| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Thunderbolt Time Management Unit (TMU) support |
| * |
| * Copyright (C) 2019, Intel Corporation |
| * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> |
| * Rajmohan Mani <rajmohan.mani@intel.com> |
| */ |
| |
| #include <linux/delay.h> |
| |
| #include "tb.h" |
| |
| static const char *tb_switch_tmu_mode_name(const struct tb_switch *sw) |
| { |
| bool root_switch = !tb_route(sw); |
| |
| switch (sw->tmu.rate) { |
| case TB_SWITCH_TMU_RATE_OFF: |
| return "off"; |
| |
| case TB_SWITCH_TMU_RATE_HIFI: |
| /* Root switch does not have upstream directionality */ |
| if (root_switch) |
| return "HiFi"; |
| if (sw->tmu.unidirectional) |
| return "uni-directional, HiFi"; |
| return "bi-directional, HiFi"; |
| |
| case TB_SWITCH_TMU_RATE_NORMAL: |
| if (root_switch) |
| return "normal"; |
| return "uni-directional, normal"; |
| |
| default: |
| return "unknown"; |
| } |
| } |
| |
| static bool tb_switch_tmu_ucap_supported(struct tb_switch *sw) |
| { |
| int ret; |
| u32 val; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, |
| sw->tmu.cap + TMU_RTR_CS_0, 1); |
| if (ret) |
| return false; |
| |
| return !!(val & TMU_RTR_CS_0_UCAP); |
| } |
| |
| static int tb_switch_tmu_rate_read(struct tb_switch *sw) |
| { |
| int ret; |
| u32 val; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, |
| sw->tmu.cap + TMU_RTR_CS_3, 1); |
| if (ret) |
| return ret; |
| |
| val >>= TMU_RTR_CS_3_TS_PACKET_INTERVAL_SHIFT; |
| return val; |
| } |
| |
| static int tb_switch_tmu_rate_write(struct tb_switch *sw, int rate) |
| { |
| int ret; |
| u32 val; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, |
| sw->tmu.cap + TMU_RTR_CS_3, 1); |
| if (ret) |
| return ret; |
| |
| val &= ~TMU_RTR_CS_3_TS_PACKET_INTERVAL_MASK; |
| val |= rate << TMU_RTR_CS_3_TS_PACKET_INTERVAL_SHIFT; |
| |
| return tb_sw_write(sw, &val, TB_CFG_SWITCH, |
| sw->tmu.cap + TMU_RTR_CS_3, 1); |
| } |
| |
| static int tb_port_tmu_write(struct tb_port *port, u8 offset, u32 mask, |
| u32 value) |
| { |
| u32 data; |
| int ret; |
| |
| ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_tmu + offset, 1); |
| if (ret) |
| return ret; |
| |
| data &= ~mask; |
| data |= value; |
| |
| return tb_port_write(port, &data, TB_CFG_PORT, |
| port->cap_tmu + offset, 1); |
| } |
| |
| static int tb_port_tmu_set_unidirectional(struct tb_port *port, |
| bool unidirectional) |
| { |
| u32 val; |
| |
| if (!port->sw->tmu.has_ucap) |
| return 0; |
| |
| val = unidirectional ? TMU_ADP_CS_3_UDM : 0; |
| return tb_port_tmu_write(port, TMU_ADP_CS_3, TMU_ADP_CS_3_UDM, val); |
| } |
| |
| static inline int tb_port_tmu_unidirectional_disable(struct tb_port *port) |
| { |
| return tb_port_tmu_set_unidirectional(port, false); |
| } |
| |
| static inline int tb_port_tmu_unidirectional_enable(struct tb_port *port) |
| { |
| return tb_port_tmu_set_unidirectional(port, true); |
| } |
| |
| static bool tb_port_tmu_is_unidirectional(struct tb_port *port) |
| { |
| int ret; |
| u32 val; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_tmu + TMU_ADP_CS_3, 1); |
| if (ret) |
| return false; |
| |
| return val & TMU_ADP_CS_3_UDM; |
| } |
| |
| static int tb_port_tmu_time_sync(struct tb_port *port, bool time_sync) |
| { |
| u32 val = time_sync ? TMU_ADP_CS_6_DTS : 0; |
| |
| return tb_port_tmu_write(port, TMU_ADP_CS_6, TMU_ADP_CS_6_DTS, val); |
