| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/fs/ext4/readpage.c |
| * |
| * Copyright (C) 2002, Linus Torvalds. |
| * Copyright (C) 2015, Google, Inc. |
| * |
| * This was originally taken from fs/mpage.c |
| * |
| * The ext4_mpage_readpages() function here is intended to |
| * replace mpage_readahead() in the general case, not just for |
| * encrypted files. It has some limitations (see below), where it |
| * will fall back to read_block_full_page(), but these limitations |
| * should only be hit when page_size != block_size. |
| * |
| * This will allow us to attach a callback function to support ext4 |
| * encryption. |
| * |
| * If anything unusual happens, such as: |
| * |
| * - encountering a page which has buffers |
| * - encountering a page which has a non-hole after a hole |
| * - encountering a page with non-contiguous blocks |
| * |
| * then this code just gives up and calls the buffer_head-based read function. |
| * It does handle a page which has holes at the end - that is a common case: |
| * the end-of-file on blocksize < PAGE_SIZE setups. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/mm.h> |
| #include <linux/kdev_t.h> |
| #include <linux/gfp.h> |
| #include <linux/bio.h> |
| #include <linux/fs.h> |
| #include <linux/buffer_head.h> |
| #include <linux/blkdev.h> |
| #include <linux/highmem.h> |
| #include <linux/prefetch.h> |
| #include <linux/mpage.h> |
| #include <linux/writeback.h> |
| #include <linux/backing-dev.h> |
| #include <linux/pagevec.h> |
| |
| #include "ext4.h" |
| |
| #define NUM_PREALLOC_POST_READ_CTXS 128 |
| |
| static struct kmem_cache *bio_post_read_ctx_cache; |
| static mempool_t *bio_post_read_ctx_pool; |
| |
| /* postprocessing steps for read bios */ |
| enum bio_post_read_step { |
| STEP_INITIAL = 0, |
| STEP_DECRYPT, |
| STEP_VERITY, |
| STEP_MAX, |
| }; |
| |
| struct bio_post_read_ctx { |
| struct bio *bio; |
| struct work_struct work; |
| unsigned int cur_step; |
| unsigned int enabled_steps; |
| }; |
| |
| static void __read_end_io(struct bio *bio) |
| { |
| struct folio_iter fi; |
| |
| bio_for_each_folio_all(fi, bio) |
| folio_end_read(fi.folio, bio->bi_status == 0); |
| if (bio->bi_private) |
| mempool_free(bio->bi_private, bio_post_read_ctx_pool); |
| bio_put(bio); |
| } |
| |
| static void bio_post_read_processing(struct bio_post_read_ctx *ctx); |
| |
| static void decrypt_work(struct work_struct *work) |
| { |
| struct bio_post_read_ctx *ctx = |
| container_of(work, struct bio_post_read_ctx, work); |
| struct bio *bio = ctx->bio; |
| |
| if (fscrypt_decrypt_bio(bio)) |
| bio_post_read_processing(ctx); |
| else |
| __read_end_io(bio); |
| } |
| |
| static void verity_work(struct work_struct *work) |
| { |
| struct bio_post_read_ctx *ctx = |
| container_of(work, struct bio_post_read_ctx, work); |
| struct bio *bio = ctx->bio; |
| |
| /* |
| * fsverity_verify_bio() may call readahead() again, and although verity |
| * will be disabled for that, decryption may still be needed, causing |
| * another bio_post_read_ctx to be allocated. So to guarantee that |
| * mempool_alloc() never deadlocks we must free the current ctx first. |
| * This is safe because verity is the last post-read step. |
| */ |
| BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX); |
| mempool_free(ctx, bio_post_read_ctx_pool); |
| bio->bi_private = NULL; |
| |
| fsverity_verify_bio(bio); |
| |
| __read_end_io(bio); |
| } |
| |
| static void bio_post_read_processing(struct bio_post_read_ctx *ctx) |
| { |
| /* |
| * We use different work queues for decryption and for verity because |
| * verity may require reading metadata pages that need decryption, and |
| * we shouldn't recurse to the same workqueue. |
| */ |
| switch (++ctx->cur_step) { |
| case STEP_DECRYPT: |
| if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { |
| INIT_WORK(&ctx->work, decrypt_work); |
| fscrypt_enqueue_decrypt_work(&ctx->work); |
| return; |
| } |
| ctx->cur_step++; |
| fallthrough; |
