| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* auditsc.c -- System-call auditing support |
| * Handles all system-call specific auditing features. |
| * |
| * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. |
| * Copyright 2005 Hewlett-Packard Development Company, L.P. |
| * Copyright (C) 2005, 2006 IBM Corporation |
| * All Rights Reserved. |
| * |
| * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
| * |
| * Many of the ideas implemented here are from Stephen C. Tweedie, |
| * especially the idea of avoiding a copy by using getname. |
| * |
| * The method for actual interception of syscall entry and exit (not in |
| * this file -- see entry.S) is based on a GPL'd patch written by |
| * okir@suse.de and Copyright 2003 SuSE Linux AG. |
| * |
| * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, |
| * 2006. |
| * |
| * The support of additional filter rules compares (>, <, >=, <=) was |
| * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. |
| * |
| * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional |
| * filesystem information. |
| * |
| * Subject and object context labeling support added by <danjones@us.ibm.com> |
| * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/init.h> |
| #include <asm/types.h> |
| #include <linux/atomic.h> |
| #include <linux/fs.h> |
| #include <linux/namei.h> |
| #include <linux/mm.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/mount.h> |
| #include <linux/socket.h> |
| #include <linux/mqueue.h> |
| #include <linux/audit.h> |
| #include <linux/personality.h> |
| #include <linux/time.h> |
| #include <linux/netlink.h> |
| #include <linux/compiler.h> |
| #include <asm/unistd.h> |
| #include <linux/security.h> |
| #include <linux/list.h> |
| #include <linux/binfmts.h> |
| #include <linux/highmem.h> |
| #include <linux/syscalls.h> |
| #include <asm/syscall.h> |
| #include <linux/capability.h> |
| #include <linux/fs_struct.h> |
| #include <linux/compat.h> |
| #include <linux/ctype.h> |
| #include <linux/string.h> |
| #include <linux/uaccess.h> |
| #include <linux/fsnotify_backend.h> |
| #include <uapi/linux/limits.h> |
| #include <uapi/linux/netfilter/nf_tables.h> |
| #include <uapi/linux/openat2.h> // struct open_how |
| |
| #include "audit.h" |
| |
| /* flags stating the success for a syscall */ |
| #define AUDITSC_INVALID 0 |
| #define AUDITSC_SUCCESS 1 |
| #define AUDITSC_FAILURE 2 |
| |
| /* no execve audit message should be longer than this (userspace limits), |
| * see the note near the top of audit_log_execve_info() about this value */ |
| #define MAX_EXECVE_AUDIT_LEN 7500 |
| |
| /* max length to print of cmdline/proctitle value during audit */ |
| #define MAX_PROCTITLE_AUDIT_LEN 128 |
| |
| /* number of audit rules */ |
| int audit_n_rules; |
| |
| /* determines whether we collect data for signals sent */ |
| int audit_signals; |
| |
| struct audit_aux_data { |
| struct audit_aux_data *next; |
| int type; |
| }; |
| |
| /* Number of target pids per aux struct. */ |
| #define AUDIT_AUX_PIDS 16 |
| |
| struct audit_aux_data_pids { |
| struct audit_aux_data d; |
| pid_t target_pid[AUDIT_AUX_PIDS]; |
| kuid_t target_auid[AUDIT_AUX_PIDS]; |
| kuid_t target_uid[AUDIT_AUX_PIDS]; |
| unsigned int target_sessionid[AUDIT_AUX_PIDS]; |
| u32 target_sid[AUDIT_AUX_PIDS]; |
| char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; |
| int pid_count; |
| }; |
| |
| struct audit_aux_data_bprm_fcaps { |
| struct audit_aux_data d; |
| struct audit_cap_data fcap; |
| unsigned int fcap_ver; |
| struct audit_cap_data old_pcap; |
| struct audit_cap_data new_pcap; |
| }; |
| |
| struct audit_tree_refs { |
| struct audit_tree_refs *next; |
| struct audit_chunk *c[31]; |
| }; |
| |
| struct audit_nfcfgop_tab { |
| enum audit_nfcfgop op; |
| const char *s; |
| }; |
| |
| static const struct audit_nfcfgop_tab audit_nfcfgs[] = { |
| { AUDIT_XT_OP_REGISTER, "xt_register" }, |
| { AUDIT_XT_OP_REPLACE, "xt_replace" }, |
| { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, |
| { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, |
| { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, |
| { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, |
| { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, |
| { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, |
| { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, |
| { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, |
| { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, |
| { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, |
| { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, |
| { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, |
| { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, |
| { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, |
| { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, |
| { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, |
| { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, |
| { AUDIT_NFT_OP_INVALID, "nft_invalid" }, |
| }; |
| |
| static int audit_match_perm(struct audit_context *ctx, int mask) |
| { |
| unsigned n; |
| |
| if (unlikely(!ctx)) |
| return 0; |
| n = ctx->major; |
| |
| switch (audit_classify_syscall(ctx->arch, n)) { |
| case AUDITSC_NATIVE: |
| if ((mask & AUDIT_PERM_WRITE) && |
| audit_match_class(AUDIT_CLASS_WRITE, n)) |
| return 1; |
| if ((mask & AUDIT_PERM_READ) && |
| audit_match_class(AUDIT_CLASS_READ, n)) |
| return 1; |
| if ((mask & AUDIT_PERM_ATTR) && |
| audit_match_class(AUDIT_CLASS_CHATTR, n)) |
| return 1; |
| return 0; |
| case AUDITSC_COMPAT: /* 32bit on biarch */ |
| if ((mask & AUDIT_PERM_WRITE) && |
| audit_match_class(AUDIT_CLASS_WRITE_32, n)) |
| return 1; |
| if ((mask & AUDIT_PERM_READ) && |
| audit_match_class(AUDIT_CLASS_READ_32, n)) |
| return 1; |
| if ((mask & AUDIT_PERM_ATTR) && |
| audit_match_class(AUDIT_CLASS_CHATTR_32, n)) |
| return 1; |
| return 0; |
| case AUDITSC_OPEN: |
| return mask & ACC_MODE(ctx->argv[1]); |
| case AUDITSC_OPENAT: |
| return mask & ACC_MODE(ctx->argv[2]); |
| case AUDITSC_SOCKETCALL: |
| return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); |
| case AUDITSC_EXECVE: |
| return mask & AUDIT_PERM_EXEC; |
| case AUDITSC_OPENAT2: |
| return mask & ACC_MODE((u32)((struct open_how *)ctx->argv[2])->flags); |
| default: |
| return 0; |
| } |
| } |
| |
| static int audit_match_filetype(struct audit_context *ctx, int val) |
| { |
| struct audit_names *n; |
| umode_t mode = (umode_t)val; |
| |
| if (unlikely(!ctx)) |
| return 0; |
| |
| list_for_each_entry(n, &ctx->names_list, list) { |
| if ((n->ino != AUDIT_INO_UNSET) && |
| ((n->mode & S_IFMT) == mode)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; |
| * ->first_trees points to its beginning, ->trees - to the current end of data. |
| * ->tree_count is the number of free entries in array pointed to by ->trees. |
| * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, |
| * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, |
| * it's going to remain 1-element for almost any setup) until we free context itself. |
| * References in it _are_ dropped - at the same time we free/drop aux stuff. |
| */ |
| |
| static void audit_set_auditable(struct audit_context *ctx) |
| { |
| if (!ctx->prio) { |
| ctx->prio = 1; |
| ctx->current_state = AUDIT_STATE_RECORD; |
| } |
| } |
| |
| static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) |
| { |
| struct audit_tree_refs *p = ctx->trees; |
| int left = ctx->tree_count; |
| |
| if (likely(left)) { |
| p->c[--left] = chunk; |
| ctx->tree_count = left; |
| return 1; |
| } |
| if (!p) |
| return 0; |
| p = p->next; |
| if (p) { |
| p->c[30] = chunk; |
| ctx->trees = p; |
| ctx->tree_count = 30; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int grow_tree_refs(struct audit_context *ctx) |
| { |
| struct audit_tree_refs *p = ctx->trees; |
| |
| ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); |
| if (!ctx->trees) { |
| ctx->trees = p; |
| return 0; |
| } |
| if (p) |
| p->next = ctx->trees; |
| else |
| ctx->first_trees = ctx->trees; |
| ctx->tree_count = 31; |
| return 1; |
| } |
| |
| static void unroll_tree_refs(struct audit_context *ctx, |
| struct audit_tree_refs *p, int count) |
| { |
| struct audit_tree_refs *q; |
| int n; |
| |
| if (!p) { |
| /* we started with empty chain */ |
| p = ctx->first_trees; |
| count = 31; |
| /* if the very first allocation has failed, nothing to do */ |
| if (!p) |
| return; |
| } |
| n = count; |
| for (q = p; q != ctx->trees; q = q->next, n = 31) { |
| while (n--) { |
| audit_put_chunk(q->c[n]); |
| q->c[n] = NULL; |
| } |
| } |
| while (n-- > ctx->tree_count) { |
| audit_put_chunk(q->c[n]); |
| q->c[n] = NULL; |
| } |
| ctx->trees = p; |
| ctx->tree_count = count; |
| } |
| |
| static void free_tree_refs(struct audit_context *ctx) |
| { |
| struct audit_tree_refs *p, *q; |
| |
| for (p = ctx->first_trees; p; p = q) { |
| q = p->next; |
| kfree(p); |
| } |
| } |
| |
| static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) |
| { |
| struct audit_tree_refs *p; |
| int n; |
| |
| if (!tree) |
| return 0; |
| /* full ones */ |
| for (p = ctx->first_trees; p != ctx->trees; p = p->next) { |
| for (n = 0; n < 31; n++) |
| if (audit_tree_match(p->c[n], tree)) |
| return 1; |
| } |
| /* partial */ |
| if (p) { |
| for (n = ctx->tree_count; n < 31; n++) |
| if (audit_tree_match(p->c[n], tree)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int audit_compare_uid(kuid_t uid, |
| struct audit_names *name, |
| struct audit_field *f, |
| struct audit_context *ctx) |
| { |
| struct audit_names *n; |
| int rc; |
| |
| if (name) { |
| rc = audit_uid_comparator(uid, f->op, name->uid); |
| if (rc) |
| return rc; |
| } |
| |
| if (ctx) { |
| list_for_each_entry(n, &ctx->names_list, list) { |
| rc = audit_uid_comparator(uid, f->op, n->uid); |
| if (rc) |
| return rc; |
| } |
| } |
| return 0; |
| } |
| |
| static int audit_compare_gid(kgid_t gid, |
| struct audit_names *name, |
| struct audit_field *f, |
| struct audit_context *ctx) |
| { |
| struct audit_names *n; |
| int rc; |
| |
| if (name) { |
| rc = audit_gid_comparator(gid, f->op, name->gid); |
| if (rc) |
| return rc; |
| } |
| |
| if (ctx) { |
| list_for_each_entry(n, &ctx->names_list, list) { |
| rc = audit_gid_comparator(gid, f->op, n->gid); |
| if (rc) |
| return rc; |
| } |
| } |
| return 0; |
| } |
| |
| static int audit_field_compare(struct task_struct *tsk, |
| const struct cred *cred, |
| struct audit_field *f, |
| struct audit_context *ctx, |
| struct audit_names *name) |
| { |
| switch (f->val) { |
| /* process to file object comparisons */ |
| case AUDIT_COMPARE_UID_TO_OBJ_UID: |
| return audit_compare_uid(cred->uid, name, f, ctx); |
| case AUDIT_COMPARE_GID_TO_OBJ_GID: |
| return audit_compare_gid(cred->gid, name, f, ctx); |
| case AUDIT_COMPARE_EUID_TO_OBJ_UID: |
| return audit_compare_uid(cred->euid, name, f, ctx); |
