| #ifndef __SPARC_IO_H |
| #define __SPARC_IO_H |
| |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/ioport.h> /* struct resource */ |
| |
| #include <asm/page.h> /* IO address mapping routines need this */ |
| #include <asm/system.h> |
| |
| #define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT) |
| |
| static inline u32 flip_dword (u32 l) |
| { |
| return ((l&0xff)<<24) | (((l>>8)&0xff)<<16) | (((l>>16)&0xff)<<8)| ((l>>24)&0xff); |
| } |
| |
| static inline u16 flip_word (u16 w) |
| { |
| return ((w&0xff) << 8) | ((w>>8)&0xff); |
| } |
| |
| #define mmiowb() |
| |
| /* |
| * Memory mapped I/O to PCI |
| */ |
| |
| static inline u8 __raw_readb(const volatile void __iomem *addr) |
| { |
| return *(__force volatile u8 *)addr; |
| } |
| |
| static inline u16 __raw_readw(const volatile void __iomem *addr) |
| { |
| return *(__force volatile u16 *)addr; |
| } |
| |
| static inline u32 __raw_readl(const volatile void __iomem *addr) |
| { |
| return *(__force volatile u32 *)addr; |
| } |
| |
| static inline void __raw_writeb(u8 b, volatile void __iomem *addr) |
| { |
| *(__force volatile u8 *)addr = b; |
| } |
| |
| static inline void __raw_writew(u16 w, volatile void __iomem *addr) |
| { |
| *(__force volatile u16 *)addr = w; |
| } |
| |
| static inline void __raw_writel(u32 l, volatile void __iomem *addr) |
| { |
| *(__force volatile u32 *)addr = l; |
| } |
| |
| static inline u8 __readb(const volatile void __iomem *addr) |
| { |
| return *(__force volatile u8 *)addr; |
| } |
| |
| static inline u16 __readw(const volatile void __iomem *addr) |
| { |
| return flip_word(*(__force volatile u16 *)addr); |
| } |
| |
| static inline u32 __readl(const volatile void __iomem *addr) |
| { |
| return flip_dword(*(__force volatile u32 *)addr); |
| } |
| |
| static inline void __writeb(u8 b, volatile void __iomem *addr) |
| { |
| *(__force volatile u8 *)addr = b; |
| } |
| |
| static inline void __writew(u16 w, volatile void __iomem *addr) |
| { |
| *(__force volatile u16 *)addr = flip_word(w); |
| } |
| |
| static inline void __writel(u32 l, volatile void __iomem *addr) |
| { |
| *(__force volatile u32 *)addr = flip_dword(l); |
| } |
| |
| #define readb(__addr) __readb(__addr) |
| #define readw(__addr) __readw(__addr) |
| #define readl(__addr) __readl(__addr) |
| #define readb_relaxed(__addr) readb(__addr) |
| #define readw_relaxed(__addr) readw(__addr) |
| #define readl_relaxed(__addr) readl(__addr) |
| |
| #define writeb(__b, __addr) __writeb((__b),(__addr)) |
| #define writew(__w, __addr) __writew((__w),(__addr)) |
| #define writel(__l, __addr) __writel((__l),(__addr)) |
| |
| /* |
| * I/O space operations |
| * |
| * Arrangement on a Sun is somewhat complicated. |
| * |
| * First of all, we want to use standard Linux drivers |
| * for keyboard, PC serial, etc. These drivers think |
| * they access I/O space and use inb/outb. |
| * On the other hand, EBus bridge accepts PCI *memory* |
| * cycles and converts them into ISA *I/O* cycles. |
| * Ergo, we want inb & outb to generate PCI memory cycles. |
| * |
| * If we want to issue PCI *I/O* cycles, we do this |
| * with a low 64K fixed window in PCIC. This window gets |
| * mapped somewhere into virtual kernel space and we |