| case STEP_VERITY: |
| if (ctx->enabled_steps & (1 << STEP_VERITY)) { |
| INIT_WORK(&ctx->work, verity_work); |
| fsverity_enqueue_verify_work(&ctx->work); |
| return; |
| } |
| ctx->cur_step++; |
| fallthrough; |
| default: |
| __read_end_io(ctx->bio); |
| } |
| } |
| |
| static bool bio_post_read_required(struct bio *bio) |
| { |
| return bio->bi_private && !bio->bi_status; |
| } |
| |
| /* |
| * I/O completion handler for multipage BIOs. |
| * |
| * The mpage code never puts partial pages into a BIO (except for end-of-file). |
| * If a page does not map to a contiguous run of blocks then it simply falls |
| * back to block_read_full_folio(). |
| * |
| * Why is this? If a page's completion depends on a number of different BIOs |
| * which can complete in any order (or at the same time) then determining the |
| * status of that page is hard. See end_buffer_async_read() for the details. |
| * There is no point in duplicating all that complexity. |
| */ |
| static void mpage_end_io(struct bio *bio) |
| { |
| if (bio_post_read_required(bio)) { |
| struct bio_post_read_ctx *ctx = bio->bi_private; |
| |
| ctx->cur_step = STEP_INITIAL; |
| bio_post_read_processing(ctx); |
| return; |
| } |
| __read_end_io(bio); |
| } |
| |
| static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx) |
| { |
| return fsverity_active(inode) && |
| idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); |
| } |
| |
| static void ext4_set_bio_post_read_ctx(struct bio *bio, |
| const struct inode *inode, |
| pgoff_t first_idx) |
| { |
| unsigned int post_read_steps = 0; |
| |
| if (fscrypt_inode_uses_fs_layer_crypto(inode)) |
| post_read_steps |= 1 << STEP_DECRYPT; |
| |
| if (ext4_need_verity(inode, first_idx)) |
| post_read_steps |= 1 << STEP_VERITY; |
| |
| if (post_read_steps) { |
| /* Due to the mempool, this never fails. */ |
| struct bio_post_read_ctx *ctx = |
| mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); |
| |
| ctx->bio = bio; |
| ctx->enabled_steps = post_read_steps; |
| bio->bi_private = ctx; |
| } |
| } |
| |
| static inline loff_t ext4_readpage_limit(struct inode *inode) |
| { |
| if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) |
| return inode->i_sb->s_maxbytes; |
| |
| return i_size_read(inode); |
| } |
| |
| int ext4_mpage_readpages(struct inode *inode, |
| struct readahead_control *rac, struct folio *folio) |
| { |
| struct bio *bio = NULL; |
| sector_t last_block_in_bio = 0; |
| |
| const unsigned blkbits = inode->i_blkbits; |
| const unsigned blocks_per_page = PAGE_SIZE >> blkbits; |
| const unsigned blocksize = 1 << blkbits; |
| sector_t next_block; |
| sector_t block_in_file; |
| sector_t last_block; |
| sector_t last_block_in_file; |
| sector_t blocks[MAX_BUF_PER_PAGE]; |
| unsigned page_block; |
| struct block_device *bdev = inode->i_sb->s_bdev; |
| int length; |
| unsigned relative_block = 0; |
| struct ext4_map_blocks map; |
| unsigned int nr_pages = rac ? readahead_count(rac) : 1; |
| |
| map.m_pblk = 0; |
| map.m_lblk = 0; |
| map.m_len = 0; |
| map.m_flags = 0; |
| |
| for (; nr_pages; nr_pages--) { |
| int fully_mapped = 1; |
| unsigned first_hole = blocks_per_page; |
| |
| if (rac) |
| folio = readahead_folio(rac); |
| prefetchw(&folio->flags); |
| |
| if (folio_buffers(folio)) |
| goto confused; |
| |
| block_in_file = next_block = |
| (sector_t)folio->index << (PAGE_SHIFT - blkbits); |
| last_block = block_in_file + nr_pages * blocks_per_page; |
| last_block_in_file = (ext4_readpage_limit(inode) + |
| blocksize - 1) >> blkbits; |
| if (last_block > last_block_in_file) |
| last_block = last_block_in_file; |
| page_block = 0; |
| |
| /* |
| * Map blocks using the previous result first. |
| */ |
| if ((map.m_flags & EXT4_MAP_MAPPED) && |
| block_in_file > map.m_lblk && |
| block_in_file < (map.m_lblk + map.m_len)) { |
| unsigned map_offset = block_in_file - map.m_lblk; |
| unsigned last = map.m_len - map_offset; |
| |
| for (relative_block = 0; ; relative_block++) { |