| case AUDIT_COMPARE_EGID_TO_OBJ_GID: |
| return audit_compare_gid(cred->egid, name, f, ctx); |
| case AUDIT_COMPARE_AUID_TO_OBJ_UID: |
| return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); |
| case AUDIT_COMPARE_SUID_TO_OBJ_UID: |
| return audit_compare_uid(cred->suid, name, f, ctx); |
| case AUDIT_COMPARE_SGID_TO_OBJ_GID: |
| return audit_compare_gid(cred->sgid, name, f, ctx); |
| case AUDIT_COMPARE_FSUID_TO_OBJ_UID: |
| return audit_compare_uid(cred->fsuid, name, f, ctx); |
| case AUDIT_COMPARE_FSGID_TO_OBJ_GID: |
| return audit_compare_gid(cred->fsgid, name, f, ctx); |
| /* uid comparisons */ |
| case AUDIT_COMPARE_UID_TO_AUID: |
| return audit_uid_comparator(cred->uid, f->op, |
| audit_get_loginuid(tsk)); |
| case AUDIT_COMPARE_UID_TO_EUID: |
| return audit_uid_comparator(cred->uid, f->op, cred->euid); |
| case AUDIT_COMPARE_UID_TO_SUID: |
| return audit_uid_comparator(cred->uid, f->op, cred->suid); |
| case AUDIT_COMPARE_UID_TO_FSUID: |
| return audit_uid_comparator(cred->uid, f->op, cred->fsuid); |
| /* auid comparisons */ |
| case AUDIT_COMPARE_AUID_TO_EUID: |
| return audit_uid_comparator(audit_get_loginuid(tsk), f->op, |
| cred->euid); |
| case AUDIT_COMPARE_AUID_TO_SUID: |
| return audit_uid_comparator(audit_get_loginuid(tsk), f->op, |
| cred->suid); |
| case AUDIT_COMPARE_AUID_TO_FSUID: |
| return audit_uid_comparator(audit_get_loginuid(tsk), f->op, |
| cred->fsuid); |
| /* euid comparisons */ |
| case AUDIT_COMPARE_EUID_TO_SUID: |
| return audit_uid_comparator(cred->euid, f->op, cred->suid); |
| case AUDIT_COMPARE_EUID_TO_FSUID: |
| return audit_uid_comparator(cred->euid, f->op, cred->fsuid); |
| /* suid comparisons */ |
| case AUDIT_COMPARE_SUID_TO_FSUID: |
| return audit_uid_comparator(cred->suid, f->op, cred->fsuid); |
| /* gid comparisons */ |
| case AUDIT_COMPARE_GID_TO_EGID: |
| return audit_gid_comparator(cred->gid, f->op, cred->egid); |
| case AUDIT_COMPARE_GID_TO_SGID: |
| return audit_gid_comparator(cred->gid, f->op, cred->sgid); |
| case AUDIT_COMPARE_GID_TO_FSGID: |
| return audit_gid_comparator(cred->gid, f->op, cred->fsgid); |
| /* egid comparisons */ |
| case AUDIT_COMPARE_EGID_TO_SGID: |
| return audit_gid_comparator(cred->egid, f->op, cred->sgid); |
| case AUDIT_COMPARE_EGID_TO_FSGID: |
| return audit_gid_comparator(cred->egid, f->op, cred->fsgid); |
| /* sgid comparison */ |
| case AUDIT_COMPARE_SGID_TO_FSGID: |
| return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); |
| default: |
| WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); |
| return 0; |
| } |
| return 0; |
| } |
| |
| /* Determine if any context name data matches a rule's watch data */ |
| /* Compare a task_struct with an audit_rule. Return 1 on match, 0 |
| * otherwise. |
| * |
| * If task_creation is true, this is an explicit indication that we are |
| * filtering a task rule at task creation time. This and tsk == current are |
| * the only situations where tsk->cred may be accessed without an rcu read lock. |
| */ |
| static int audit_filter_rules(struct task_struct *tsk, |
| struct audit_krule *rule, |
| struct audit_context *ctx, |
| struct audit_names *name, |
| enum audit_state *state, |
| bool task_creation) |
| { |
| const struct cred *cred; |
| int i, need_sid = 1; |
| u32 sid; |
| unsigned int sessionid; |
| |
| if (ctx && rule->prio <= ctx->prio) |
| return 0; |
| |
| cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); |
| |
| for (i = 0; i < rule->field_count; i++) { |
| struct audit_field *f = &rule->fields[i]; |
| struct audit_names *n; |
| int result = 0; |
| pid_t pid; |
| |
| switch (f->type) { |
| case AUDIT_PID: |
| pid = task_tgid_nr(tsk); |
| result = audit_comparator(pid, f->op, f->val); |
| break; |
| case AUDIT_PPID: |
| if (ctx) { |
| if (!ctx->ppid) |
| ctx->ppid = task_ppid_nr(tsk); |
| result = audit_comparator(ctx->ppid, f->op, f->val); |
| } |
| break; |
| case AUDIT_EXE: |
| result = audit_exe_compare(tsk, rule->exe); |
| if (f->op == Audit_not_equal) |
| result = !result; |
| break; |
| case AUDIT_UID: |
| result = audit_uid_comparator(cred->uid, f->op, f->uid); |
| break; |
| case AUDIT_EUID: |
| result = audit_uid_comparator(cred->euid, f->op, f->uid); |
| break; |
| case AUDIT_SUID: |
| result = audit_uid_comparator(cred->suid, f->op, f->uid); |
| break; |
| case AUDIT_FSUID: |
| result = audit_uid_comparator(cred->fsuid, f->op, f->uid); |
| break; |
| case AUDIT_GID: |
| result = audit_gid_comparator(cred->gid, f->op, f->gid); |
| if (f->op == Audit_equal) { |
| if (!result) |
| result = groups_search(cred->group_info, f->gid); |
| } else if (f->op == Audit_not_equal) { |
| if (result) |
| result = !groups_search(cred->group_info, f->gid); |
| } |
| break; |
| case AUDIT_EGID: |
| result = audit_gid_comparator(cred->egid, f->op, f->gid); |
| if (f->op == Audit_equal) { |
| if (!result) |
| result = groups_search(cred->group_info, f->gid); |
| } else if (f->op == Audit_not_equal) { |
| if (result) |
| result = !groups_search(cred->group_info, f->gid); |
| } |
| break; |
| case AUDIT_SGID: |
| result = audit_gid_comparator(cred->sgid, f->op, f->gid); |
| break; |
| case AUDIT_FSGID: |
| result = audit_gid_comparator(cred->fsgid, f->op, f->gid); |
| break; |
| case AUDIT_SESSIONID: |
| sessionid = audit_get_sessionid(tsk); |
| result = audit_comparator(sessionid, f->op, f->val); |
| break; |
| case AUDIT_PERS: |
| result = audit_comparator(tsk->personality, f->op, f->val); |
| break; |
| case AUDIT_ARCH: |
| if (ctx) |
| result = audit_comparator(ctx->arch, f->op, f->val); |
| break; |
| |
| case AUDIT_EXIT: |
| if (ctx && ctx->return_valid != AUDITSC_INVALID) |
| result = audit_comparator(ctx->return_code, f->op, f->val); |
| break; |
| case AUDIT_SUCCESS: |
| if (ctx && ctx->return_valid != AUDITSC_INVALID) { |
| if (f->val) |
| result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); |
| else |
| result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); |
| } |
| break; |
| case AUDIT_DEVMAJOR: |
| if (name) { |
| if (audit_comparator(MAJOR(name->dev), f->op, f->val) || |
| audit_comparator(MAJOR(name->rdev), f->op, f->val)) |
| ++result; |
| } else if (ctx) { |
| list_for_each_entry(n, &ctx->names_list, list) { |
| if (audit_comparator(MAJOR(n->dev), f->op, f->val) || |
| audit_comparator(MAJOR(n->rdev), f->op, f->val)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_DEVMINOR: |
| if (name) { |
| if (audit_comparator(MINOR(name->dev), f->op, f->val) || |
| audit_comparator(MINOR(name->rdev), f->op, f->val)) |
| ++result; |
| } else if (ctx) { |
| list_for_each_entry(n, &ctx->names_list, list) { |
| if (audit_comparator(MINOR(n->dev), f->op, f->val) || |
| audit_comparator(MINOR(n->rdev), f->op, f->val)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_INODE: |
| if (name) |
| result = audit_comparator(name->ino, f->op, f->val); |
| else if (ctx) { |
| list_for_each_entry(n, &ctx->names_list, list) { |
| if (audit_comparator(n->ino, f->op, f->val)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_OBJ_UID: |
| if (name) { |
| result = audit_uid_comparator(name->uid, f->op, f->uid); |
| } else if (ctx) { |
| list_for_each_entry(n, &ctx->names_list, list) { |
| if (audit_uid_comparator(n->uid, f->op, f->uid)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_OBJ_GID: |
| if (name) { |
| result = audit_gid_comparator(name->gid, f->op, f->gid); |
| } else if (ctx) { |
| list_for_each_entry(n, &ctx->names_list, list) { |
| if (audit_gid_comparator(n->gid, f->op, f->gid)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_WATCH: |
| if (name) { |
| result = audit_watch_compare(rule->watch, |
| name->ino, |
| name->dev); |
| if (f->op == Audit_not_equal) |
| result = !result; |
| } |
| break; |
| case AUDIT_DIR: |
| if (ctx) { |
| result = match_tree_refs(ctx, rule->tree); |
| if (f->op == Audit_not_equal) |
| result = !result; |
| } |
| break; |
| case AUDIT_LOGINUID: |
| result = audit_uid_comparator(audit_get_loginuid(tsk), |
| f->op, f->uid); |
| break; |
| case AUDIT_LOGINUID_SET: |
| result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); |
| break; |
| case AUDIT_SADDR_FAM: |
| if (ctx && ctx->sockaddr) |
| result = audit_comparator(ctx->sockaddr->ss_family, |
| f->op, f->val); |
| break; |
| case AUDIT_SUBJ_USER: |
| case AUDIT_SUBJ_ROLE: |
| case AUDIT_SUBJ_TYPE: |
| case AUDIT_SUBJ_SEN: |
| case AUDIT_SUBJ_CLR: |
| /* NOTE: this may return negative values indicating |
| a temporary error. We simply treat this as a |
| match for now to avoid losing information that |
| may be wanted. An error message will also be |
| logged upon error */ |
| if (f->lsm_rule) { |
| if (need_sid) { |
| /* @tsk should always be equal to |
| * @current with the exception of |
| * fork()/copy_process() in which case |
| * the new @tsk creds are still a dup |
| * of @current's creds so we can still |
| * use security_current_getsecid_subj() |
| * here even though it always refs |
| * @current's creds |
| */ |
| security_current_getsecid_subj(&sid); |
| need_sid = 0; |
| } |
| result = security_audit_rule_match(sid, f->type, |
| f->op, |
| f->lsm_rule); |
| } |
| break; |
| case AUDIT_OBJ_USER: |
| case AUDIT_OBJ_ROLE: |
| case AUDIT_OBJ_TYPE: |
| case AUDIT_OBJ_LEV_LOW: |
| case AUDIT_OBJ_LEV_HIGH: |
| /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR |
| also applies here */ |
| if (f->lsm_rule) { |
| /* Find files that match */ |
| if (name) { |
| result = security_audit_rule_match( |
| name->osid, |
| f->type, |
| f->op, |
| f->lsm_rule); |
| } else if (ctx) { |
| list_for_each_entry(n, &ctx->names_list, list) { |
| if (security_audit_rule_match( |
| n->osid, |
| f->type, |
| f->op, |
| f->lsm_rule)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| /* Find ipc objects that match */ |
| if (!ctx || ctx->type != AUDIT_IPC) |
| break; |
| if (security_audit_rule_match(ctx->ipc.osid, |
| f->type, f->op, |
| f->lsm_rule)) |
| ++result; |
| } |
| break; |
| case AUDIT_ARG0: |
| case AUDIT_ARG1: |
| case AUDIT_ARG2: |
| case AUDIT_ARG3: |
| if (ctx) |
| result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); |
| break; |
| case AUDIT_FILTERKEY: |
| /* ignore this field for filtering */ |
| result = 1; |
| break; |
| case AUDIT_PERM: |
| result = audit_match_perm(ctx, f->val); |
| if (f->op == Audit_not_equal) |
| result = !result; |
| break; |
| case AUDIT_FILETYPE: |
| result = audit_match_filetype(ctx, f->val); |
| if (f->op == Audit_not_equal) |
| result = !result; |
| break; |
| case AUDIT_FIELD_COMPARE: |
| result = audit_field_compare(tsk, cred, f, ctx, name); |
| break; |
| } |
| if (!result) |
| return 0; |
| } |
| |
| if (ctx) { |
| if (rule->filterkey) { |
| kfree(ctx->filterkey); |
| ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); |
| } |
| ctx->prio = rule->prio; |
| } |
| switch (rule->action) { |
| case AUDIT_NEVER: |
| *state = AUDIT_STATE_DISABLED; |
| break; |
| case AUDIT_ALWAYS: |