| * can use inb/outb again. |
| */ |
| #define inb_local(__addr) __readb((void __iomem *)(unsigned long)(__addr)) |
| #define inb(__addr) __readb((void __iomem *)(unsigned long)(__addr)) |
| #define inw(__addr) __readw((void __iomem *)(unsigned long)(__addr)) |
| #define inl(__addr) __readl((void __iomem *)(unsigned long)(__addr)) |
| |
| #define outb_local(__b, __addr) __writeb(__b, (void __iomem *)(unsigned long)(__addr)) |
| #define outb(__b, __addr) __writeb(__b, (void __iomem *)(unsigned long)(__addr)) |
| #define outw(__w, __addr) __writew(__w, (void __iomem *)(unsigned long)(__addr)) |
| #define outl(__l, __addr) __writel(__l, (void __iomem *)(unsigned long)(__addr)) |
| |
| #define inb_p(__addr) inb(__addr) |
| #define outb_p(__b, __addr) outb(__b, __addr) |
| #define inw_p(__addr) inw(__addr) |
| #define outw_p(__w, __addr) outw(__w, __addr) |
| #define inl_p(__addr) inl(__addr) |
| #define outl_p(__l, __addr) outl(__l, __addr) |
| |
| void outsb(unsigned long addr, const void *src, unsigned long cnt); |
| void outsw(unsigned long addr, const void *src, unsigned long cnt); |
| void outsl(unsigned long addr, const void *src, unsigned long cnt); |
| void insb(unsigned long addr, void *dst, unsigned long count); |
| void insw(unsigned long addr, void *dst, unsigned long count); |
| void insl(unsigned long addr, void *dst, unsigned long count); |
| |
| #define IO_SPACE_LIMIT 0xffffffff |
| |
| /* |
| * SBus accessors. |
| * |
| * SBus has only one, memory mapped, I/O space. |
| * We do not need to flip bytes for SBus of course. |
| */ |
| static inline u8 _sbus_readb(const volatile void __iomem *addr) |
| { |
| return *(__force volatile u8 *)addr; |
| } |
| |
| static inline u16 _sbus_readw(const volatile void __iomem *addr) |
| { |
| return *(__force volatile u16 *)addr; |
| } |
| |
| static inline u32 _sbus_readl(const volatile void __iomem *addr) |
| { |
| return *(__force volatile u32 *)addr; |
| } |
| |
| static inline void _sbus_writeb(u8 b, volatile void __iomem *addr) |
| { |
| *(__force volatile u8 *)addr = b; |
| } |
| |
| static inline void _sbus_writew(u16 w, volatile void __iomem *addr) |
| { |
| *(__force volatile u16 *)addr = w; |
| } |
| |
| static inline void _sbus_writel(u32 l, volatile void __iomem *addr) |
| { |
| *(__force volatile u32 *)addr = l; |
| } |
| |
| /* |
| * The only reason for #define's is to hide casts to unsigned long. |
| */ |
| #define sbus_readb(__addr) _sbus_readb(__addr) |
| #define sbus_readw(__addr) _sbus_readw(__addr) |
| #define sbus_readl(__addr) _sbus_readl(__addr) |
| #define sbus_writeb(__b, __addr) _sbus_writeb(__b, __addr) |
| #define sbus_writew(__w, __addr) _sbus_writew(__w, __addr) |
| #define sbus_writel(__l, __addr) _sbus_writel(__l, __addr) |
| |
| static inline void sbus_memset_io(volatile void __iomem *__dst, int c, __kernel_size_t n) |
| { |
| while(n--) { |
| sbus_writeb(c, __dst); |
| __dst++; |
| } |
| } |
| |
| static inline void |
| _memset_io(volatile void __iomem *dst, int c, __kernel_size_t n) |
| { |
| volatile void __iomem *d = dst; |
| |
| while (n--) { |
| writeb(c, d); |
| d++; |
| } |
| } |
| |
| #define memset_io(d,c,sz) _memset_io(d,c,sz) |
| |
| static inline void |
