| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include <linux/blkdev.h> |
| #include <linux/iversion.h> |
| #include "ctree.h" |
| #include "fs.h" |
| #include "messages.h" |
| #include "compression.h" |
| #include "delalloc-space.h" |
| #include "disk-io.h" |
| #include "reflink.h" |
| #include "transaction.h" |
| #include "subpage.h" |
| #include "accessors.h" |
| #include "file-item.h" |
| #include "file.h" |
| #include "super.h" |
| |
| #define BTRFS_MAX_DEDUPE_LEN SZ_16M |
| |
| static int clone_finish_inode_update(struct btrfs_trans_handle *trans, |
| struct inode *inode, |
| u64 endoff, |
| const u64 destoff, |
| const u64 olen, |
| int no_time_update) |
| { |
| int ret; |
| |
| inode_inc_iversion(inode); |
| if (!no_time_update) { |
| inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); |
| } |
| /* |
| * We round up to the block size at eof when determining which |
| * extents to clone above, but shouldn't round up the file size. |
| */ |
| if (endoff > destoff + olen) |
| endoff = destoff + olen; |
| if (endoff > inode->i_size) { |
| i_size_write(inode, endoff); |
| btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); |
| } |
| |
| ret = btrfs_update_inode(trans, BTRFS_I(inode)); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| ret = btrfs_end_transaction(trans); |
| out: |
| return ret; |
| } |
| |
| static int copy_inline_to_page(struct btrfs_inode *inode, |
| const u64 file_offset, |
| char *inline_data, |
| const u64 size, |
| const u64 datal, |
| const u8 comp_type) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| const u32 block_size = fs_info->sectorsize; |
| const u64 range_end = file_offset + block_size - 1; |
| const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0); |
| char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0); |
| struct extent_changeset *data_reserved = NULL; |
| struct page *page = NULL; |
| struct address_space *mapping = inode->vfs_inode.i_mapping; |
| int ret; |
| |
| ASSERT(IS_ALIGNED(file_offset, block_size)); |
| |
| /* |
| * We have flushed and locked the ranges of the source and destination |
| * inodes, we also have locked the inodes, so we are safe to do a |
| * reservation here. Also we must not do the reservation while holding |
| * a transaction open, otherwise we would deadlock. |
| */ |
| ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset, |
| block_size); |
| if (ret) |
| goto out; |
| |
| page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT, |
| btrfs_alloc_write_mask(mapping)); |
| if (!page) { |
| ret = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| ret = set_page_extent_mapped(page); |
| if (ret < 0) |
| goto out_unlock; |
| |
| clear_extent_bit(&inode->io_tree, file_offset, range_end, |
| EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, |
| NULL); |
| ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL); |
| if (ret) |
| goto out_unlock; |
| |
| /* |
| * After dirtying the page our caller will need to start a transaction, |
| * and if we are low on metadata free space, that can cause flushing of |
| * delalloc for all inodes in order to get metadata space released. |
| * However we are holding the range locked for the whole duration of |
| * the clone/dedupe operation, so we may deadlock if that happens and no |
| * other task releases enough space. So mark this inode as not being |
| * possible to flush to avoid such deadlock. We will clear that flag |
| * when we finish cloning all extents, since a transaction is started |
| * after finding each extent to clone. |
| */ |
| set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags); |
| |
| if (comp_type == BTRFS_COMPRESS_NONE) { |
| memcpy_to_page(page, offset_in_page(file_offset), data_start, |
| datal); |
| } else { |
| ret = btrfs_decompress(comp_type, data_start, page, |
| offset_in_page(file_offset), |
| inline_size, datal); |
| if (ret) |
| goto out_unlock; |
| flush_dcache_page(page); |
| } |
| |
| /* |
| * If our inline data is smaller then the block/page size, then the |
| * remaining of the block/page is equivalent to zeroes. We had something |
| * like the following done: |
| * |
| * $ xfs_io -f -c "pwrite -S 0xab 0 500" file |
| * $ sync # (or fsync) |
| * $ xfs_io -c "falloc 0 4K" file |