| *state = AUDIT_STATE_RECORD; |
| break; |
| } |
| return 1; |
| } |
| |
| /* At process creation time, we can determine if system-call auditing is |
| * completely disabled for this task. Since we only have the task |
| * structure at this point, we can only check uid and gid. |
| */ |
| static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) |
| { |
| struct audit_entry *e; |
| enum audit_state state; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { |
| if (audit_filter_rules(tsk, &e->rule, NULL, NULL, |
| &state, true)) { |
| if (state == AUDIT_STATE_RECORD) |
| *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); |
| rcu_read_unlock(); |
| return state; |
| } |
| } |
| rcu_read_unlock(); |
| return AUDIT_STATE_BUILD; |
| } |
| |
| static int audit_in_mask(const struct audit_krule *rule, unsigned long val) |
| { |
| int word, bit; |
| |
| if (val > 0xffffffff) |
| return false; |
| |
| word = AUDIT_WORD(val); |
| if (word >= AUDIT_BITMASK_SIZE) |
| return false; |
| |
| bit = AUDIT_BIT(val); |
| |
| return rule->mask[word] & bit; |
| } |
| |
| /** |
| * audit_filter_uring - apply filters to an io_uring operation |
| * @tsk: associated task |
| * @ctx: audit context |
| */ |
| static void audit_filter_uring(struct task_struct *tsk, |
| struct audit_context *ctx) |
| { |
| struct audit_entry *e; |
| enum audit_state state; |
| |
| if (auditd_test_task(tsk)) |
| return; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT], |
| list) { |
| if (audit_in_mask(&e->rule, ctx->uring_op) && |
| audit_filter_rules(tsk, &e->rule, ctx, NULL, &state, |
| false)) { |
| rcu_read_unlock(); |
| ctx->current_state = state; |
| return; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* At syscall exit time, this filter is called if the audit_state is |
| * not low enough that auditing cannot take place, but is also not |
| * high enough that we already know we have to write an audit record |
| * (i.e., the state is AUDIT_STATE_BUILD). |
| */ |
| static void audit_filter_syscall(struct task_struct *tsk, |
| struct audit_context *ctx) |
| { |
| struct audit_entry *e; |
| enum audit_state state; |
| |
| if (auditd_test_task(tsk)) |
| return; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) { |
| if (audit_in_mask(&e->rule, ctx->major) && |
| audit_filter_rules(tsk, &e->rule, ctx, NULL, |
| &state, false)) { |
| rcu_read_unlock(); |
| ctx->current_state = state; |
| return; |
| } |
| } |
| rcu_read_unlock(); |
| return; |
| } |
| |
| /* |
| * Given an audit_name check the inode hash table to see if they match. |
| * Called holding the rcu read lock to protect the use of audit_inode_hash |
| */ |
| static int audit_filter_inode_name(struct task_struct *tsk, |
| struct audit_names *n, |
| struct audit_context *ctx) { |
| int h = audit_hash_ino((u32)n->ino); |
| struct list_head *list = &audit_inode_hash[h]; |
| struct audit_entry *e; |
| enum audit_state state; |
| |
| list_for_each_entry_rcu(e, list, list) { |
| if (audit_in_mask(&e->rule, ctx->major) && |
| audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { |
| ctx->current_state = state; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* At syscall exit time, this filter is called if any audit_names have been |
| * collected during syscall processing. We only check rules in sublists at hash |
| * buckets applicable to the inode numbers in audit_names. |
| * Regarding audit_state, same rules apply as for audit_filter_syscall(). |
| */ |
| void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) |
| { |
| struct audit_names *n; |
| |
| if (auditd_test_task(tsk)) |
| return; |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry(n, &ctx->names_list, list) { |
| if (audit_filter_inode_name(tsk, n, ctx)) |
| break; |
| } |
| rcu_read_unlock(); |
| } |
| |
| static inline void audit_proctitle_free(struct audit_context *context) |
| { |
| kfree(context->proctitle.value); |
| context->proctitle.value = NULL; |
| context->proctitle.len = 0; |
| } |
| |
| static inline void audit_free_module(struct audit_context *context) |
| { |
| if (context->type == AUDIT_KERN_MODULE) { |
| kfree(context->module.name); |
| context->module.name = NULL; |
| } |
| } |
| static inline void audit_free_names(struct audit_context *context) |
| { |
| struct audit_names *n, *next; |
| |
| list_for_each_entry_safe(n, next, &context->names_list, list) { |
| list_del(&n->list); |
| if (n->name) |
| putname(n->name); |
| if (n->should_free) |
| kfree(n); |
| } |
| context->name_count = 0; |
| path_put(&context->pwd); |
| context->pwd.dentry = NULL; |
| context->pwd.mnt = NULL; |
| } |
| |
| static inline void audit_free_aux(struct audit_context *context) |
| { |
| struct audit_aux_data *aux; |
| |
| while ((aux = context->aux)) { |
| context->aux = aux->next; |
| kfree(aux); |
| } |
| context->aux = NULL; |
| while ((aux = context->aux_pids)) { |
| context->aux_pids = aux->next; |
| kfree(aux); |
| } |
| context->aux_pids = NULL; |
| } |
| |
| /** |
| * audit_reset_context - reset a audit_context structure |
| * @ctx: the audit_context to reset |
| * |
| * All fields in the audit_context will be reset to an initial state, all |
| * references held by fields will be dropped, and private memory will be |
| * released. When this function returns the audit_context will be suitable |
| * for reuse, so long as the passed context is not NULL or a dummy context. |
| */ |
| static void audit_reset_context(struct audit_context *ctx) |
| { |
| if (!ctx) |
| return; |
| |
| /* if ctx is non-null, reset the "ctx->state" regardless */ |
| ctx->context = AUDIT_CTX_UNUSED; |
| if (ctx->dummy) |
| return; |
| |
| /* |
| * NOTE: It shouldn't matter in what order we release the fields, so |
| * release them in the order in which they appear in the struct; |
| * this gives us some hope of quickly making sure we are |
| * resetting the audit_context properly. |
| * |
| * Other things worth mentioning: |
| * - we don't reset "dummy" |
| * - we don't reset "state", we do reset "current_state" |
| * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD |
| * - much of this is likely overkill, but play it safe for now |
| * - we really need to work on improving the audit_context struct |
| */ |
| |
| ctx->current_state = ctx->state; |
| ctx->serial = 0; |
| ctx->major = 0; |
| ctx->uring_op = 0; |
| ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; |
| memset(ctx->argv, 0, sizeof(ctx->argv)); |
| ctx->return_code = 0; |
| ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); |
| ctx->return_valid = AUDITSC_INVALID; |
| audit_free_names(ctx); |
| if (ctx->state != AUDIT_STATE_RECORD) { |
| kfree(ctx->filterkey); |
| ctx->filterkey = NULL; |
| } |
| audit_free_aux(ctx); |
| kfree(ctx->sockaddr); |
| ctx->sockaddr = NULL; |
| ctx->sockaddr_len = 0; |
| ctx->pid = ctx->ppid = 0; |
| ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); |
| ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); |
| ctx->personality = 0; |
| ctx->arch = 0; |
| ctx->target_pid = 0; |
| ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); |
| ctx->target_sessionid = 0; |
| ctx->target_sid = 0; |
| ctx->target_comm[0] = '\0'; |
| unroll_tree_refs(ctx, NULL, 0); |
| WARN_ON(!list_empty(&ctx->killed_trees)); |
| ctx->type = 0; |
| audit_free_module(ctx); |
| ctx->fds[0] = -1; |
| audit_proctitle_free(ctx); |
| } |
| |
| static inline struct audit_context *audit_alloc_context(enum audit_state state) |
| { |
| struct audit_context *context; |
| |
| context = kzalloc(sizeof(*context), GFP_KERNEL); |
| if (!context) |
| return NULL; |
| context->context = AUDIT_CTX_UNUSED; |
| context->state = state; |
| context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; |
| INIT_LIST_HEAD(&context->killed_trees); |
| INIT_LIST_HEAD(&context->names_list); |
| context->fds[0] = -1; |
| context->return_valid = AUDITSC_INVALID; |
| return context; |
| } |
| |
| /** |
| * audit_alloc - allocate an audit context block for a task |
| * @tsk: task |
| * |
| * Filter on the task information and allocate a per-task audit context |
| * if necessary. Doing so turns on system call auditing for the |
| * specified task. This is called from copy_process, so no lock is |
| * needed. |
| */ |
| int audit_alloc(struct task_struct *tsk) |
| { |
| struct audit_context *context; |
| enum audit_state state; |
| char *key = NULL; |
| |
| if (likely(!audit_ever_enabled)) |
| return 0; |
| |
| state = audit_filter_task(tsk, &key); |
| if (state == AUDIT_STATE_DISABLED) { |
| clear_task_syscall_work(tsk, SYSCALL_AUDIT); |
| return 0; |
| } |
| |
| if (!(context = audit_alloc_context(state))) { |
| kfree(key); |
| audit_log_lost("out of memory in audit_alloc"); |
| return -ENOMEM; |
| } |
| context->filterkey = key; |
| |
| audit_set_context(tsk, context); |
| set_task_syscall_work(tsk, SYSCALL_AUDIT); |
| return 0; |
| } |
| |
| /** |
| * audit_alloc_kernel - allocate an audit_context for a kernel task |
| * @tsk: the kernel task |
| * |
| * Similar to the audit_alloc() function, but intended for kernel private |
| * threads. Returns zero on success, negative values on failure. |
| */ |
| int audit_alloc_kernel(struct task_struct *tsk) |
| { |
| /* |
| * At the moment we are just going to call into audit_alloc() to |
| * simplify the code, but there two things to keep in mind with this |
| * approach: |
| * |
| * 1. Filtering internal kernel tasks is a bit laughable in almost all |
| * cases, but there is at least one case where there is a benefit: |
| * the '-a task,never' case allows the admin to effectively disable |
| * task auditing at runtime. |
| * |
| * 2. The {set,clear}_task_syscall_work() ops likely have zero effect |
| * on these internal kernel tasks, but they probably don't hurt either. |
| */ |
| return audit_alloc(tsk); |
| } |
| |
| static inline void audit_free_context(struct audit_context *context) |
| { |
| /* resetting is extra work, but it is likely just noise */ |
| audit_reset_context(context); |
| free_tree_refs(context); |
| kfree(context->filterkey); |
| kfree(context); |
| } |
| |
| static int audit_log_pid_context(struct audit_context *context, pid_t pid, |
| kuid_t auid, kuid_t uid, unsigned int sessionid, |
| u32 sid, char *comm) |
| { |
| struct audit_buffer *ab; |
| char *ctx = NULL; |
| u32 len; |
| int rc = 0; |
| |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); |
| if (!ab) |
| return rc; |
| |
| audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, |
| from_kuid(&init_user_ns, auid), |
| from_kuid(&init_user_ns, uid), sessionid); |
| if (sid) { |
| if (security_secid_to_secctx(sid, &ctx, &len)) { |
| audit_log_format(ab, " obj=(none)"); |
| rc = 1; |
| } else { |
| audit_log_format(ab, " obj=%s", ctx); |
| security_release_secctx(ctx, len); |
| } |
| } |
| audit_log_format(ab, " ocomm="); |
| audit_log_untrustedstring(ab, comm); |
| audit_log_end(ab); |
| |
| return rc; |
| } |
| |