| } |
| |
| static int tb_port_tmu_time_sync_disable(struct tb_port *port) |
| { |
| return tb_port_tmu_time_sync(port, true); |
| } |
| |
| static int tb_port_tmu_time_sync_enable(struct tb_port *port) |
| { |
| return tb_port_tmu_time_sync(port, false); |
| } |
| |
| static int tb_switch_tmu_set_time_disruption(struct tb_switch *sw, bool set) |
| { |
| u32 val, offset, bit; |
| int ret; |
| |
| if (tb_switch_is_usb4(sw)) { |
| offset = sw->tmu.cap + TMU_RTR_CS_0; |
| bit = TMU_RTR_CS_0_TD; |
| } else { |
| offset = sw->cap_vsec_tmu + TB_TIME_VSEC_3_CS_26; |
| bit = TB_TIME_VSEC_3_CS_26_TD; |
| } |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); |
| if (ret) |
| return ret; |
| |
| if (set) |
| val |= bit; |
| else |
| val &= ~bit; |
| |
| return tb_sw_write(sw, &val, TB_CFG_SWITCH, offset, 1); |
| } |
| |
| /** |
| * tb_switch_tmu_init() - Initialize switch TMU structures |
| * @sw: Switch to initialized |
| * |
| * This function must be called before other TMU related functions to |
| * makes the internal structures are filled in correctly. Does not |
| * change any hardware configuration. |
| */ |
| int tb_switch_tmu_init(struct tb_switch *sw) |
| { |
| struct tb_port *port; |
| int ret; |
| |
| if (tb_switch_is_icm(sw)) |
| return 0; |
| |
| ret = tb_switch_find_cap(sw, TB_SWITCH_CAP_TMU); |
| if (ret > 0) |
| sw->tmu.cap = ret; |
| |
| tb_switch_for_each_port(sw, port) { |
| int cap; |
| |
| cap = tb_port_find_cap(port, TB_PORT_CAP_TIME1); |
| if (cap > 0) |
| port->cap_tmu = cap; |
| } |
| |
| ret = tb_switch_tmu_rate_read(sw); |
| if (ret < 0) |
| return ret; |
| |
| sw->tmu.rate = ret; |
| |
| sw->tmu.has_ucap = tb_switch_tmu_ucap_supported(sw); |
| if (sw->tmu.has_ucap) { |
| tb_sw_dbg(sw, "TMU: supports uni-directional mode\n"); |
| |
| if (tb_route(sw)) { |
| struct tb_port *up = tb_upstream_port(sw); |
| |
| sw->tmu.unidirectional = |
| tb_port_tmu_is_unidirectional(up); |
| } |
| } else { |
| sw->tmu.unidirectional = false; |
| } |
| |
| tb_sw_dbg(sw, "TMU: current mode: %s\n", tb_switch_tmu_mode_name(sw)); |
| return 0; |
| } |
| |
| /** |
| * tb_switch_tmu_post_time() - Update switch local time |
| * @sw: Switch whose time to update |
| * |
| * Updates switch local time using time posting procedure. |
| */ |
| int tb_switch_tmu_post_time(struct tb_switch *sw) |
| { |
| unsigned int post_time_high_offset, post_time_high = 0; |
| unsigned int post_local_time_offset, post_time_offset; |
| struct tb_switch *root_switch = sw->tb->root_switch; |
| u64 hi, mid, lo, local_time, post_time; |
| int i, ret, retries = 100; |
| u32 gm_local_time[3]; |
| |
| if (!tb_route(sw)) |
| return 0; |
| |
| if (!tb_switch_is_usb4(sw)) |
| return 0; |
| |
| /* Need to be able to read the grand master time */ |
| if (!root_switch->tmu.cap) |
| return 0; |
| |
| ret = tb_sw_read(root_switch, gm_local_time, TB_CFG_SWITCH, |
| root_switch->tmu.cap + TMU_RTR_CS_1, |
| ARRAY_SIZE(gm_local_time)); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < ARRAY_SIZE(gm_local_time); i++) |
| tb_sw_dbg(root_switch, "local_time[%d]=0x%08x\n", i, |
| gm_local_time[i]); |
| |
| /* Convert to nanoseconds (drop fractional part) */ |
| hi = gm_local_time[2] & TMU_RTR_CS_3_LOCAL_TIME_NS_MASK; |
| mid = gm_local_time[1]; |
| lo = (gm_local_time[0] & TMU_RTR_CS_1_LOCAL_TIME_NS_MASK) >> |