| * $ xfs_io -c "pwrite -S 0xcd 4K 4K" |
| * |
| * So what's in the range [500, 4095] corresponds to zeroes. |
| */ |
| if (datal < block_size) |
| memzero_page(page, datal, block_size - datal); |
| |
| btrfs_folio_set_uptodate(fs_info, page_folio(page), file_offset, block_size); |
| btrfs_folio_clear_checked(fs_info, page_folio(page), file_offset, block_size); |
| btrfs_folio_set_dirty(fs_info, page_folio(page), file_offset, block_size); |
| out_unlock: |
| if (page) { |
| unlock_page(page); |
| put_page(page); |
| } |
| if (ret) |
| btrfs_delalloc_release_space(inode, data_reserved, file_offset, |
| block_size, true); |
| btrfs_delalloc_release_extents(inode, block_size); |
| out: |
| extent_changeset_free(data_reserved); |
| |
| return ret; |
| } |
| |
| /* |
| * Deal with cloning of inline extents. We try to copy the inline extent from |
| * the source inode to destination inode when possible. When not possible we |
| * copy the inline extent's data into the respective page of the inode. |
| */ |
| static int clone_copy_inline_extent(struct inode *dst, |
| struct btrfs_path *path, |
| struct btrfs_key *new_key, |
| const u64 drop_start, |
| const u64 datal, |
| const u64 size, |
| const u8 comp_type, |
| char *inline_data, |
| struct btrfs_trans_handle **trans_out) |
| { |
| struct btrfs_fs_info *fs_info = inode_to_fs_info(dst); |
| struct btrfs_root *root = BTRFS_I(dst)->root; |
| const u64 aligned_end = ALIGN(new_key->offset + datal, |
| fs_info->sectorsize); |
| struct btrfs_trans_handle *trans = NULL; |
| struct btrfs_drop_extents_args drop_args = { 0 }; |
| int ret; |
| struct btrfs_key key; |
| |
| if (new_key->offset > 0) { |
| ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, |
| inline_data, size, datal, comp_type); |
| goto out; |
| } |
| |
| key.objectid = btrfs_ino(BTRFS_I(dst)); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = 0; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| return ret; |
| } else if (ret > 0) { |
| if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| else if (ret > 0) |
| goto copy_inline_extent; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid == btrfs_ino(BTRFS_I(dst)) && |
| key.type == BTRFS_EXTENT_DATA_KEY) { |
| /* |
| * There's an implicit hole at file offset 0, copy the |
| * inline extent's data to the page. |
| */ |
| ASSERT(key.offset > 0); |
| goto copy_to_page; |
| } |
| } else if (i_size_read(dst) <= datal) { |
| struct btrfs_file_extent_item *ei; |
| |
| ei = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_file_extent_item); |
| /* |
| * If it's an inline extent replace it with the source inline |
| * extent, otherwise copy the source inline extent data into |
| * the respective page at the destination inode. |
| */ |
| if (btrfs_file_extent_type(path->nodes[0], ei) == |
| BTRFS_FILE_EXTENT_INLINE) |
| goto copy_inline_extent; |
| |
| goto copy_to_page; |
| } |
| |
| copy_inline_extent: |
| /* |
| * We have no extent items, or we have an extent at offset 0 which may |
| * or may not be inlined. All these cases are dealt the same way. |
| */ |
| if (i_size_read(dst) > datal) { |
| /* |
| * At the destination offset 0 we have either a hole, a regular |
| * extent or an inline extent larger then the one we want to |
| * clone. Deal with all these cases by copying the inline extent |
| * data into the respective page at the destination inode. |
| */ |
| goto copy_to_page; |
| } |
| |
| /* |
| * Release path before starting a new transaction so we don't hold locks |
| * that would confuse lockdep. |
| */ |
| btrfs_release_path(path); |
| /* |
| * If we end up here it means were copy the inline extent into a leaf |
| * of the destination inode. We know we will drop or adjust at most one |
| * extent item in the destination root. |
| * |
| * 1 unit - adjusting old extent (we may have to split it) |
| * 1 unit - add new extent |
| * 1 unit - inode update |
| */ |
| trans = btrfs_start_transaction(root, 3); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto out; |
| } |
| drop_args.path = path; |
| drop_args.start = drop_start; |
| drop_args.end = aligned_end; |
| drop_args.drop_cache = true; |
| ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args); |
| if (ret) |
| goto out; |