| static void audit_log_execve_info(struct audit_context *context, |
| struct audit_buffer **ab) |
| { |
| long len_max; |
| long len_rem; |
| long len_full; |
| long len_buf; |
| long len_abuf = 0; |
| long len_tmp; |
| bool require_data; |
| bool encode; |
| unsigned int iter; |
| unsigned int arg; |
| char *buf_head; |
| char *buf; |
| const char __user *p = (const char __user *)current->mm->arg_start; |
| |
| /* NOTE: this buffer needs to be large enough to hold all the non-arg |
| * data we put in the audit record for this argument (see the |
| * code below) ... at this point in time 96 is plenty */ |
| char abuf[96]; |
| |
| /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the |
| * current value of 7500 is not as important as the fact that it |
| * is less than 8k, a setting of 7500 gives us plenty of wiggle |
| * room if we go over a little bit in the logging below */ |
| WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); |
| len_max = MAX_EXECVE_AUDIT_LEN; |
| |
| /* scratch buffer to hold the userspace args */ |
| buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); |
| if (!buf_head) { |
| audit_panic("out of memory for argv string"); |
| return; |
| } |
| buf = buf_head; |
| |
| audit_log_format(*ab, "argc=%d", context->execve.argc); |
| |
| len_rem = len_max; |
| len_buf = 0; |
| len_full = 0; |
| require_data = true; |
| encode = false; |
| iter = 0; |
| arg = 0; |
| do { |
| /* NOTE: we don't ever want to trust this value for anything |
| * serious, but the audit record format insists we |
| * provide an argument length for really long arguments, |
| * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but |
| * to use strncpy_from_user() to obtain this value for |
| * recording in the log, although we don't use it |
| * anywhere here to avoid a double-fetch problem */ |
| if (len_full == 0) |
| len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; |
| |
| /* read more data from userspace */ |
| if (require_data) { |
| /* can we make more room in the buffer? */ |
| if (buf != buf_head) { |
| memmove(buf_head, buf, len_buf); |
| buf = buf_head; |
| } |
| |
| /* fetch as much as we can of the argument */ |
| len_tmp = strncpy_from_user(&buf_head[len_buf], p, |
| len_max - len_buf); |
| if (len_tmp == -EFAULT) { |
| /* unable to copy from userspace */ |
| send_sig(SIGKILL, current, 0); |
| goto out; |
| } else if (len_tmp == (len_max - len_buf)) { |
| /* buffer is not large enough */ |
| require_data = true; |
| /* NOTE: if we are going to span multiple |
| * buffers force the encoding so we stand |
| * a chance at a sane len_full value and |
| * consistent record encoding */ |
| encode = true; |
| len_full = len_full * 2; |
| p += len_tmp; |
| } else { |
| require_data = false; |
| if (!encode) |
| encode = audit_string_contains_control( |
| buf, len_tmp); |
| /* try to use a trusted value for len_full */ |
| if (len_full < len_max) |
| len_full = (encode ? |
| len_tmp * 2 : len_tmp); |
| p += len_tmp + 1; |
| } |
| len_buf += len_tmp; |
| buf_head[len_buf] = '\0'; |
| |
| /* length of the buffer in the audit record? */ |
| len_abuf = (encode ? len_buf * 2 : len_buf + 2); |
| } |
| |
| /* write as much as we can to the audit log */ |
| if (len_buf >= 0) { |
| /* NOTE: some magic numbers here - basically if we |
| * can't fit a reasonable amount of data into the |
| * existing audit buffer, flush it and start with |
| * a new buffer */ |
| if ((sizeof(abuf) + 8) > len_rem) { |
| len_rem = len_max; |
| audit_log_end(*ab); |
| *ab = audit_log_start(context, |
| GFP_KERNEL, AUDIT_EXECVE); |
| if (!*ab) |
| goto out; |
| } |
| |
| /* create the non-arg portion of the arg record */ |
| len_tmp = 0; |
| if (require_data || (iter > 0) || |
| ((len_abuf + sizeof(abuf)) > len_rem)) { |
| if (iter == 0) { |
| len_tmp += snprintf(&abuf[len_tmp], |
| sizeof(abuf) - len_tmp, |
| " a%d_len=%lu", |
| arg, len_full); |
| } |
| len_tmp += snprintf(&abuf[len_tmp], |
| sizeof(abuf) - len_tmp, |
| " a%d[%d]=", arg, iter++); |
| } else |
| len_tmp += snprintf(&abuf[len_tmp], |
| sizeof(abuf) - len_tmp, |
| " a%d=", arg); |
| WARN_ON(len_tmp >= sizeof(abuf)); |
| abuf[sizeof(abuf) - 1] = '\0'; |
| |
| /* log the arg in the audit record */ |
| audit_log_format(*ab, "%s", abuf); |
| len_rem -= len_tmp; |
| len_tmp = len_buf; |
| if (encode) { |
| if (len_abuf > len_rem) |
| len_tmp = len_rem / 2; /* encoding */ |
| audit_log_n_hex(*ab, buf, len_tmp); |
| len_rem -= len_tmp * 2; |
| len_abuf -= len_tmp * 2; |
| } else { |
| if (len_abuf > len_rem) |
| len_tmp = len_rem - 2; /* quotes */ |
| audit_log_n_string(*ab, buf, len_tmp); |
| len_rem -= len_tmp + 2; |
| /* don't subtract the "2" because we still need |
| * to add quotes to the remaining string */ |
| len_abuf -= len_tmp; |
| } |
| len_buf -= len_tmp; |
| buf += len_tmp; |
| } |
| |
| /* ready to move to the next argument? */ |
| if ((len_buf == 0) && !require_data) { |
| arg++; |
| iter = 0; |
| len_full = 0; |
| require_data = true; |
| encode = false; |
| } |
| } while (arg < context->execve.argc); |
| |
| /* NOTE: the caller handles the final audit_log_end() call */ |
| |
| out: |
| kfree(buf_head); |
| } |
| |
| static void audit_log_cap(struct audit_buffer *ab, char *prefix, |
| kernel_cap_t *cap) |
| { |
| int i; |
| |
| if (cap_isclear(*cap)) { |
| audit_log_format(ab, " %s=0", prefix); |
| return; |
| } |
| audit_log_format(ab, " %s=", prefix); |
| CAP_FOR_EACH_U32(i) |
| audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); |
| } |
| |
| static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) |
| { |
| if (name->fcap_ver == -1) { |
| audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); |
| return; |
| } |
| audit_log_cap(ab, "cap_fp", &name->fcap.permitted); |
| audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); |
| audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", |
| name->fcap.fE, name->fcap_ver, |
| from_kuid(&init_user_ns, name->fcap.rootid)); |
| } |
| |
| static void show_special(struct audit_context *context, int *call_panic) |
| { |
| struct audit_buffer *ab; |
| int i; |
| |
| ab = audit_log_start(context, GFP_KERNEL, context->type); |
| if (!ab) |
| return; |
| |
| switch (context->type) { |
| case AUDIT_SOCKETCALL: { |
| int nargs = context->socketcall.nargs; |
| |
| audit_log_format(ab, "nargs=%d", nargs); |
| for (i = 0; i < nargs; i++) |
| audit_log_format(ab, " a%d=%lx", i, |
| context->socketcall.args[i]); |
| break; } |
| case AUDIT_IPC: { |
| u32 osid = context->ipc.osid; |
| |
| audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", |
| from_kuid(&init_user_ns, context->ipc.uid), |
| from_kgid(&init_user_ns, context->ipc.gid), |
| context->ipc.mode); |
| if (osid) { |
| char *ctx = NULL; |
| u32 len; |
| |
| if (security_secid_to_secctx(osid, &ctx, &len)) { |
| audit_log_format(ab, " osid=%u", osid); |
| *call_panic = 1; |
| } else { |
| audit_log_format(ab, " obj=%s", ctx); |
| security_release_secctx(ctx, len); |
| } |
| } |
| if (context->ipc.has_perm) { |
| audit_log_end(ab); |
| ab = audit_log_start(context, GFP_KERNEL, |
| AUDIT_IPC_SET_PERM); |
| if (unlikely(!ab)) |
| return; |
| audit_log_format(ab, |
| "qbytes=%lx ouid=%u ogid=%u mode=%#ho", |
| context->ipc.qbytes, |
| context->ipc.perm_uid, |
| context->ipc.perm_gid, |
| context->ipc.perm_mode); |
| } |
| break; } |
| case AUDIT_MQ_OPEN: |
| audit_log_format(ab, |
| "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " |
| "mq_msgsize=%ld mq_curmsgs=%ld", |
| context->mq_open.oflag, context->mq_open.mode, |
| context->mq_open.attr.mq_flags, |
| context->mq_open.attr.mq_maxmsg, |
| context->mq_open.attr.mq_msgsize, |
| context->mq_open.attr.mq_curmsgs); |
| break; |
| case AUDIT_MQ_SENDRECV: |
| audit_log_format(ab, |
| "mqdes=%d msg_len=%zd msg_prio=%u " |
| "abs_timeout_sec=%lld abs_timeout_nsec=%ld", |
| context->mq_sendrecv.mqdes, |
| context->mq_sendrecv.msg_len, |
| context->mq_sendrecv.msg_prio, |
| (long long) context->mq_sendrecv.abs_timeout.tv_sec, |
| context->mq_sendrecv.abs_timeout.tv_nsec); |
| break; |
| case AUDIT_MQ_NOTIFY: |
| audit_log_format(ab, "mqdes=%d sigev_signo=%d", |
| context->mq_notify.mqdes, |
| context->mq_notify.sigev_signo); |
| break; |
| case AUDIT_MQ_GETSETATTR: { |
| struct mq_attr *attr = &context->mq_getsetattr.mqstat; |
| |
| audit_log_format(ab, |
| "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " |
| "mq_curmsgs=%ld ", |
| context->mq_getsetattr.mqdes, |
| attr->mq_flags, attr->mq_maxmsg, |
| attr->mq_msgsize, attr->mq_curmsgs); |
| break; } |
| case AUDIT_CAPSET: |
| audit_log_format(ab, "pid=%d", context->capset.pid); |
| audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); |
| audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); |
| audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); |
| audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); |
| break; |
| case AUDIT_MMAP: |
| audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, |
| context->mmap.flags); |
| break; |
| case AUDIT_OPENAT2: |
| audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", |
| context->openat2.flags, |
| context->openat2.mode, |
| context->openat2.resolve); |
| break; |
| case AUDIT_EXECVE: |
| audit_log_execve_info(context, &ab); |
| break; |
| case AUDIT_KERN_MODULE: |
| audit_log_format(ab, "name="); |
| if (context->module.name) { |
| audit_log_untrustedstring(ab, context->module.name); |
| } else |
| audit_log_format(ab, "(null)"); |
| |
| break; |
| } |
| audit_log_end(ab); |
| } |
| |
| static inline int audit_proctitle_rtrim(char *proctitle, int len) |
| { |
| char *end = proctitle + len - 1; |
| |
| while (end > proctitle && !isprint(*end)) |
| end--; |
| |
| /* catch the case where proctitle is only 1 non-print character */ |
| len = end - proctitle + 1; |
| len -= isprint(proctitle[len-1]) == 0; |
| return len; |
| } |
| |
| /* |
| * audit_log_name - produce AUDIT_PATH record from struct audit_names |
| * @context: audit_context for the task |
| * @n: audit_names structure with reportable details |
| * @path: optional path to report instead of audit_names->name |
| * @record_num: record number to report when handling a list of names |
| * @call_panic: optional pointer to int that will be updated if secid fails |
| */ |
| static void audit_log_name(struct audit_context *context, struct audit_names *n, |
| const struct path *path, int record_num, int *call_panic) |
| { |
| struct audit_buffer *ab; |
| |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); |
| if (!ab) |
| return; |
| |
| audit_log_format(ab, "item=%d", record_num); |
| |
| if (path) |
| audit_log_d_path(ab, " name=", path); |
| else if (n->name) { |
| switch (n->name_len) { |
| case AUDIT_NAME_FULL: |
| /* log the full path */ |
| audit_log_format(ab, " name="); |
| audit_log_untrustedstring(ab, n->name->name); |
| break; |
| case 0: |
| /* name was specified as a relative path and the |