| TMU_RTR_CS_1_LOCAL_TIME_NS_SHIFT; |
| local_time = hi << 48 | mid << 16 | lo; |
| |
| /* Tell the switch that time sync is disrupted for a while */ |
| ret = tb_switch_tmu_set_time_disruption(sw, true); |
| if (ret) |
| return ret; |
| |
| post_local_time_offset = sw->tmu.cap + TMU_RTR_CS_22; |
| post_time_offset = sw->tmu.cap + TMU_RTR_CS_24; |
| post_time_high_offset = sw->tmu.cap + TMU_RTR_CS_25; |
| |
| /* |
| * Write the Grandmaster time to the Post Local Time registers |
| * of the new switch. |
| */ |
| ret = tb_sw_write(sw, &local_time, TB_CFG_SWITCH, |
| post_local_time_offset, 2); |
| if (ret) |
| goto out; |
| |
| /* |
| * Have the new switch update its local time by: |
| * 1) writing 0x1 to the Post Time Low register and 0xffffffff to |
| * Post Time High register. |
| * 2) write 0 to Post Time High register and then wait for |
| * the completion of the post_time register becomes 0. |
| * This means the time has been converged properly. |
| */ |
| post_time = 0xffffffff00000001ULL; |
| |
| ret = tb_sw_write(sw, &post_time, TB_CFG_SWITCH, post_time_offset, 2); |
| if (ret) |
| goto out; |
| |
| ret = tb_sw_write(sw, &post_time_high, TB_CFG_SWITCH, |
| post_time_high_offset, 1); |
| if (ret) |
| goto out; |
| |
| do { |
| usleep_range(5, 10); |
| ret = tb_sw_read(sw, &post_time, TB_CFG_SWITCH, |
| post_time_offset, 2); |
| if (ret) |
| goto out; |
| } while (--retries && post_time); |
| |
| if (!retries) { |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| |
| tb_sw_dbg(sw, "TMU: updated local time to %#llx\n", local_time); |
| |
| out: |
| tb_switch_tmu_set_time_disruption(sw, false); |
| return ret; |
| } |
| |
| /** |
| * tb_switch_tmu_disable() - Disable TMU of a switch |
| * @sw: Switch whose TMU to disable |
| * |
| * Turns off TMU of @sw if it is enabled. If not enabled does nothing. |
| */ |
| int tb_switch_tmu_disable(struct tb_switch *sw) |
| { |
| /* |
| * No need to disable TMU on devices that don't support CLx since |
| * on these devices e.g. Alpine Ridge and earlier, the TMU mode |
| * HiFi bi-directional is enabled by default and we don't change it. |
| */ |
| if (!tb_switch_is_clx_supported(sw)) |
| return 0; |
| |
| /* Already disabled? */ |
| if (sw->tmu.rate == TB_SWITCH_TMU_RATE_OFF) |
| return 0; |
| |
| |
| if (tb_route(sw)) { |
| bool unidirectional = tb_switch_tmu_hifi_is_enabled(sw, true); |
| struct tb_switch *parent = tb_switch_parent(sw); |
| struct tb_port *down, *up; |
| int ret; |
| |
| down = tb_port_at(tb_route(sw), parent); |
| up = tb_upstream_port(sw); |
| /* |
| * In case of uni-directional time sync, TMU handshake is |
| * initiated by upstream router. In case of bi-directional |
| * time sync, TMU handshake is initiated by downstream router. |
| * Therefore, we change the rate to off in the respective |
| * router. |
| */ |
| if (unidirectional) |
| tb_switch_tmu_rate_write(parent, TB_SWITCH_TMU_RATE_OFF); |
| else |
| tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF); |
| |
| tb_port_tmu_time_sync_disable(up); |
| ret = tb_port_tmu_time_sync_disable(down); |
| if (ret) |
| return ret; |
| |
| if (unidirectional) { |
| /* The switch may be unplugged so ignore any errors */ |
| tb_port_tmu_unidirectional_disable(up); |
| ret = tb_port_tmu_unidirectional_disable(down); |
| if (ret) |
| return ret; |
| } |