| ret = btrfs_insert_empty_item(trans, root, path, new_key, size); |
| if (ret) |
| goto out; |
| |
| write_extent_buffer(path->nodes[0], inline_data, |
| btrfs_item_ptr_offset(path->nodes[0], |
| path->slots[0]), |
| size); |
| btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found); |
| btrfs_set_inode_full_sync(BTRFS_I(dst)); |
| ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end); |
| out: |
| if (!ret && !trans) { |
| /* |
| * No transaction here means we copied the inline extent into a |
| * page of the destination inode. |
| * |
| * 1 unit to update inode item |
| */ |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| } |
| } |
| if (ret && trans) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| } |
| if (!ret) |
| *trans_out = trans; |
| |
| return ret; |
| |
| copy_to_page: |
| /* |
| * Release our path because we don't need it anymore and also because |
| * copy_inline_to_page() needs to reserve data and metadata, which may |
| * need to flush delalloc when we are low on available space and |
| * therefore cause a deadlock if writeback of an inline extent needs to |
| * write to the same leaf or an ordered extent completion needs to write |
| * to the same leaf. |
| */ |
| btrfs_release_path(path); |
| |
| ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, |
| inline_data, size, datal, comp_type); |
| goto out; |
| } |
| |
| /* |
| * Clone a range from inode file to another. |
| * |
| * @src: Inode to clone from |
| * @inode: Inode to clone to |
| * @off: Offset within source to start clone from |
| * @olen: Original length, passed by user, of range to clone |
| * @olen_aligned: Block-aligned value of olen |
| * @destoff: Offset within @inode to start clone |
| * @no_time_update: Whether to update mtime/ctime on the target inode |
| */ |
| static int btrfs_clone(struct inode *src, struct inode *inode, |
| const u64 off, const u64 olen, const u64 olen_aligned, |
| const u64 destoff, int no_time_update) |
| { |
| struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); |
| struct btrfs_path *path = NULL; |
| struct extent_buffer *leaf; |
| struct btrfs_trans_handle *trans; |
| char *buf = NULL; |
| struct btrfs_key key; |
| u32 nritems; |
| int slot; |
| int ret; |
| const u64 len = olen_aligned; |
| u64 last_dest_end = destoff; |
| u64 prev_extent_end = off; |
| |
| ret = -ENOMEM; |
| buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); |
| if (!buf) |
| return ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| kvfree(buf); |
| return ret; |
| } |
| |
| path->reada = READA_FORWARD; |
| /* Clone data */ |
| key.objectid = btrfs_ino(BTRFS_I(src)); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = off; |
| |
| while (1) { |
| struct btrfs_file_extent_item *extent; |
| u64 extent_gen; |
| int type; |
| u32 size; |
| struct btrfs_key new_key; |
| u64 disko = 0, diskl = 0; |
| u64 datao = 0, datal = 0; |
| u8 comp; |
| u64 drop_start; |
| |
| /* Note the key will change type as we walk through the tree */ |
| ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, |
| 0, 0); |
| if (ret < 0) |
| goto out; |
| /* |
| * First search, if no extent item that starts at offset off was |
| * found but the previous item is an extent item, it's possible |
| * it might overlap our target range, therefore process it. |
| */ |
| if (key.offset == off && ret > 0 && path->slots[0] > 0) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0] - 1); |
| if (key.type == BTRFS_EXTENT_DATA_KEY) |
| path->slots[0]--; |
| } |
| |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| process_slot: |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(BTRFS_I(src)->root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| break; |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| } |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.type > BTRFS_EXTENT_DATA_KEY || |
| key.objectid != btrfs_ino(BTRFS_I(src))) |
| break; |
| |
| ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); |
| |
| extent = btrfs_item_ptr(leaf, slot, |
| struct btrfs_file_extent_item); |
| extent_gen = btrfs_file_extent_generation(leaf, extent); |
| comp = btrfs_file_extent_compression(leaf, extent); |
| type = btrfs_file_extent_type(leaf, extent); |
| if (type == BTRFS_FILE_EXTENT_REG || |