| * directory component is the cwd |
| */ |
| if (context->pwd.dentry && context->pwd.mnt) |
| audit_log_d_path(ab, " name=", &context->pwd); |
| else |
| audit_log_format(ab, " name=(null)"); |
| break; |
| default: |
| /* log the name's directory component */ |
| audit_log_format(ab, " name="); |
| audit_log_n_untrustedstring(ab, n->name->name, |
| n->name_len); |
| } |
| } else |
| audit_log_format(ab, " name=(null)"); |
| |
| if (n->ino != AUDIT_INO_UNSET) |
| audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", |
| n->ino, |
| MAJOR(n->dev), |
| MINOR(n->dev), |
| n->mode, |
| from_kuid(&init_user_ns, n->uid), |
| from_kgid(&init_user_ns, n->gid), |
| MAJOR(n->rdev), |
| MINOR(n->rdev)); |
| if (n->osid != 0) { |
| char *ctx = NULL; |
| u32 len; |
| |
| if (security_secid_to_secctx( |
| n->osid, &ctx, &len)) { |
| audit_log_format(ab, " osid=%u", n->osid); |
| if (call_panic) |
| *call_panic = 2; |
| } else { |
| audit_log_format(ab, " obj=%s", ctx); |
| security_release_secctx(ctx, len); |
| } |
| } |
| |
| /* log the audit_names record type */ |
| switch (n->type) { |
| case AUDIT_TYPE_NORMAL: |
| audit_log_format(ab, " nametype=NORMAL"); |
| break; |
| case AUDIT_TYPE_PARENT: |
| audit_log_format(ab, " nametype=PARENT"); |
| break; |
| case AUDIT_TYPE_CHILD_DELETE: |
| audit_log_format(ab, " nametype=DELETE"); |
| break; |
| case AUDIT_TYPE_CHILD_CREATE: |
| audit_log_format(ab, " nametype=CREATE"); |
| break; |
| default: |
| audit_log_format(ab, " nametype=UNKNOWN"); |
| break; |
| } |
| |
| audit_log_fcaps(ab, n); |
| audit_log_end(ab); |
| } |
| |
| static void audit_log_proctitle(void) |
| { |
| int res; |
| char *buf; |
| char *msg = "(null)"; |
| int len = strlen(msg); |
| struct audit_context *context = audit_context(); |
| struct audit_buffer *ab; |
| |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); |
| if (!ab) |
| return; /* audit_panic or being filtered */ |
| |
| audit_log_format(ab, "proctitle="); |
| |
| /* Not cached */ |
| if (!context->proctitle.value) { |
| buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); |
| if (!buf) |
| goto out; |
| /* Historically called this from procfs naming */ |
| res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); |
| if (res == 0) { |
| kfree(buf); |
| goto out; |
| } |
| res = audit_proctitle_rtrim(buf, res); |
| if (res == 0) { |
| kfree(buf); |
| goto out; |
| } |
| context->proctitle.value = buf; |
| context->proctitle.len = res; |
| } |
| msg = context->proctitle.value; |
| len = context->proctitle.len; |
| out: |
| audit_log_n_untrustedstring(ab, msg, len); |
| audit_log_end(ab); |
| } |
| |
| /** |
| * audit_log_uring - generate a AUDIT_URINGOP record |
| * @ctx: the audit context |
| */ |
| static void audit_log_uring(struct audit_context *ctx) |
| { |
| struct audit_buffer *ab; |
| const struct cred *cred; |
| |
| ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); |
| if (!ab) |
| return; |
| cred = current_cred(); |
| audit_log_format(ab, "uring_op=%d", ctx->uring_op); |
| if (ctx->return_valid != AUDITSC_INVALID) |
| audit_log_format(ab, " success=%s exit=%ld", |
| (ctx->return_valid == AUDITSC_SUCCESS ? |
| "yes" : "no"), |
| ctx->return_code); |
| audit_log_format(ab, |
| " items=%d" |
| " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" |
| " fsuid=%u egid=%u sgid=%u fsgid=%u", |
| ctx->name_count, |
| task_ppid_nr(current), task_tgid_nr(current), |
| from_kuid(&init_user_ns, cred->uid), |
| from_kgid(&init_user_ns, cred->gid), |
| from_kuid(&init_user_ns, cred->euid), |
| from_kuid(&init_user_ns, cred->suid), |
| from_kuid(&init_user_ns, cred->fsuid), |
| from_kgid(&init_user_ns, cred->egid), |
| from_kgid(&init_user_ns, cred->sgid), |
| from_kgid(&init_user_ns, cred->fsgid)); |
| audit_log_task_context(ab); |
| audit_log_key(ab, ctx->filterkey); |
| audit_log_end(ab); |
| } |
| |
| static void audit_log_exit(void) |
| { |
| int i, call_panic = 0; |
| struct audit_context *context = audit_context(); |
| struct audit_buffer *ab; |
| struct audit_aux_data *aux; |
| struct audit_names *n; |
| |
| context->personality = current->personality; |
| |
| switch (context->context) { |
| case AUDIT_CTX_SYSCALL: |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); |
| if (!ab) |
| return; |
| audit_log_format(ab, "arch=%x syscall=%d", |
| context->arch, context->major); |
| if (context->personality != PER_LINUX) |
| audit_log_format(ab, " per=%lx", context->personality); |
| if (context->return_valid != AUDITSC_INVALID) |
| audit_log_format(ab, " success=%s exit=%ld", |
| (context->return_valid == AUDITSC_SUCCESS ? |
| "yes" : "no"), |
| context->return_code); |
| audit_log_format(ab, |
| " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", |
| context->argv[0], |
| context->argv[1], |
| context->argv[2], |
| context->argv[3], |
| context->name_count); |
| audit_log_task_info(ab); |
| audit_log_key(ab, context->filterkey); |
| audit_log_end(ab); |
| break; |
| case AUDIT_CTX_URING: |
| audit_log_uring(context); |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| for (aux = context->aux; aux; aux = aux->next) { |
| |
| ab = audit_log_start(context, GFP_KERNEL, aux->type); |
| if (!ab) |
| continue; /* audit_panic has been called */ |
| |
| switch (aux->type) { |
| |
| case AUDIT_BPRM_FCAPS: { |
| struct audit_aux_data_bprm_fcaps *axs = (void *)aux; |
| |
| audit_log_format(ab, "fver=%x", axs->fcap_ver); |
| audit_log_cap(ab, "fp", &axs->fcap.permitted); |
| audit_log_cap(ab, "fi", &axs->fcap.inheritable); |
| audit_log_format(ab, " fe=%d", axs->fcap.fE); |
| audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); |
| audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); |
| audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); |
| audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); |
| audit_log_cap(ab, "pp", &axs->new_pcap.permitted); |
| audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); |
| audit_log_cap(ab, "pe", &axs->new_pcap.effective); |
| audit_log_cap(ab, "pa", &axs->new_pcap.ambient); |
| audit_log_format(ab, " frootid=%d", |
| from_kuid(&init_user_ns, |
| axs->fcap.rootid)); |
| break; } |
| |
| } |
| audit_log_end(ab); |
| } |
| |
| if (context->type) |
| show_special(context, &call_panic); |
| |
| if (context->fds[0] >= 0) { |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); |
| if (ab) { |
| audit_log_format(ab, "fd0=%d fd1=%d", |
| context->fds[0], context->fds[1]); |
| audit_log_end(ab); |
| } |
| } |
| |
| if (context->sockaddr_len) { |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); |
| if (ab) { |
| audit_log_format(ab, "saddr="); |
| audit_log_n_hex(ab, (void *)context->sockaddr, |
| context->sockaddr_len); |
| audit_log_end(ab); |
| } |
| } |
| |
| for (aux = context->aux_pids; aux; aux = aux->next) { |
| struct audit_aux_data_pids *axs = (void *)aux; |
| |
| for (i = 0; i < axs->pid_count; i++) |
| if (audit_log_pid_context(context, axs->target_pid[i], |
| axs->target_auid[i], |
| axs->target_uid[i], |
| axs->target_sessionid[i], |
| axs->target_sid[i], |
| axs->target_comm[i])) |
| call_panic = 1; |
| } |
| |
| if (context->target_pid && |
| audit_log_pid_context(context, context->target_pid, |
| context->target_auid, context->target_uid, |
| context->target_sessionid, |
| context->target_sid, context->target_comm)) |
| call_panic = 1; |
| |
| if (context->pwd.dentry && context->pwd.mnt) { |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); |
| if (ab) { |
| audit_log_d_path(ab, "cwd=", &context->pwd); |
| audit_log_end(ab); |
| } |
| } |
| |
| i = 0; |
| list_for_each_entry(n, &context->names_list, list) { |
| if (n->hidden) |
| continue; |
| audit_log_name(context, n, NULL, i++, &call_panic); |
| } |
| |
| if (context->context == AUDIT_CTX_SYSCALL) |
| audit_log_proctitle(); |
| |
| /* Send end of event record to help user space know we are finished */ |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); |
| if (ab) |
| audit_log_end(ab); |
| if (call_panic) |
| audit_panic("error in audit_log_exit()"); |
| } |
| |
| /** |
| * __audit_free - free a per-task audit context |
| * @tsk: task whose audit context block to free |
| * |
| * Called from copy_process, do_exit, and the io_uring code |
| */ |
| void __audit_free(struct task_struct *tsk) |
| { |
| struct audit_context *context = tsk->audit_context; |
| |
| if (!context) |
| return; |
| |
| /* this may generate CONFIG_CHANGE records */ |
| if (!list_empty(&context->killed_trees)) |
| audit_kill_trees(context); |
| |
| /* We are called either by do_exit() or the fork() error handling code; |
| * in the former case tsk == current and in the latter tsk is a |
| * random task_struct that doesn't doesn't have any meaningful data we |
| * need to log via audit_log_exit(). |
| */ |
| if (tsk == current && !context->dummy) { |
| context->return_valid = AUDITSC_INVALID; |
| context->return_code = 0; |
| if (context->context == AUDIT_CTX_SYSCALL) { |
| audit_filter_syscall(tsk, context); |
| audit_filter_inodes(tsk, context); |
| if (context->current_state == AUDIT_STATE_RECORD) |
| audit_log_exit(); |
| } else if (context->context == AUDIT_CTX_URING) { |
| /* TODO: verify this case is real and valid */ |
| audit_filter_uring(tsk, context); |
| audit_filter_inodes(tsk, context); |
| if (context->current_state == AUDIT_STATE_RECORD) |
| audit_log_uring(context); |
| } |
| } |
| |
| audit_set_context(tsk, NULL); |
| audit_free_context(context); |
| } |
| |
| /** |
| * audit_return_fixup - fixup the return codes in the audit_context |
| * @ctx: the audit_context |
| * @success: true/false value to indicate if the operation succeeded or not |
| * @code: operation return code |
| * |
| * We need to fixup the return code in the audit logs if the actual return |
| * codes are later going to be fixed by the arch specific signal handlers. |
| */ |
| static void audit_return_fixup(struct audit_context *ctx, |
| int success, long code) |
| { |
| /* |
| * This is actually a test for: |
| * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || |
| * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) |
| * |
| * but is faster than a bunch of || |
| */ |
| if (unlikely(code <= -ERESTARTSYS) && |
| (code >= -ERESTART_RESTARTBLOCK) && |
| (code != -ENOIOCTLCMD)) |
| ctx->return_code = -EINTR; |
| else |
| ctx->return_code = code; |
| ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); |
| } |
| |
| /** |
| * __audit_uring_entry - prepare the kernel task's audit context for io_uring |
| * @op: the io_uring opcode |
| * |
| * This is similar to audit_syscall_entry() but is intended for use by io_uring |
| * operations. This function should only ever be called from |
| * audit_uring_entry() as we rely on the audit context checking present in that |
| * function. |
| */ |
| void __audit_uring_entry(u8 op) |
| { |
| struct audit_context *ctx = audit_context(); |