| } else { |
| tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF); |
| } |
| |
| sw->tmu.unidirectional = false; |
| sw->tmu.rate = TB_SWITCH_TMU_RATE_OFF; |
| |
| tb_sw_dbg(sw, "TMU: disabled\n"); |
| return 0; |
| } |
| |
| static void __tb_switch_tmu_off(struct tb_switch *sw, bool unidirectional) |
| { |
| struct tb_switch *parent = tb_switch_parent(sw); |
| struct tb_port *down, *up; |
| |
| down = tb_port_at(tb_route(sw), parent); |
| up = tb_upstream_port(sw); |
| /* |
| * In case of any failure in one of the steps when setting |
| * bi-directional or uni-directional TMU mode, get back to the TMU |
| * configurations in off mode. In case of additional failures in |
| * the functions below, ignore them since the caller shall already |
| * report a failure. |
| */ |
| tb_port_tmu_time_sync_disable(down); |
| tb_port_tmu_time_sync_disable(up); |
| if (unidirectional) |
| tb_switch_tmu_rate_write(parent, TB_SWITCH_TMU_RATE_OFF); |
| else |
| tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF); |
| |
| tb_port_tmu_unidirectional_disable(down); |
| tb_port_tmu_unidirectional_disable(up); |
| } |
| |
| /* |
| * This function is called when the previous TMU mode was |
| * TB_SWITCH_TMU_RATE_OFF. |
| */ |
| static int __tb_switch_tmu_enable_bidirectional(struct tb_switch *sw) |
| { |
| struct tb_switch *parent = tb_switch_parent(sw); |
| struct tb_port *up, *down; |
| int ret; |
| |
| up = tb_upstream_port(sw); |
| down = tb_port_at(tb_route(sw), parent); |
| |
| ret = tb_port_tmu_unidirectional_disable(up); |
| if (ret) |
| return ret; |
| |
| ret = tb_port_tmu_unidirectional_disable(down); |
| if (ret) |
| goto out; |
| |
| ret = tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_HIFI); |
| if (ret) |
| goto out; |
| |
| ret = tb_port_tmu_time_sync_enable(up); |
| if (ret) |
| goto out; |
| |
| ret = tb_port_tmu_time_sync_enable(down); |
| if (ret) |
| goto out; |
| |
| return 0; |
| |
| out: |
| __tb_switch_tmu_off(sw, false); |
| return ret; |
| } |
| |
| static int tb_switch_tmu_objection_mask(struct tb_switch *sw) |
| { |
| u32 val; |
| int ret; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, |
| sw->cap_vsec_tmu + TB_TIME_VSEC_3_CS_9, 1); |
| if (ret) |
| return ret; |
| |
| val &= ~TB_TIME_VSEC_3_CS_9_TMU_OBJ_MASK; |
| |
| return tb_sw_write(sw, &val, TB_CFG_SWITCH, |
| sw->cap_vsec_tmu + TB_TIME_VSEC_3_CS_9, 1); |
| } |
| |
| static int tb_switch_tmu_unidirectional_enable(struct tb_switch *sw) |
| { |
| struct tb_port *up = tb_upstream_port(sw); |
| |
| return tb_port_tmu_write(up, TMU_ADP_CS_6, |
| TMU_ADP_CS_6_DISABLE_TMU_OBJ_MASK, |
| TMU_ADP_CS_6_DISABLE_TMU_OBJ_MASK); |
| } |
| |
| /* |
| * This function is called when the previous TMU mode was |
| * TB_SWITCH_TMU_RATE_OFF. |
| */ |
| static int __tb_switch_tmu_enable_unidirectional(struct tb_switch *sw) |
| { |
| struct tb_switch *parent = tb_switch_parent(sw); |
| struct tb_port *up, *down; |
| int ret; |
| |
| up = tb_upstream_port(sw); |
| down = tb_port_at(tb_route(sw), parent); |
| ret = tb_switch_tmu_rate_write(parent, TB_SWITCH_TMU_RATE_HIFI); |
| if (ret) |
| return ret; |
| |
| ret = tb_port_tmu_unidirectional_enable(up); |
| if (ret) |
| goto out; |
| |
| ret = tb_port_tmu_time_sync_enable(up); |
| if (ret) |
| goto out; |
| |
| ret = tb_port_tmu_unidirectional_enable(down); |
| if (ret) |
| goto out; |