| type == BTRFS_FILE_EXTENT_PREALLOC) { |
| disko = btrfs_file_extent_disk_bytenr(leaf, extent); |
| diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); |
| datao = btrfs_file_extent_offset(leaf, extent); |
| datal = btrfs_file_extent_num_bytes(leaf, extent); |
| } else if (type == BTRFS_FILE_EXTENT_INLINE) { |
| /* Take upper bound, may be compressed */ |
| datal = btrfs_file_extent_ram_bytes(leaf, extent); |
| } |
| |
| /* |
| * The first search might have left us at an extent item that |
| * ends before our target range's start, can happen if we have |
| * holes and NO_HOLES feature enabled. |
| * |
| * Subsequent searches may leave us on a file range we have |
| * processed before - this happens due to a race with ordered |
| * extent completion for a file range that is outside our source |
| * range, but that range was part of a file extent item that |
| * also covered a leading part of our source range. |
| */ |
| if (key.offset + datal <= prev_extent_end) { |
| path->slots[0]++; |
| goto process_slot; |
| } else if (key.offset >= off + len) { |
| break; |
| } |
| |
| prev_extent_end = key.offset + datal; |
| size = btrfs_item_size(leaf, slot); |
| read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), |
| size); |
| |
| btrfs_release_path(path); |
| |
| memcpy(&new_key, &key, sizeof(new_key)); |
| new_key.objectid = btrfs_ino(BTRFS_I(inode)); |
| if (off <= key.offset) |
| new_key.offset = key.offset + destoff - off; |
| else |
| new_key.offset = destoff; |
| |
| /* |
| * Deal with a hole that doesn't have an extent item that |
| * represents it (NO_HOLES feature enabled). |
| * This hole is either in the middle of the cloning range or at |
| * the beginning (fully overlaps it or partially overlaps it). |
| */ |
| if (new_key.offset != last_dest_end) |
| drop_start = last_dest_end; |
| else |
| drop_start = new_key.offset; |
| |
| if (type == BTRFS_FILE_EXTENT_REG || |
| type == BTRFS_FILE_EXTENT_PREALLOC) { |
| struct btrfs_replace_extent_info clone_info; |
| |
| /* |
| * a | --- range to clone ---| b |
| * | ------------- extent ------------- | |
| */ |
| |
| /* Subtract range b */ |
| if (key.offset + datal > off + len) |
| datal = off + len - key.offset; |
| |
| /* Subtract range a */ |
| if (off > key.offset) { |
| datao += off - key.offset; |
| datal -= off - key.offset; |
| } |
| |
| clone_info.disk_offset = disko; |
| clone_info.disk_len = diskl; |
| clone_info.data_offset = datao; |
| clone_info.data_len = datal; |
| clone_info.file_offset = new_key.offset; |
| clone_info.extent_buf = buf; |
| clone_info.is_new_extent = false; |
| clone_info.update_times = !no_time_update; |
| ret = btrfs_replace_file_extents(BTRFS_I(inode), path, |
| drop_start, new_key.offset + datal - 1, |
| &clone_info, &trans); |
| if (ret) |
| goto out; |
| } else { |
| ASSERT(type == BTRFS_FILE_EXTENT_INLINE); |
| /* |
| * Inline extents always have to start at file offset 0 |
| * and can never be bigger then the sector size. We can |
| * never clone only parts of an inline extent, since all |
| * reflink operations must start at a sector size aligned |
| * offset, and the length must be aligned too or end at |
| * the i_size (which implies the whole inlined data). |
| */ |
| ASSERT(key.offset == 0); |
| ASSERT(datal <= fs_info->sectorsize); |
| if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) || |
| WARN_ON(key.offset != 0) || |
| WARN_ON(datal > fs_info->sectorsize)) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| ret = clone_copy_inline_extent(inode, path, &new_key, |
| drop_start, datal, size, |
| comp, buf, &trans); |
| if (ret) |
| goto out; |
| } |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Whenever we share an extent we update the last_reflink_trans |
| * of each inode to the current transaction. This is needed to |
| * make sure fsync does not log multiple checksum items with |
| * overlapping ranges (because some extent items might refer |
| * only to sections of the original extent). For the destination |
| * inode we do this regardless of the generation of the extents |
| * or even if they are inline extents or explicit holes, to make |
| * sure a full fsync does not skip them. For the source inode, |
| * we only need to update last_reflink_trans in case it's a new |