| |
| if (ctx->state == AUDIT_STATE_DISABLED) |
| return; |
| |
| /* |
| * NOTE: It's possible that we can be called from the process' context |
| * before it returns to userspace, and before audit_syscall_exit() |
| * is called. In this case there is not much to do, just record |
| * the io_uring details and return. |
| */ |
| ctx->uring_op = op; |
| if (ctx->context == AUDIT_CTX_SYSCALL) |
| return; |
| |
| ctx->dummy = !audit_n_rules; |
| if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) |
| ctx->prio = 0; |
| |
| ctx->context = AUDIT_CTX_URING; |
| ctx->current_state = ctx->state; |
| ktime_get_coarse_real_ts64(&ctx->ctime); |
| } |
| |
| /** |
| * __audit_uring_exit - wrap up the kernel task's audit context after io_uring |
| * @success: true/false value to indicate if the operation succeeded or not |
| * @code: operation return code |
| * |
| * This is similar to audit_syscall_exit() but is intended for use by io_uring |
| * operations. This function should only ever be called from |
| * audit_uring_exit() as we rely on the audit context checking present in that |
| * function. |
| */ |
| void __audit_uring_exit(int success, long code) |
| { |
| struct audit_context *ctx = audit_context(); |
| |
| if (ctx->context == AUDIT_CTX_SYSCALL) { |
| /* |
| * NOTE: See the note in __audit_uring_entry() about the case |
| * where we may be called from process context before we |
| * return to userspace via audit_syscall_exit(). In this |
| * case we simply emit a URINGOP record and bail, the |
| * normal syscall exit handling will take care of |
| * everything else. |
| * It is also worth mentioning that when we are called, |
| * the current process creds may differ from the creds |
| * used during the normal syscall processing; keep that |
| * in mind if/when we move the record generation code. |
| */ |
| |
| /* |
| * We need to filter on the syscall info here to decide if we |
| * should emit a URINGOP record. I know it seems odd but this |
| * solves the problem where users have a filter to block *all* |
| * syscall records in the "exit" filter; we want to preserve |
| * the behavior here. |
| */ |
| audit_filter_syscall(current, ctx); |
| if (ctx->current_state != AUDIT_STATE_RECORD) |
| audit_filter_uring(current, ctx); |
| audit_filter_inodes(current, ctx); |
| if (ctx->current_state != AUDIT_STATE_RECORD) |
| return; |
| |
| audit_log_uring(ctx); |
| return; |
| } |
| |
| /* this may generate CONFIG_CHANGE records */ |
| if (!list_empty(&ctx->killed_trees)) |
| audit_kill_trees(ctx); |
| |
| /* run through both filters to ensure we set the filterkey properly */ |
| audit_filter_uring(current, ctx); |
| audit_filter_inodes(current, ctx); |
| if (ctx->current_state != AUDIT_STATE_RECORD) |
| goto out; |
| audit_return_fixup(ctx, success, code); |
| audit_log_exit(); |
| |
| out: |
| audit_reset_context(ctx); |
| } |
| |
| /** |
| * __audit_syscall_entry - fill in an audit record at syscall entry |
| * @major: major syscall type (function) |
| * @a1: additional syscall register 1 |
| * @a2: additional syscall register 2 |
| * @a3: additional syscall register 3 |
| * @a4: additional syscall register 4 |
| * |
| * Fill in audit context at syscall entry. This only happens if the |
| * audit context was created when the task was created and the state or |
| * filters demand the audit context be built. If the state from the |
| * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, |
| * then the record will be written at syscall exit time (otherwise, it |
| * will only be written if another part of the kernel requests that it |
| * be written). |
| */ |
| void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, |
| unsigned long a3, unsigned long a4) |
| { |
| struct audit_context *context = audit_context(); |
| enum audit_state state; |
| |
| if (!audit_enabled || !context) |
| return; |
| |
| WARN_ON(context->context != AUDIT_CTX_UNUSED); |
| WARN_ON(context->name_count); |
| if (context->context != AUDIT_CTX_UNUSED || context->name_count) { |
| audit_panic("unrecoverable error in audit_syscall_entry()"); |
| return; |
| } |
| |
| state = context->state; |
| if (state == AUDIT_STATE_DISABLED) |
| return; |
| |
| context->dummy = !audit_n_rules; |
| if (!context->dummy && state == AUDIT_STATE_BUILD) { |
| context->prio = 0; |
| if (auditd_test_task(current)) |
| return; |
| } |
| |
| context->arch = syscall_get_arch(current); |
| context->major = major; |
| context->argv[0] = a1; |
| context->argv[1] = a2; |
| context->argv[2] = a3; |
| context->argv[3] = a4; |
| context->context = AUDIT_CTX_SYSCALL; |
| context->current_state = state; |
| ktime_get_coarse_real_ts64(&context->ctime); |
| } |
| |
| /** |
| * __audit_syscall_exit - deallocate audit context after a system call |
| * @success: success value of the syscall |
| * @return_code: return value of the syscall |
| * |
| * Tear down after system call. If the audit context has been marked as |
| * auditable (either because of the AUDIT_STATE_RECORD state from |
| * filtering, or because some other part of the kernel wrote an audit |
| * message), then write out the syscall information. In call cases, |
| * free the names stored from getname(). |
| */ |
| void __audit_syscall_exit(int success, long return_code) |
| { |
| struct audit_context *context = audit_context(); |
| |
| if (!context || context->dummy || |
| context->context != AUDIT_CTX_SYSCALL) |
| goto out; |
| |
| /* this may generate CONFIG_CHANGE records */ |
| if (!list_empty(&context->killed_trees)) |
| audit_kill_trees(context); |
| |
| /* run through both filters to ensure we set the filterkey properly */ |
| audit_filter_syscall(current, context); |
| audit_filter_inodes(current, context); |
| if (context->current_state < AUDIT_STATE_RECORD) |
| goto out; |
| |
| audit_return_fixup(context, success, return_code); |
| audit_log_exit(); |
| |
| out: |
| audit_reset_context(context); |
| } |
| |
| static inline void handle_one(const struct inode *inode) |
| { |
| struct audit_context *context; |
| struct audit_tree_refs *p; |
| struct audit_chunk *chunk; |
| int count; |
| |
| if (likely(!inode->i_fsnotify_marks)) |
| return; |
| context = audit_context(); |
| p = context->trees; |
| count = context->tree_count; |
| rcu_read_lock(); |
| chunk = audit_tree_lookup(inode); |
| rcu_read_unlock(); |
| if (!chunk) |
| return; |
| if (likely(put_tree_ref(context, chunk))) |
| return; |
| if (unlikely(!grow_tree_refs(context))) { |
| pr_warn("out of memory, audit has lost a tree reference\n"); |
| audit_set_auditable(context); |
| audit_put_chunk(chunk); |
| unroll_tree_refs(context, p, count); |
| return; |
| } |
| put_tree_ref(context, chunk); |
| } |
| |
| static void handle_path(const struct dentry *dentry) |
| { |
| struct audit_context *context; |
| struct audit_tree_refs *p; |
| const struct dentry *d, *parent; |
| struct audit_chunk *drop; |
| unsigned long seq; |
| int count; |
| |
| context = audit_context(); |
| p = context->trees; |
| count = context->tree_count; |
| retry: |
| drop = NULL; |
| d = dentry; |
| rcu_read_lock(); |
| seq = read_seqbegin(&rename_lock); |
| for(;;) { |
| struct inode *inode = d_backing_inode(d); |
| |
| if (inode && unlikely(inode->i_fsnotify_marks)) { |
| struct audit_chunk *chunk; |
| |
| chunk = audit_tree_lookup(inode); |
| if (chunk) { |
| if (unlikely(!put_tree_ref(context, chunk))) { |
| drop = chunk; |
| break; |
| } |
| } |
| } |
| parent = d->d_parent; |
| if (parent == d) |
| break; |
| d = parent; |
| } |
| if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ |
| rcu_read_unlock(); |
| if (!drop) { |
| /* just a race with rename */ |
| unroll_tree_refs(context, p, count); |
| goto retry; |
| } |
| audit_put_chunk(drop); |
| if (grow_tree_refs(context)) { |
| /* OK, got more space */ |
| unroll_tree_refs(context, p, count); |
| goto retry; |
| } |
| /* too bad */ |
| pr_warn("out of memory, audit has lost a tree reference\n"); |
| unroll_tree_refs(context, p, count); |
| audit_set_auditable(context); |
| return; |
| } |
| rcu_read_unlock(); |
| } |
| |
| static struct audit_names *audit_alloc_name(struct audit_context *context, |
| unsigned char type) |
| { |
| struct audit_names *aname; |
| |
| if (context->name_count < AUDIT_NAMES) { |
| aname = &context->preallocated_names[context->name_count]; |
| memset(aname, 0, sizeof(*aname)); |
| } else { |
| aname = kzalloc(sizeof(*aname), GFP_NOFS); |
| if (!aname) |
| return NULL; |
| aname->should_free = true; |
| } |
| |
| aname->ino = AUDIT_INO_UNSET; |
| aname->type = type; |
| list_add_tail(&aname->list, &context->names_list); |
| |
| context->name_count++; |
| if (!context->pwd.dentry) |
| get_fs_pwd(current->fs, &context->pwd); |
| return aname; |
| } |
| |
| /** |
| * __audit_reusename - fill out filename with info from existing entry |
| * @uptr: userland ptr to pathname |
| * |
| * Search the audit_names list for the current audit context. If there is an |
| * existing entry with a matching "uptr" then return the filename |
| * associated with that audit_name. If not, return NULL. |
| */ |
| struct filename * |
| __audit_reusename(const __user char *uptr) |
| { |
| struct audit_context *context = audit_context(); |
| struct audit_names *n; |
| |
| list_for_each_entry(n, &context->names_list, list) { |
| if (!n->name) |
| continue; |
| if (n->name->uptr == uptr) { |
| n->name->refcnt++; |
| return n->name; |
| } |
| } |
| return NULL; |
| } |
| |
| /** |
| * __audit_getname - add a name to the list |
| * @name: name to add |
| * |
| * Add a name to the list of audit names for this context. |
| * Called from fs/namei.c:getname(). |
| */ |
| void __audit_getname(struct filename *name) |
| { |
| struct audit_context *context = audit_context(); |
| struct audit_names *n; |
| |
| if (context->context == AUDIT_CTX_UNUSED) |
| return; |
| |
| n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); |
| if (!n) |
| return; |
| |
| n->name = name; |
| n->name_len = AUDIT_NAME_FULL; |
| name->aname = n; |
| name->refcnt++; |
| } |
| |
| static inline int audit_copy_fcaps(struct audit_names *name, |
| const struct dentry *dentry) |
| { |
| struct cpu_vfs_cap_data caps; |
| int rc; |
| |
| if (!dentry) |
| return 0; |
| |
| rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps); |
| if (rc) |
| return rc; |
| |
| name->fcap.permitted = caps.permitted; |
| name->fcap.inheritable = caps.inheritable; |
| name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); |
| name->fcap.rootid = caps.rootid; |
| name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> |
| VFS_CAP_REVISION_SHIFT; |
| |
| return 0; |
| } |
| |
| /* Copy inode data into an audit_names. */ |
| static void audit_copy_inode(struct audit_names *name, |
| const struct dentry *dentry, |
| struct inode *inode, unsigned int flags) |
| { |
| name->ino = inode->i_ino; |
| name->dev = inode->i_sb->s_dev; |
