |
| } |
| |
| req = aio_get_req(ctx); |
| if (unlikely(!req)) |
| return -EAGAIN; |
| |
| err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); |
| |
| /* Done with the synchronous reference */ |
| iocb_put(req); |
| |
| /* |
| * If err is 0, we'd either done aio_complete() ourselves or have |
| * arranged for that to be done asynchronously. Anything non-zero |
| * means that we need to destroy req ourselves. |
| */ |
| if (unlikely(err)) { |
| iocb_destroy(req); |
| put_reqs_available(ctx, 1); |
| } |
| return err; |
| } |
| |
| /* sys_io_submit: |
| * Queue the nr iocbs pointed to by iocbpp for processing. Returns |
| * the number of iocbs queued. May return -EINVAL if the aio_context |
| * specified by ctx_id is invalid, if nr is < 0, if the iocb at |
| * *iocbpp[0] is not properly initialized, if the operation specified |
| * is invalid for the file descriptor in the iocb. May fail with |
| * -EFAULT if any of the data structures point to invalid data. May |
| * fail with -EBADF if the file descriptor specified in the first |
| * iocb is invalid. May fail with -EAGAIN if insufficient resources |
| * are available to queue any iocbs. Will return 0 if nr is 0. Will |
| * fail with -ENOSYS if not implemented. |
| */ |
| SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, |
| struct iocb __user * __user *, iocbpp) |
| { |
| struct kioctx *ctx; |
| long ret = 0; |
| int i = 0; |
| struct blk_plug plug; |
| |
| if (unlikely(nr < 0)) |
| return -EINVAL; |
| |
| ctx = lookup_ioctx(ctx_id); |
| if (unlikely(!ctx)) { |
| pr_debug("EINVAL: invalid context id\n"); |
| return -EINVAL; |
| } |
| |
| if (nr > ctx->nr_events) |
| nr = ctx->nr_events; |
| |
| if (nr > AIO_PLUG_THRESHOLD) |
| blk_start_plug(&plug); |
| for (i = 0; i < nr; i++) { |
| struct iocb __user *user_iocb; |
| |
| if (unlikely(get_user(user_iocb, iocbpp + i))) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| ret = io_submit_one(ctx, user_iocb, false); |
| if (ret) |
| break; |
| } |
| if (nr > AIO_PLUG_THRESHOLD) |
| blk_finish_plug(&plug); |
| |
| percpu_ref_put(&ctx->users); |
| return i ? i : ret; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, |
| int, nr, compat_uptr_t __user *, iocbpp) |
| { |
| struct kioctx *ctx; |
| long ret = 0; |
| int i = 0; |
| struct blk_plug plug; |
| |
| if (unlikely(nr < 0)) |
| return -EINVAL; |
| |
| ctx = lookup_ioctx(ctx_id); |
| if (unlikely(!ctx)) { |
| pr_debug("EINVAL: invalid context id\n"); |
| return -EINVAL; |
| } |
| |
| if (nr > ctx->nr_events) |
| nr = ctx->nr_events; |
| |
| if (nr > AIO_PLUG_THRESHOLD) |
| blk_start_plug(&plug); |
| for (i = 0; i < nr; i++) { |
| compat_uptr_t user_iocb; |
| |
| if (unlikely(get_user(user_iocb, iocbpp + i))) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| ret = io_submit_one(ctx, compat_ptr(user_iocb), true); |
| if (ret) |
| break; |
| } |
| if (nr > AIO_PLUG_THRESHOLD) |
| blk_finish_plug(&plug); |
| |
| percpu_ref_put(&ctx->users); |
| return i ? i : ret; |
| } |
| #endif |
| |
| /* sys_io_cancel: |
| * Attempts to cancel an iocb previously passed to io_submit. If |
| * the operation is successfully cancelled, the resulting event is |
| * copied into the memory pointed to by result without being placed |
| * into the completion queue and 0 is returned. May fail with |
| * -EFAULT if any of the data structures pointed to are invalid. |
| * May fail with -EINVAL if aio_context specified by ctx_id is |
| * invalid. May fail with -EAGAIN if the iocb specified was not |
| * cancelled. Will fail with -ENOSYS if not implemented. |