| * extent that is not a hole or an inline extent, to deal with |
| * the checksums problem on fsync. |
| */ |
| if (extent_gen == trans->transid && disko > 0) |
| BTRFS_I(src)->last_reflink_trans = trans->transid; |
| |
| BTRFS_I(inode)->last_reflink_trans = trans->transid; |
| |
| last_dest_end = ALIGN(new_key.offset + datal, |
| fs_info->sectorsize); |
| ret = clone_finish_inode_update(trans, inode, last_dest_end, |
| destoff, olen, no_time_update); |
| if (ret) |
| goto out; |
| if (new_key.offset + datal >= destoff + len) |
| break; |
| |
| btrfs_release_path(path); |
| key.offset = prev_extent_end; |
| |
| if (fatal_signal_pending(current)) { |
| ret = -EINTR; |
| goto out; |
| } |
| |
| cond_resched(); |
| } |
| ret = 0; |
| |
| if (last_dest_end < destoff + len) { |
| /* |
| * We have an implicit hole that fully or partially overlaps our |
| * cloning range at its end. This means that we either have the |
| * NO_HOLES feature enabled or the implicit hole happened due to |
| * mixing buffered and direct IO writes against this file. |
| */ |
| btrfs_release_path(path); |
| |
| /* |
| * When using NO_HOLES and we are cloning a range that covers |
| * only a hole (no extents) into a range beyond the current |
| * i_size, punching a hole in the target range will not create |
| * an extent map defining a hole, because the range starts at or |
| * beyond current i_size. If the file previously had an i_size |
| * greater than the new i_size set by this clone operation, we |
| * need to make sure the next fsync is a full fsync, so that it |
| * detects and logs a hole covering a range from the current |
| * i_size to the new i_size. If the clone range covers extents, |
| * besides a hole, then we know the full sync flag was already |
| * set by previous calls to btrfs_replace_file_extents() that |
| * replaced file extent items. |
| */ |
| if (last_dest_end >= i_size_read(inode)) |
| btrfs_set_inode_full_sync(BTRFS_I(inode)); |
| |
| ret = btrfs_replace_file_extents(BTRFS_I(inode), path, |
| last_dest_end, destoff + len - 1, NULL, &trans); |
| if (ret) |
| goto out; |
| |
| ret = clone_finish_inode_update(trans, inode, destoff + len, |
| destoff, olen, no_time_update); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| kvfree(buf); |
| clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags); |
| |
| return ret; |
| } |
| |
| static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, |
| struct inode *inode2, u64 loff2, u64 len) |
| { |
| unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL); |
| unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL); |
| } |
| |
| static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, |
| struct inode *inode2, u64 loff2, u64 len) |
| { |
| u64 range1_end = loff1 + len - 1; |
| u64 range2_end = loff2 + len - 1; |
| |
| if (inode1 < inode2) { |
| swap(inode1, inode2); |
| swap(loff1, loff2); |
| swap(range1_end, range2_end); |
| } else if (inode1 == inode2 && loff2 < loff1) { |
| swap(loff1, loff2); |
| swap(range1_end, range2_end); |
| } |
| |
| lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL); |
| lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL); |
| |
| btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end); |
| btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end); |
| } |
| |
| static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2) |
| { |
| if (inode1 < inode2) |
| swap(inode1, inode2); |
| down_write(&BTRFS_I(inode1)->i_mmap_lock); |
| down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING); |
| } |
| |
| static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2) |
| { |
| up_write(&BTRFS_I(inode1)->i_mmap_lock); |
| up_write(&BTRFS_I(inode2)->i_mmap_lock); |
| } |
| |
| static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, |
| struct inode *dst, u64 dst_loff) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info; |
| const u64 bs = fs_info->sectorsize; |
| int ret; |
| |
| /* |
| * Lock destination range to serialize with concurrent readahead() and |
| * source range to serialize with relocation. |
| */ |
| btrfs_double_extent_lock(src, loff, dst, dst_loff, len); |
| ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1); |
| btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); |