| name->mode = inode->i_mode; |
| name->uid = inode->i_uid; |
| name->gid = inode->i_gid; |
| name->rdev = inode->i_rdev; |
| security_inode_getsecid(inode, &name->osid); |
| if (flags & AUDIT_INODE_NOEVAL) { |
| name->fcap_ver = -1; |
| return; |
| } |
| audit_copy_fcaps(name, dentry); |
| } |
| |
| /** |
| * __audit_inode - store the inode and device from a lookup |
| * @name: name being audited |
| * @dentry: dentry being audited |
| * @flags: attributes for this particular entry |
| */ |
| void __audit_inode(struct filename *name, const struct dentry *dentry, |
| unsigned int flags) |
| { |
| struct audit_context *context = audit_context(); |
| struct inode *inode = d_backing_inode(dentry); |
| struct audit_names *n; |
| bool parent = flags & AUDIT_INODE_PARENT; |
| struct audit_entry *e; |
| struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; |
| int i; |
| |
| if (context->context == AUDIT_CTX_UNUSED) |
| return; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(e, list, list) { |
| for (i = 0; i < e->rule.field_count; i++) { |
| struct audit_field *f = &e->rule.fields[i]; |
| |
| if (f->type == AUDIT_FSTYPE |
| && audit_comparator(inode->i_sb->s_magic, |
| f->op, f->val) |
| && e->rule.action == AUDIT_NEVER) { |
| rcu_read_unlock(); |
| return; |
| } |
| } |
| } |
| rcu_read_unlock(); |
| |
| if (!name) |
| goto out_alloc; |
| |
| /* |
| * If we have a pointer to an audit_names entry already, then we can |
| * just use it directly if the type is correct. |
| */ |
| n = name->aname; |
| if (n) { |
| if (parent) { |
| if (n->type == AUDIT_TYPE_PARENT || |
| n->type == AUDIT_TYPE_UNKNOWN) |
| goto out; |
| } else { |
| if (n->type != AUDIT_TYPE_PARENT) |
| goto out; |
| } |
| } |
| |
| list_for_each_entry_reverse(n, &context->names_list, list) { |
| if (n->ino) { |
| /* valid inode number, use that for the comparison */ |
| if (n->ino != inode->i_ino || |
| n->dev != inode->i_sb->s_dev) |
| continue; |
| } else if (n->name) { |
| /* inode number has not been set, check the name */ |
| if (strcmp(n->name->name, name->name)) |
| continue; |
| } else |
| /* no inode and no name (?!) ... this is odd ... */ |
| continue; |
| |
| /* match the correct record type */ |
| if (parent) { |
| if (n->type == AUDIT_TYPE_PARENT || |
| n->type == AUDIT_TYPE_UNKNOWN) |
| goto out; |
| } else { |
| if (n->type != AUDIT_TYPE_PARENT) |
| goto out; |
| } |
| } |
| |
| out_alloc: |
| /* unable to find an entry with both a matching name and type */ |
| n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); |
| if (!n) |
| return; |
| if (name) { |
| n->name = name; |
| name->refcnt++; |
| } |
| |
| out: |
| if (parent) { |
| n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; |
| n->type = AUDIT_TYPE_PARENT; |
| if (flags & AUDIT_INODE_HIDDEN) |
| n->hidden = true; |
| } else { |
| n->name_len = AUDIT_NAME_FULL; |
| n->type = AUDIT_TYPE_NORMAL; |
| } |
| handle_path(dentry); |
| audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); |
| } |
| |
| void __audit_file(const struct file *file) |
| { |
| __audit_inode(NULL, file->f_path.dentry, 0); |
| } |
| |
| /** |
| * __audit_inode_child - collect inode info for created/removed objects |
| * @parent: inode of dentry parent |
| * @dentry: dentry being audited |
| * @type: AUDIT_TYPE_* value that we're looking for |
| * |
| * For syscalls that create or remove filesystem objects, audit_inode |
| * can only collect information for the filesystem object's parent. |
| * This call updates the audit context with the child's information. |
| * Syscalls that create a new filesystem object must be hooked after |
| * the object is created. Syscalls that remove a filesystem object |
| * must be hooked prior, in order to capture the target inode during |
| * unsuccessful attempts. |
| */ |
| void __audit_inode_child(struct inode *parent, |
| const struct dentry *dentry, |
| const unsigned char type) |
| { |
| struct audit_context *context = audit_context(); |
| struct inode *inode = d_backing_inode(dentry); |
| const struct qstr *dname = &dentry->d_name; |
| struct audit_names *n, *found_parent = NULL, *found_child = NULL; |
| struct audit_entry *e; |
| struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; |
| int i; |
| |
| if (context->context == AUDIT_CTX_UNUSED) |
| return; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(e, list, list) { |
| for (i = 0; i < e->rule.field_count; i++) { |
| struct audit_field *f = &e->rule.fields[i]; |
| |
| if (f->type == AUDIT_FSTYPE |
| && audit_comparator(parent->i_sb->s_magic, |
| f->op, f->val) |
| && e->rule.action == AUDIT_NEVER) { |
| rcu_read_unlock(); |
| return; |
| } |
| } |
| } |
| rcu_read_unlock(); |
| |
| if (inode) |
| handle_one(inode); |
| |
| /* look for a parent entry first */ |
| list_for_each_entry(n, &context->names_list, list) { |
| if (!n->name || |
| (n->type != AUDIT_TYPE_PARENT && |
| n->type != AUDIT_TYPE_UNKNOWN)) |
| continue; |
| |
| if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && |
| !audit_compare_dname_path(dname, |
| n->name->name, n->name_len)) { |
| if (n->type == AUDIT_TYPE_UNKNOWN) |
| n->type = AUDIT_TYPE_PARENT; |
| found_parent = n; |
| break; |
| } |
| } |
| |
| /* is there a matching child entry? */ |
| list_for_each_entry(n, &context->names_list, list) { |
| /* can only match entries that have a name */ |
| if (!n->name || |
| (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) |
| continue; |
| |
| if (!strcmp(dname->name, n->name->name) || |
| !audit_compare_dname_path(dname, n->name->name, |
| found_parent ? |
| found_parent->name_len : |
| AUDIT_NAME_FULL)) { |
| if (n->type == AUDIT_TYPE_UNKNOWN) |
| n->type = type; |
| found_child = n; |
| break; |
| } |
| } |
| |
| if (!found_parent) { |
| /* create a new, "anonymous" parent record */ |
| n = audit_alloc_name(context, AUDIT_TYPE_PARENT); |
| if (!n) |
| return; |
| audit_copy_inode(n, NULL, parent, 0); |
| } |
| |
| if (!found_child) { |
| found_child = audit_alloc_name(context, type); |
| if (!found_child) |
| return; |
| |
| /* Re-use the name belonging to the slot for a matching parent |
| * directory. All names for this context are relinquished in |
| * audit_free_names() */ |
| if (found_parent) { |
| found_child->name = found_parent->name; |
| found_child->name_len = AUDIT_NAME_FULL; |
| found_child->name->refcnt++; |
| } |
| } |
| |
| if (inode) |
| audit_copy_inode(found_child, dentry, inode, 0); |
| else |
| found_child->ino = AUDIT_INO_UNSET; |
| } |
| EXPORT_SYMBOL_GPL(__audit_inode_child); |
| |
| /** |
| * auditsc_get_stamp - get local copies of audit_context values |
| * @ctx: audit_context for the task |
| * @t: timespec64 to store time recorded in the audit_context |
| * @serial: serial value that is recorded in the audit_context |
| * |
| * Also sets the context as auditable. |
| */ |
| int auditsc_get_stamp(struct audit_context *ctx, |
| struct timespec64 *t, unsigned int *serial) |
| { |
| if (ctx->context == AUDIT_CTX_UNUSED) |
| return 0; |
| if (!ctx->serial) |
| ctx->serial = audit_serial(); |
| t->tv_sec = ctx->ctime.tv_sec; |
| t->tv_nsec = ctx->ctime.tv_nsec; |
| *serial = ctx->serial; |
| if (!ctx->prio) { |
| ctx->prio = 1; |
| ctx->current_state = AUDIT_STATE_RECORD; |
| } |
| return 1; |
| } |
| |
| /** |
| * __audit_mq_open - record audit data for a POSIX MQ open |
| * @oflag: open flag |
| * @mode: mode bits |
| * @attr: queue attributes |
| * |
| */ |
| void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) |
| { |
| struct audit_context *context = audit_context(); |
| |
| if (attr) |
| memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); |
| else |
| memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); |
| |
| context->mq_open.oflag = oflag; |
| context->mq_open.mode = mode; |
| |
| context->type = AUDIT_MQ_OPEN; |
| } |
| |
| /** |
| * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive |
| * @mqdes: MQ descriptor |
| * @msg_len: Message length |
| * @msg_prio: Message priority |
| * @abs_timeout: Message timeout in absolute time |
| * |
| */ |
| void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, |
| const struct timespec64 *abs_timeout) |
| { |
| struct audit_context *context = audit_context(); |
| struct timespec64 *p = &context->mq_sendrecv.abs_timeout; |
| |
| if (abs_timeout) |
| memcpy(p, abs_timeout, sizeof(*p)); |
| else |
| memset(p, 0, sizeof(*p)); |
| |
| context->mq_sendrecv.mqdes = mqdes; |
| context->mq_sendrecv.msg_len = msg_len; |
| context->mq_sendrecv.msg_prio = msg_prio; |
| |
| context->type = AUDIT_MQ_SENDRECV; |
| } |
| |
| /** |
| * __audit_mq_notify - record audit data for a POSIX MQ notify |
| * @mqdes: MQ descriptor |
| * @notification: Notification event |
| * |
| */ |
| |
| void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) |
| { |
| struct audit_context *context = audit_context(); |
| |
| if (notification) |
| context->mq_notify.sigev_signo = notification->sigev_signo; |
| else |
| context->mq_notify.sigev_signo = 0; |
| |
| context->mq_notify.mqdes = mqdes; |
| context->type = AUDIT_MQ_NOTIFY; |
| } |
| |
| /** |
| * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute |
| * @mqdes: MQ descriptor |
| * @mqstat: MQ flags |
| * |
| */ |
| void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->mq_getsetattr.mqdes = mqdes; |
| context->mq_getsetattr.mqstat = *mqstat; |
| context->type = AUDIT_MQ_GETSETATTR; |
| } |
| |
| /** |
| * __audit_ipc_obj - record audit data for ipc object |
| * @ipcp: ipc permissions |
| * |
| */ |
| void __audit_ipc_obj(struct kern_ipc_perm *ipcp) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->ipc.uid = ipcp->uid; |
| context->ipc.gid = ipcp->gid; |
| context->ipc.mode = ipcp->mode; |
| context->ipc.has_perm = 0; |
| security_ipc_getsecid(ipcp, &context->ipc.osid); |
| context->type = AUDIT_IPC; |
| } |
| |
| /** |
| * __audit_ipc_set_perm - record audit data for new ipc permissions |
| * @qbytes: msgq bytes |
| * @uid: msgq user id |
| * @gid: msgq group id |
| * @mode: msgq mode (permissions) |
| * |
| * Called only after audit_ipc_obj(). |
| */ |
| void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->ipc.qbytes = qbytes; |
| context->ipc.perm_uid = uid; |
| context->ipc.perm_gid = gid; |
| context->ipc.perm_mode = mode; |
| context->ipc.has_perm = 1; |
| } |
| |
| void __audit_bprm(struct linux_binprm *bprm) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->type = AUDIT_EXECVE; |
| context->execve.argc = bprm->argc; |
| } |
| |
| |
| /** |
| * __audit_socketcall - record audit data for sys_socketcall |
| * @nargs: number of args, which should not be more than AUDITSC_ARGS. |
| * @args: args array |
| * |
| */ |
| int __audit_socketcall(int nargs, unsigned long *args) |
| { |
| struct audit_context *context = audit_context(); |
| |
| if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) |
| return -EINVAL; |
| context->type = AUDIT_SOCKETCALL; |