| */ |
| SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, |
| struct io_event __user *, result) |
| { |
| struct kioctx *ctx; |
| struct aio_kiocb *kiocb; |
| int ret = -EINVAL; |
| u32 key; |
| u64 obj = (u64)(unsigned long)iocb; |
| |
| if (unlikely(get_user(key, &iocb->aio_key))) |
| return -EFAULT; |
| if (unlikely(key != KIOCB_KEY)) |
| return -EINVAL; |
| |
| ctx = lookup_ioctx(ctx_id); |
| if (unlikely(!ctx)) |
| return -EINVAL; |
| |
| spin_lock_irq(&ctx->ctx_lock); |
| /* TODO: use a hash or array, this sucks. */ |
| list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { |
| if (kiocb->ki_res.obj == obj) { |
| ret = kiocb->ki_cancel(&kiocb->rw); |
| list_del_init(&kiocb->ki_list); |
| break; |
| } |
| } |
| spin_unlock_irq(&ctx->ctx_lock); |
| |
| if (!ret) { |
| /* |
| * The result argument is no longer used - the io_event is |
| * always delivered via the ring buffer. -EINPROGRESS indicates |
| * cancellation is progress: |
| */ |
| ret = -EINPROGRESS; |
| } |
| |
| percpu_ref_put(&ctx->users); |
| |
| return ret; |
| } |
| |
| static long do_io_getevents(aio_context_t ctx_id, |
| long min_nr, |
| long nr, |
| struct io_event __user *events, |
| struct timespec64 *ts) |
| { |
| ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; |
| struct kioctx *ioctx = lookup_ioctx(ctx_id); |
| long ret = -EINVAL; |
| |
| if (likely(ioctx)) { |
| if (likely(min_nr <= nr && min_nr >= 0)) |
| ret = read_events(ioctx, min_nr, nr, events, until); |
| percpu_ref_put(&ioctx->users); |
| } |
| |
| return ret; |
| } |
| |
| /* io_getevents: |
| * Attempts to read at least min_nr events and up to nr events from |
| * the completion queue for the aio_context specified by ctx_id. If |
| * it succeeds, the number of read events is returned. May fail with |
| * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is |
| * out of range, if timeout is out of range. May fail with -EFAULT |
| * if any of the memory specified is invalid. May return 0 or |
| * < min_nr if the timeout specified by timeout has elapsed |
| * before sufficient events are available, where timeout == NULL |
| * specifies an infinite timeout. Note that the timeout pointed to by |
| * timeout is relative. Will fail with -ENOSYS if not implemented. |
| */ |
| #ifdef CONFIG_64BIT |
| |
| SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, |
| long, min_nr, |
| long, nr, |
| struct io_event __user *, events, |
| struct __kernel_timespec __user *, timeout) |
| { |
| struct timespec64 ts; |
| int ret; |
| |
| if (timeout && unlikely(get_timespec64(&ts, timeout))) |
| return -EFAULT; |
| |
| ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); |
| if (!ret && signal_pending(current)) |
| ret = -EINTR; |
| return ret; |
| } |
| |
| #endif |
| |
| struct __aio_sigset { |
| const sigset_t __user *sigmask; |
| size_t sigsetsize; |
| }; |
| |
| SYSCALL_DEFINE6(io_pgetevents, |
| aio_context_t, ctx_id, |
| long, min_nr, |
| long, nr, |
| struct io_event __user *, events, |
| struct __kernel_timespec __user *, timeout, |
| const struct __aio_sigset __user *, usig) |
| { |
| struct __aio_sigset ksig = { NULL, }; |
| struct timespec64 ts; |
| bool interrupted; |
| int ret; |
| |
| if (timeout && unlikely(get_timespec64(&ts, timeout))) |
| return -EFAULT; |
| |
| if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) |
| return -EFAULT; |
| |
| ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); |
| if (ret) |
| return ret; |
| |
| ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); |
| |
| interrupted = signal_pending(current); |