| |
| btrfs_btree_balance_dirty(fs_info); |
| |
| return ret; |
| } |
| |
| static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, |
| struct inode *dst, u64 dst_loff) |
| { |
| int ret = 0; |
| u64 i, tail_len, chunk_count; |
| struct btrfs_root *root_dst = BTRFS_I(dst)->root; |
| |
| spin_lock(&root_dst->root_item_lock); |
| if (root_dst->send_in_progress) { |
| btrfs_warn_rl(root_dst->fs_info, |
| "cannot deduplicate to root %llu while send operations are using it (%d in progress)", |
| root_dst->root_key.objectid, |
| root_dst->send_in_progress); |
| spin_unlock(&root_dst->root_item_lock); |
| return -EAGAIN; |
| } |
| root_dst->dedupe_in_progress++; |
| spin_unlock(&root_dst->root_item_lock); |
| |
| tail_len = olen % BTRFS_MAX_DEDUPE_LEN; |
| chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); |
| |
| for (i = 0; i < chunk_count; i++) { |
| ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, |
| dst, dst_loff); |
| if (ret) |
| goto out; |
| |
| loff += BTRFS_MAX_DEDUPE_LEN; |
| dst_loff += BTRFS_MAX_DEDUPE_LEN; |
| } |
| |
| if (tail_len > 0) |
| ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff); |
| out: |
| spin_lock(&root_dst->root_item_lock); |
| root_dst->dedupe_in_progress--; |
| spin_unlock(&root_dst->root_item_lock); |
| |
| return ret; |
| } |
| |
| static noinline int btrfs_clone_files(struct file *file, struct file *file_src, |
| u64 off, u64 olen, u64 destoff) |
| { |
| struct inode *inode = file_inode(file); |
| struct inode *src = file_inode(file_src); |
| struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); |
| int ret; |
| int wb_ret; |
| u64 len = olen; |
| u64 bs = fs_info->sectorsize; |
| |
| /* |
| * VFS's generic_remap_file_range_prep() protects us from cloning the |
| * eof block into the middle of a file, which would result in corruption |
| * if the file size is not blocksize aligned. So we don't need to check |
| * for that case here. |
| */ |
| if (off + len == src->i_size) |
| len = ALIGN(src->i_size, bs) - off; |
| |
| if (destoff > inode->i_size) { |
| const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); |
| |
| ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff); |
| if (ret) |
| return ret; |
| /* |
| * We may have truncated the last block if the inode's size is |
| * not sector size aligned, so we need to wait for writeback to |
| * complete before proceeding further, otherwise we can race |
| * with cloning and attempt to increment a reference to an |
| * extent that no longer exists (writeback completed right after |
| * we found the previous extent covering eof and before we |
| * attempted to increment its reference count). |
| */ |
| ret = btrfs_wait_ordered_range(inode, wb_start, |
| destoff - wb_start); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Lock destination range to serialize with concurrent readahead() and |
| * source range to serialize with relocation. |
| */ |
| btrfs_double_extent_lock(src, off, inode, destoff, len); |
| ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); |
| btrfs_double_extent_unlock(src, off, inode, destoff, len); |
| |
| /* |
| * We may have copied an inline extent into a page of the destination |
| * range, so wait for writeback to complete before truncating pages |
| * from the page cache. This is a rare case. |
| */ |
| wb_ret = btrfs_wait_ordered_range(inode, destoff, len); |
| ret = ret ? ret : wb_ret; |
| /* |
| * Truncate page cache pages so that future reads will see the cloned |
| * data immediately and not the previous data. |
| */ |
| truncate_inode_pages_range(&inode->i_data, |
| round_down(destoff, PAGE_SIZE), |
| round_up(destoff + len, PAGE_SIZE) - 1); |
| |
| btrfs_btree_balance_dirty(fs_info); |
| |
| return ret; |
| } |
| |
| static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, |
| struct file *file_out, loff_t pos_out, |
| loff_t *len, unsigned int remap_flags) |
| { |
| struct inode *inode_in = file_inode(file_in); |
| struct inode *inode_out = file_inode(file_out); |
| u64 bs = BTRFS_I(inode_out)->root->fs_info->sectorsize; |
| u64 wb_len; |
| int ret; |
| |
| if (!(remap_flags & REMAP_FILE_DEDUP)) { |
| struct btrfs_root *root_out = BTRFS_I(inode_out)->root; |
| |
| if (btrfs_root_readonly(root_out)) |