| _memcpy_fromio(void *dst, const volatile void __iomem *src, __kernel_size_t n) |
| { |
| char *d = dst; |
| |
| while (n--) { |
| char tmp = readb(src); |
| *d++ = tmp; |
| src++; |
| } |
| } |
| |
| #define memcpy_fromio(d,s,sz) _memcpy_fromio(d,s,sz) |
| |
| static inline void |
| _memcpy_toio(volatile void __iomem *dst, const void *src, __kernel_size_t n) |
| { |
| const char *s = src; |
| volatile void __iomem *d = dst; |
| |
| while (n--) { |
| char tmp = *s++; |
| writeb(tmp, d); |
| d++; |
| } |
| } |
| |
| #define memcpy_toio(d,s,sz) _memcpy_toio(d,s,sz) |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Bus number may be embedded in the higher bits of the physical address. |
| * This is why we have no bus number argument to ioremap(). |
| */ |
| extern void __iomem *ioremap(unsigned long offset, unsigned long size); |
| #define ioremap_nocache(X,Y) ioremap((X),(Y)) |
| #define ioremap_wc(X,Y) ioremap((X),(Y)) |
| extern void iounmap(volatile void __iomem *addr); |
| |
| #define ioread8(X) readb(X) |
| #define ioread16(X) readw(X) |
| #define ioread32(X) readl(X) |
| #define iowrite8(val,X) writeb(val,X) |
| #define iowrite16(val,X) writew(val,X) |
| #define iowrite32(val,X) writel(val,X) |
| |
| static inline void ioread8_rep(void __iomem *port, void *buf, unsigned long count) |
| { |
| insb((unsigned long __force)port, buf, count); |
| } |
| static inline void ioread16_rep(void __iomem *port, void *buf, unsigned long count) |
| { |
| insw((unsigned long __force)port, buf, count); |
| } |
| |
| static inline void ioread32_rep(void __iomem *port, void *buf, unsigned long count) |
| { |
| insl((unsigned long __force)port, buf, count); |
| } |
| |
| static inline void iowrite8_rep(void __iomem *port, const void *buf, unsigned long count) |
| { |
| outsb((unsigned long __force)port, buf, count); |
| } |
| |
| static inline void iowrite16_rep(void __iomem *port, const void *buf, unsigned long count) |
| { |
| outsw((unsigned long __force)port, buf, count); |
| } |
| |
| static inline void iowrite32_rep(void __iomem *port, const void *buf, unsigned long count) |
| { |
| outsl((unsigned long __force)port, buf, count); |
| } |
| |
| /* Create a virtual mapping cookie for an IO port range */ |
| extern void __iomem *ioport_map(unsigned long port, unsigned int nr); |
| extern void ioport_unmap(void __iomem *); |
| |
| /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ |
| struct pci_dev; |
| extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); |
| extern void pci_iounmap(struct pci_dev *dev, void __iomem *); |
| |
| /* |
| * At the moment, we do not use CMOS_READ anywhere outside of rtc.c, |
| * so rtc_port is static in it. This should not change unless a new |
| * hardware pops up. |
| */ |
| #define RTC_PORT(x) (rtc_port + (x)) |
| #define RTC_ALWAYS_BCD 0 |
| |
| static inline int sbus_can_dma_64bit(void) |
| { |
| return 0; /* actually, sparc_cpu_model==sun4d */ |
| } |
| static inline int sbus_can_burst64(void) |
| { |
| return 0; /* actually, sparc_cpu_model==sun4d */ |
| } |
| struct device; |
| extern void sbus_set_sbus64(struct device *, int); |
| |
| #endif |
| |
| #define __ARCH_HAS_NO_PAGE_ZERO_MAPPED 1 |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| #endif /* !(__SPARC_IO_H) */ |