| restore_saved_sigmask_unless(interrupted); |
| if (interrupted && !ret) |
| ret = -ERESTARTNOHAND; |
| |
| return ret; |
| } |
| |
| #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) |
| |
| SYSCALL_DEFINE6(io_pgetevents_time32, |
| aio_context_t, ctx_id, |
| long, min_nr, |
| long, nr, |
| struct io_event __user *, events, |
| struct old_timespec32 __user *, timeout, |
| const struct __aio_sigset __user *, usig) |
| { |
| struct __aio_sigset ksig = { NULL, }; |
| struct timespec64 ts; |
| bool interrupted; |
| int ret; |
| |
| if (timeout && unlikely(get_old_timespec32(&ts, timeout))) |
| return -EFAULT; |
| |
| if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) |
| return -EFAULT; |
| |
| |
| ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); |
| if (ret) |
| return ret; |
| |
| ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); |
| |
| interrupted = signal_pending(current); |
| restore_saved_sigmask_unless(interrupted); |
| if (interrupted && !ret) |
| ret = -ERESTARTNOHAND; |
| |
| return ret; |
| } |
| |
| #endif |
| |
| #if defined(CONFIG_COMPAT_32BIT_TIME) |
| |
| SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, |
| __s32, min_nr, |
| __s32, nr, |
| struct io_event __user *, events, |
| struct old_timespec32 __user *, timeout) |
| { |
| struct timespec64 t; |
| int ret; |
| |
| if (timeout && get_old_timespec32(&t, timeout)) |
| return -EFAULT; |
| |
| ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); |
| if (!ret && signal_pending(current)) |
| ret = -EINTR; |
| return ret; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_COMPAT |
| |
| struct __compat_aio_sigset { |
| compat_uptr_t sigmask; |
| compat_size_t sigsetsize; |
| }; |
| |
| #if defined(CONFIG_COMPAT_32BIT_TIME) |
| |
| COMPAT_SYSCALL_DEFINE6(io_pgetevents, |
| compat_aio_context_t, ctx_id, |
| compat_long_t, min_nr, |
| compat_long_t, nr, |
| struct io_event __user *, events, |
| struct old_timespec32 __user *, timeout, |
| const struct __compat_aio_sigset __user *, usig) |
| { |
| struct __compat_aio_sigset ksig = { 0, }; |
| struct timespec64 t; |
| bool interrupted; |
| int ret; |
| |
| if (timeout && get_old_timespec32(&t, timeout)) |
| return -EFAULT; |
| |
| if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) |
| return -EFAULT; |
| |
| ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); |
| if (ret) |
| return ret; |
| |
| ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); |
| |
| interrupted = signal_pending(current); |
| restore_saved_sigmask_unless(interrupted); |
| if (interrupted && !ret) |
| ret = -ERESTARTNOHAND; |
| |
| return ret; |
| } |
| |
| #endif |
| |
| COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, |
| compat_aio_context_t, ctx_id, |
| compat_long_t, min_nr, |
| compat_long_t, nr, |
| struct io_event __user *, events, |
| struct __kernel_timespec __user *, timeout, |
| const struct __compat_aio_sigset __user *, usig) |
| { |
| struct __compat_aio_sigset ksig = { 0, }; |
| struct timespec64 t; |
| bool interrupted; |
| int ret; |
| |
| if (timeout && get_timespec64(&t, timeout)) |
| return -EFAULT; |
| |
| if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) |
| return -EFAULT; |
| |
| ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); |
| if (ret) |
| return ret; |
| |
| ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); |
| |
| interrupted = signal_pending(current); |
| restore_saved_sigmask_unless(interrupted); |
| if (interrupted && !ret) |
| ret = -ERESTARTNOHAND; |
| |
| return ret; |
| } |
| #endif |