| return -EROFS; |
| |
| ASSERT(inode_in->i_sb == inode_out->i_sb); |
| } |
| |
| /* Don't make the dst file partly checksummed */ |
| if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != |
| (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { |
| return -EINVAL; |
| } |
| |
| /* |
| * Now that the inodes are locked, we need to start writeback ourselves |
| * and can not rely on the writeback from the VFS's generic helper |
| * generic_remap_file_range_prep() because: |
| * |
| * 1) For compression we must call filemap_fdatawrite_range() range |
| * twice (btrfs_fdatawrite_range() does it for us), and the generic |
| * helper only calls it once; |
| * |
| * 2) filemap_fdatawrite_range(), called by the generic helper only |
| * waits for the writeback to complete, i.e. for IO to be done, and |
| * not for the ordered extents to complete. We need to wait for them |
| * to complete so that new file extent items are in the fs tree. |
| */ |
| if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) |
| wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); |
| else |
| wb_len = ALIGN(*len, bs); |
| |
| /* |
| * Workaround to make sure NOCOW buffered write reach disk as NOCOW. |
| * |
| * Btrfs' back references do not have a block level granularity, they |
| * work at the whole extent level. |
| * NOCOW buffered write without data space reserved may not be able |
| * to fall back to CoW due to lack of data space, thus could cause |
| * data loss. |
| * |
| * Here we take a shortcut by flushing the whole inode, so that all |
| * nocow write should reach disk as nocow before we increase the |
| * reference of the extent. We could do better by only flushing NOCOW |
| * data, but that needs extra accounting. |
| * |
| * Also we don't need to check ASYNC_EXTENT, as async extent will be |
| * CoWed anyway, not affecting nocow part. |
| */ |
| ret = filemap_flush(inode_in->i_mapping); |
| if (ret < 0) |
| return ret; |
| |
| ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), |
| wb_len); |
| if (ret < 0) |
| return ret; |
| ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), |
| wb_len); |
| if (ret < 0) |
| return ret; |
| |
| return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, |
| len, remap_flags); |
| } |
| |
| static bool file_sync_write(const struct file *file) |
| { |
| if (file->f_flags & (__O_SYNC | O_DSYNC)) |
| return true; |
| if (IS_SYNC(file_inode(file))) |
| return true; |
| |
| return false; |
| } |
| |
| loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, |
| struct file *dst_file, loff_t destoff, loff_t len, |
| unsigned int remap_flags) |
| { |
| struct inode *src_inode = file_inode(src_file); |
| struct inode *dst_inode = file_inode(dst_file); |
| bool same_inode = dst_inode == src_inode; |
| int ret; |
| |
| if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) |
| return -EINVAL; |
| |
| if (same_inode) { |
| btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP); |
| } else { |
| lock_two_nondirectories(src_inode, dst_inode); |
| btrfs_double_mmap_lock(src_inode, dst_inode); |
| } |
| |
| ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, |
| &len, remap_flags); |
| if (ret < 0 || len == 0) |
| goto out_unlock; |
| |
| if (remap_flags & REMAP_FILE_DEDUP) |
| ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); |
| else |
| ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); |
| |
| out_unlock: |
| if (same_inode) { |
| btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP); |
| } else { |
| btrfs_double_mmap_unlock(src_inode, dst_inode); |
| unlock_two_nondirectories(src_inode, dst_inode); |
| } |
| |
| /* |
| * If either the source or the destination file was opened with O_SYNC, |
| * O_DSYNC or has the S_SYNC attribute, fsync both the destination and |
| * source files/ranges, so that after a successful return (0) followed |
| * by a power failure results in the reflinked data to be readable from |
| * both files/ranges. |
| */ |
| if (ret == 0 && len > 0 && |
| (file_sync_write(src_file) || file_sync_write(dst_file))) { |
| ret = btrfs_sync_file(src_file, off, off + len - 1, 0); |
| if (ret == 0) |
| ret = btrfs_sync_file(dst_file, destoff, |
| destoff + len - 1, 0); |
| } |
| |
| return ret < 0 ? ret : len; |
| } |