| context->socketcall.nargs = nargs; |
| memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); |
| return 0; |
| } |
| |
| /** |
| * __audit_fd_pair - record audit data for pipe and socketpair |
| * @fd1: the first file descriptor |
| * @fd2: the second file descriptor |
| * |
| */ |
| void __audit_fd_pair(int fd1, int fd2) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->fds[0] = fd1; |
| context->fds[1] = fd2; |
| } |
| |
| /** |
| * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto |
| * @len: data length in user space |
| * @a: data address in kernel space |
| * |
| * Returns 0 for success or NULL context or < 0 on error. |
| */ |
| int __audit_sockaddr(int len, void *a) |
| { |
| struct audit_context *context = audit_context(); |
| |
| if (!context->sockaddr) { |
| void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); |
| |
| if (!p) |
| return -ENOMEM; |
| context->sockaddr = p; |
| } |
| |
| context->sockaddr_len = len; |
| memcpy(context->sockaddr, a, len); |
| return 0; |
| } |
| |
| void __audit_ptrace(struct task_struct *t) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->target_pid = task_tgid_nr(t); |
| context->target_auid = audit_get_loginuid(t); |
| context->target_uid = task_uid(t); |
| context->target_sessionid = audit_get_sessionid(t); |
| security_task_getsecid_obj(t, &context->target_sid); |
| memcpy(context->target_comm, t->comm, TASK_COMM_LEN); |
| } |
| |
| /** |
| * audit_signal_info_syscall - record signal info for syscalls |
| * @t: task being signaled |
| * |
| * If the audit subsystem is being terminated, record the task (pid) |
| * and uid that is doing that. |
| */ |
| int audit_signal_info_syscall(struct task_struct *t) |
| { |
| struct audit_aux_data_pids *axp; |
| struct audit_context *ctx = audit_context(); |
| kuid_t t_uid = task_uid(t); |
| |
| if (!audit_signals || audit_dummy_context()) |
| return 0; |
| |
| /* optimize the common case by putting first signal recipient directly |
| * in audit_context */ |
| if (!ctx->target_pid) { |
| ctx->target_pid = task_tgid_nr(t); |
| ctx->target_auid = audit_get_loginuid(t); |
| ctx->target_uid = t_uid; |
| ctx->target_sessionid = audit_get_sessionid(t); |
| security_task_getsecid_obj(t, &ctx->target_sid); |
| memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); |
| return 0; |
| } |
| |
| axp = (void *)ctx->aux_pids; |
| if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { |
| axp = kzalloc(sizeof(*axp), GFP_ATOMIC); |
| if (!axp) |
| return -ENOMEM; |
| |
| axp->d.type = AUDIT_OBJ_PID; |
| axp->d.next = ctx->aux_pids; |
| ctx->aux_pids = (void *)axp; |
| } |
| BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); |
| |
| axp->target_pid[axp->pid_count] = task_tgid_nr(t); |
| axp->target_auid[axp->pid_count] = audit_get_loginuid(t); |
| axp->target_uid[axp->pid_count] = t_uid; |
| axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); |
| security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); |
| memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); |
| axp->pid_count++; |
| |
| return 0; |
| } |
| |
| /** |
| * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps |
| * @bprm: pointer to the bprm being processed |
| * @new: the proposed new credentials |
| * @old: the old credentials |
| * |
| * Simply check if the proc already has the caps given by the file and if not |
| * store the priv escalation info for later auditing at the end of the syscall |
| * |
| * -Eric |
| */ |
| int __audit_log_bprm_fcaps(struct linux_binprm *bprm, |
| const struct cred *new, const struct cred *old) |
| { |
| struct audit_aux_data_bprm_fcaps *ax; |
| struct audit_context *context = audit_context(); |
| struct cpu_vfs_cap_data vcaps; |
| |
| ax = kmalloc(sizeof(*ax), GFP_KERNEL); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->d.type = AUDIT_BPRM_FCAPS; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| |
| get_vfs_caps_from_disk(&init_user_ns, |
| bprm->file->f_path.dentry, &vcaps); |
| |
| ax->fcap.permitted = vcaps.permitted; |
| ax->fcap.inheritable = vcaps.inheritable; |
| ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); |
| ax->fcap.rootid = vcaps.rootid; |
| ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; |
| |
| ax->old_pcap.permitted = old->cap_permitted; |
| ax->old_pcap.inheritable = old->cap_inheritable; |
| ax->old_pcap.effective = old->cap_effective; |
| ax->old_pcap.ambient = old->cap_ambient; |
| |
| ax->new_pcap.permitted = new->cap_permitted; |
| ax->new_pcap.inheritable = new->cap_inheritable; |
| ax->new_pcap.effective = new->cap_effective; |
| ax->new_pcap.ambient = new->cap_ambient; |
| return 0; |
| } |
| |
| /** |
| * __audit_log_capset - store information about the arguments to the capset syscall |
| * @new: the new credentials |
| * @old: the old (current) credentials |
| * |
| * Record the arguments userspace sent to sys_capset for later printing by the |
| * audit system if applicable |
| */ |
| void __audit_log_capset(const struct cred *new, const struct cred *old) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->capset.pid = task_tgid_nr(current); |
| context->capset.cap.effective = new->cap_effective; |
| context->capset.cap.inheritable = new->cap_effective; |
| context->capset.cap.permitted = new->cap_permitted; |
| context->capset.cap.ambient = new->cap_ambient; |
| context->type = AUDIT_CAPSET; |
| } |
| |
| void __audit_mmap_fd(int fd, int flags) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->mmap.fd = fd; |
| context->mmap.flags = flags; |
| context->type = AUDIT_MMAP; |
| } |
| |
| void __audit_openat2_how(struct open_how *how) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->openat2.flags = how->flags; |
| context->openat2.mode = how->mode; |
| context->openat2.resolve = how->resolve; |
| context->type = AUDIT_OPENAT2; |
| } |
| |
| void __audit_log_kern_module(char *name) |
| { |
| struct audit_context *context = audit_context(); |
| |
| context->module.name = kstrdup(name, GFP_KERNEL); |
| if (!context->module.name) |
| audit_log_lost("out of memory in __audit_log_kern_module"); |
| context->type = AUDIT_KERN_MODULE; |
| } |
| |
| void __audit_fanotify(unsigned int response) |
| { |
| audit_log(audit_context(), GFP_KERNEL, |
| AUDIT_FANOTIFY, "resp=%u", response); |
| } |
| |
| void __audit_tk_injoffset(struct timespec64 offset) |
| { |
| audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET, |
| "sec=%lli nsec=%li", |
| (long long)offset.tv_sec, offset.tv_nsec); |
| } |
| |
| static void audit_log_ntp_val(const struct audit_ntp_data *ad, |
| const char *op, enum audit_ntp_type type) |
| { |
| const struct audit_ntp_val *val = &ad->vals[type]; |
| |
| if (val->newval == val->oldval) |
| return; |
| |
| audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL, |
| "op=%s old=%lli new=%lli", op, val->oldval, val->newval); |
| } |
| |
| void __audit_ntp_log(const struct audit_ntp_data *ad) |
| { |
| audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET); |
| audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ); |
| audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS); |
| audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI); |
| audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK); |
| audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST); |
| } |
| |
| void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, |
| enum audit_nfcfgop op, gfp_t gfp) |
| { |
| struct audit_buffer *ab; |
| char comm[sizeof(current->comm)]; |
| |
| ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); |
| if (!ab) |
| return; |
| audit_log_format(ab, "table=%s family=%u entries=%u op=%s", |
| name, af, nentries, audit_nfcfgs[op].s); |
| |
| audit_log_format(ab, " pid=%u", task_pid_nr(current)); |
| audit_log_task_context(ab); /* subj= */ |
| audit_log_format(ab, " comm="); |
| audit_log_untrustedstring(ab, get_task_comm(comm, current)); |
| audit_log_end(ab); |
| } |
| EXPORT_SYMBOL_GPL(__audit_log_nfcfg); |
| |
| static void audit_log_task(struct audit_buffer *ab) |
| { |
| kuid_t auid, uid; |
| kgid_t gid; |
| unsigned int sessionid; |
| char comm[sizeof(current->comm)]; |
| |
| auid = audit_get_loginuid(current); |
| sessionid = audit_get_sessionid(current); |
| current_uid_gid(&uid, &gid); |
| |
| audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", |
| from_kuid(&init_user_ns, auid), |
| from_kuid(&init_user_ns, uid), |
| from_kgid(&init_user_ns, gid), |
| sessionid); |
| audit_log_task_context(ab); |
| audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); |
| audit_log_untrustedstring(ab, get_task_comm(comm, current)); |
| audit_log_d_path_exe(ab, current->mm); |
| } |
| |
| /** |
| * audit_core_dumps - record information about processes that end abnormally |
| * @signr: signal value |
| * |
| * If a process ends with a core dump, something fishy is going on and we |
| * should record the event for investigation. |
| */ |
| void audit_core_dumps(long signr) |
| { |
| struct audit_buffer *ab; |
| |
| if (!audit_enabled) |
| return; |
| |
| if (signr == SIGQUIT) /* don't care for those */ |
| return; |
| |
| ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); |
| if (unlikely(!ab)) |
| return; |
| audit_log_task(ab); |
| audit_log_format(ab, " sig=%ld res=1", signr); |
| audit_log_end(ab); |
| } |
| |
| /** |
| * audit_seccomp - record information about a seccomp action |
| * @syscall: syscall number |
| * @signr: signal value |
| * @code: the seccomp action |
| * |
| * Record the information associated with a seccomp action. Event filtering for |
| * seccomp actions that are not to be logged is done in seccomp_log(). |
| * Therefore, this function forces auditing independent of the audit_enabled |
| * and dummy context state because seccomp actions should be logged even when |
| * audit is not in use. |
| */ |
| void audit_seccomp(unsigned long syscall, long signr, int code) |
| { |
| struct audit_buffer *ab; |
| |
| ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); |
| if (unlikely(!ab)) |
| return; |
| audit_log_task(ab); |
| audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", |
| signr, syscall_get_arch(current), syscall, |
| in_compat_syscall(), KSTK_EIP(current), code); |
| audit_log_end(ab); |
| } |
| |
| void audit_seccomp_actions_logged(const char *names, const char *old_names, |
| int res) |
| { |
| struct audit_buffer *ab; |
| |
| if (!audit_enabled) |
| return; |
| |
| ab = audit_log_start(audit_context(), GFP_KERNEL, |
| AUDIT_CONFIG_CHANGE); |
| if (unlikely(!ab)) |
| return; |
| |
| audit_log_format(ab, |
| "op=seccomp-logging actions=%s old-actions=%s res=%d", |
| names, old_names, res); |
| audit_log_end(ab); |
| } |
| |
| struct list_head *audit_killed_trees(void) |
| { |
| struct audit_context *ctx = audit_context(); |
| if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) |
| return NULL; |
| return &ctx->killed_trees; |
| } |