| |
| ret = tb_port_tmu_time_sync_enable(down); |
| if (ret) |
| goto out; |
| |
| return 0; |
| |
| out: |
| __tb_switch_tmu_off(sw, true); |
| return ret; |
| } |
| |
| static int tb_switch_tmu_hifi_enable(struct tb_switch *sw) |
| { |
| bool unidirectional = sw->tmu.unidirectional_request; |
| int ret; |
| |
| if (unidirectional && !sw->tmu.has_ucap) |
| return -EOPNOTSUPP; |
| |
| /* |
| * No need to enable TMU on devices that don't support CLx since on |
| * these devices e.g. Alpine Ridge and earlier, the TMU mode HiFi |
| * bi-directional is enabled by default. |
| */ |
| if (!tb_switch_is_clx_supported(sw)) |
| return 0; |
| |
| if (tb_switch_tmu_hifi_is_enabled(sw, sw->tmu.unidirectional_request)) |
| return 0; |
| |
| if (tb_switch_is_titan_ridge(sw) && unidirectional) { |
| /* Titan Ridge supports only CL0s */ |
| if (!tb_switch_is_cl0s_enabled(sw)) |
| return -EOPNOTSUPP; |
| |
| ret = tb_switch_tmu_objection_mask(sw); |
| if (ret) |
| return ret; |
| |
| ret = tb_switch_tmu_unidirectional_enable(sw); |
| if (ret) |
| return ret; |
| } |
| |
| ret = tb_switch_tmu_set_time_disruption(sw, true); |
| if (ret) |
| return ret; |
| |
| if (tb_route(sw)) { |
| /* The used mode changes are from OFF to HiFi-Uni/HiFi-BiDir */ |
| if (sw->tmu.rate == TB_SWITCH_TMU_RATE_OFF) { |
| if (unidirectional) |
| ret = __tb_switch_tmu_enable_unidirectional(sw); |
| else |
| ret = __tb_switch_tmu_enable_bidirectional(sw); |
| if (ret) |
| return ret; |
| } |
| sw->tmu.unidirectional = unidirectional; |
| } else { |
| /* |
| * Host router port configurations are written as |
| * part of configurations for downstream port of the parent |
| * of the child node - see above. |
| * Here only the host router' rate configuration is written. |
| */ |
| ret = tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_HIFI); |
| if (ret) |
| return ret; |
| } |
| |
| sw->tmu.rate = TB_SWITCH_TMU_RATE_HIFI; |
| |
| tb_sw_dbg(sw, "TMU: mode set to: %s\n", tb_switch_tmu_mode_name(sw)); |
| return tb_switch_tmu_set_time_disruption(sw, false); |
| } |
| |
| /** |
| * tb_switch_tmu_enable() - Enable TMU on a router |
| * @sw: Router whose TMU to enable |
| * |
| * Enables TMU of a router to be in uni-directional or bi-directional HiFi mode. |
| * Calling tb_switch_tmu_configure() is required before calling this function, |
| * to select the mode HiFi and directionality (uni-directional/bi-directional). |
| * In both modes all tunneling should work. Uni-directional mode is required for |
| * CLx (Link Low-Power) to work. |
| */ |
| int tb_switch_tmu_enable(struct tb_switch *sw) |
| { |
| if (sw->tmu.rate_request == TB_SWITCH_TMU_RATE_NORMAL) |
| return -EOPNOTSUPP; |
| |
| return tb_switch_tmu_hifi_enable(sw); |
| } |
| |
| /** |
| * tb_switch_tmu_configure() - Configure the TMU rate and directionality |
| * @sw: Router whose mode to change |
| * @rate: Rate to configure Off/LowRes/HiFi |
| * @unidirectional: If uni-directional (bi-directional otherwise) |
| * |
| * Selects the rate of the TMU and directionality (uni-directional or |
| * bi-directional). Must be called before tb_switch_tmu_enable(). |
| */ |
| void tb_switch_tmu_configure(struct tb_switch *sw, |
| enum tb_switch_tmu_rate rate, bool unidirectional) |
| { |
| sw->tmu.unidirectional_request = unidirectional; |
| sw->tmu.rate_request = rate; |
| } |