| if (relative_block == last) { |
| /* needed? */ |
| map.m_flags &= ~EXT4_MAP_MAPPED; |
| break; |
| } |
| if (page_block == blocks_per_page) |
| break; |
| blocks[page_block] = map.m_pblk + map_offset + |
| relative_block; |
| page_block++; |
| block_in_file++; |
| } |
| } |
| |
| /* |
| * Then do more ext4_map_blocks() calls until we are |
| * done with this folio. |
| */ |
| while (page_block < blocks_per_page) { |
| if (block_in_file < last_block) { |
| map.m_lblk = block_in_file; |
| map.m_len = last_block - block_in_file; |
| |
| if (ext4_map_blocks(NULL, inode, &map, 0) < 0) { |
| set_error_page: |
| folio_set_error(folio); |
| folio_zero_segment(folio, 0, |
| folio_size(folio)); |
| folio_unlock(folio); |
| goto next_page; |
| } |
| } |
| if ((map.m_flags & EXT4_MAP_MAPPED) == 0) { |
| fully_mapped = 0; |
| if (first_hole == blocks_per_page) |
| first_hole = page_block; |
| page_block++; |
| block_in_file++; |
| continue; |
| } |
| if (first_hole != blocks_per_page) |
| goto confused; /* hole -> non-hole */ |
| |
| /* Contiguous blocks? */ |
| if (page_block && blocks[page_block-1] != map.m_pblk-1) |
| goto confused; |
| for (relative_block = 0; ; relative_block++) { |
| if (relative_block == map.m_len) { |
| /* needed? */ |
| map.m_flags &= ~EXT4_MAP_MAPPED; |
| break; |
| } else if (page_block == blocks_per_page) |
| break; |
| blocks[page_block] = map.m_pblk+relative_block; |
| page_block++; |
| block_in_file++; |
| } |
| } |
| if (first_hole != blocks_per_page) { |
| folio_zero_segment(folio, first_hole << blkbits, |
| folio_size(folio)); |
| if (first_hole == 0) { |
| if (ext4_need_verity(inode, folio->index) && |
| !fsverity_verify_folio(folio)) |
| goto set_error_page; |
| folio_end_read(folio, true); |
| continue; |
| } |
| } else if (fully_mapped) { |
| folio_set_mappedtodisk(folio); |
| } |
| |
| /* |
| * This folio will go to BIO. Do we need to send this |
| * BIO off first? |
| */ |
| if (bio && (last_block_in_bio != blocks[0] - 1 || |
| !fscrypt_mergeable_bio(bio, inode, next_block))) { |
| submit_and_realloc: |
| submit_bio(bio); |
| bio = NULL; |
| } |
| if (bio == NULL) { |
| /* |
| * bio_alloc will _always_ be able to allocate a bio if |
| * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset(). |
| */ |
| bio = bio_alloc(bdev, bio_max_segs(nr_pages), |
| REQ_OP_READ, GFP_KERNEL); |
| fscrypt_set_bio_crypt_ctx(bio, inode, next_block, |
| GFP_KERNEL); |
| ext4_set_bio_post_read_ctx(bio, inode, folio->index); |
| bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9); |
| bio->bi_end_io = mpage_end_io; |
| if (rac) |
| bio->bi_opf |= REQ_RAHEAD; |
| } |
| |
| length = first_hole << blkbits; |
| if (!bio_add_folio(bio, folio, length, 0)) |
| goto submit_and_realloc; |
| |
| if (((map.m_flags & EXT4_MAP_BOUNDARY) && |
| (relative_block == map.m_len)) || |
| (first_hole != blocks_per_page)) { |
| submit_bio(bio); |
| bio = NULL; |
| } else |
| last_block_in_bio = blocks[blocks_per_page - 1]; |
| continue; |
| confused: |
| if (bio) { |
| submit_bio(bio); |
| bio = NULL; |
| } |
| if (!folio_test_uptodate(folio)) |
| block_read_full_folio(folio, ext4_get_block); |
| else |
| folio_unlock(folio); |
| next_page: |
| ; /* A label shall be followed by a statement until C23 */ |
| } |
| if (bio) |
| submit_bio(bio); |
| return 0; |
| } |
| |
| int __init ext4_init_post_read_processing(void) |
| { |
| bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT); |
| |
| if (!bio_post_read_ctx_cache) |
| goto fail; |
| bio_post_read_ctx_pool = |
| mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, |
| bio_post_read_ctx_cache); |
| if (!bio_post_read_ctx_pool) |
| goto fail_free_cache; |
| return 0; |
| |
| fail_free_cache: |
| kmem_cache_destroy(bio_post_read_ctx_cache); |
| fail: |
| return -ENOMEM; |
| } |
| |
| void ext4_exit_post_read_processing(void) |
| { |
| mempool_destroy(bio_post_read_ctx_pool); |
| kmem_cache_destroy(bio_post_read_ctx_cache); |
| } |