| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Just-In-Time compiler for eBPF filters on 32bit ARM |
| * |
| * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com> |
| * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> |
| */ |
| |
| #include <linux/bpf.h> |
| #include <linux/bitops.h> |
| #include <linux/compiler.h> |
| #include <linux/errno.h> |
| #include <linux/filter.h> |
| #include <linux/netdevice.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/if_vlan.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/hwcap.h> |
| #include <asm/opcodes.h> |
| #include <asm/system_info.h> |
| |
| #include "bpf_jit_32.h" |
| |
| /* |
| * eBPF prog stack layout: |
| * |
| * high |
| * original ARM_SP => +-----+ |
| * | | callee saved registers |
| * +-----+ <= (BPF_FP + SCRATCH_SIZE) |
| * | ... | eBPF JIT scratch space |
| * eBPF fp register => +-----+ |
| * (BPF_FP) | ... | eBPF prog stack |
| * +-----+ |
| * |RSVD | JIT scratchpad |
| * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE) |
| * | | |
| * | ... | Function call stack |
| * | | |
| * +-----+ |
| * low |
| * |
| * The callee saved registers depends on whether frame pointers are enabled. |
| * With frame pointers (to be compliant with the ABI): |
| * |
| * high |
| * original ARM_SP => +--------------+ \ |
| * | pc | | |
| * current ARM_FP => +--------------+ } callee saved registers |
| * |r4-r9,fp,ip,lr| | |
| * +--------------+ / |
| * low |
| * |
| * Without frame pointers: |
| * |
| * high |
| * original ARM_SP => +--------------+ |
| * | r4-r9,fp,lr | callee saved registers |
| * current ARM_FP => +--------------+ |
| * low |
| * |
| * When popping registers off the stack at the end of a BPF function, we |
| * reference them via the current ARM_FP register. |
| */ |
| #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \ |
| 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \ |
| 1 << ARM_FP) |
| #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR) |
| #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC) |
| |
| enum { |
| /* Stack layout - these are offsets from (top of stack - 4) */ |
| BPF_R2_HI, |
| BPF_R2_LO, |
| BPF_R3_HI, |
| BPF_R3_LO, |
| BPF_R4_HI, |
| BPF_R4_LO, |
| BPF_R5_HI, |
| BPF_R5_LO, |
| BPF_R7_HI, |
| BPF_R7_LO, |
| BPF_R8_HI, |
| BPF_R8_LO, |
| BPF_R9_HI, |
| BPF_R9_LO, |
| BPF_FP_HI, |
| BPF_FP_LO, |
| BPF_TC_HI, |
| BPF_TC_LO, |
| BPF_AX_HI, |
| BPF_AX_LO, |
| /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4, |
| * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9, |
| * BPF_REG_FP and Tail call counts. |
| */ |
| BPF_JIT_SCRATCH_REGS, |
| }; |
| |
| /* |
| * Negative "register" values indicate the register is stored on the stack |
| * and are the offset from the top of the eBPF JIT scratch space. |
| */ |
| #define STACK_OFFSET(k) (-4 - (k) * 4) |
| #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4) |
| |
| #ifdef CONFIG_FRAME_POINTER |
| #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4) |
| #else |
| #define EBPF_SCRATCH_TO_ARM_FP(x) (x) |
| #endif |
| |
| #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */ |
| #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */ |
| #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */ |
| |
| #define FLAG_IMM_OVERFLOW (1 << 0) |
| |
| /* |
| * Map eBPF registers to ARM 32bit registers or stack scratch space. |
| * |
| * 1. First argument is passed using the arm 32bit registers and rest of the |
| * arguments are passed on stack scratch space. |
| * 2. First callee-saved argument is mapped to arm 32 bit registers and rest |
| * arguments are mapped to scratch space on stack. |
| * 3. We need two 64 bit temp registers to do complex operations on eBPF |
| * registers. |
| * |
| * As the eBPF registers are all 64 bit registers and arm has only 32 bit |
| * registers, we have to map each eBPF registers with two arm 32 bit regs or |
| * scratch memory space and we have to build eBPF 64 bit register from those. |
| * |
| */ |
| static const s8 bpf2a32[][2] = { |
| /* return value from in-kernel function, and exit value from eBPF */ |
| [BPF_REG_0] = {ARM_R1, ARM_R0}, |
| /* arguments from eBPF program to in-kernel function */ |
| [BPF_REG_1] = {ARM_R3, ARM_R2}, |
| /* Stored on stack scratch space */ |
| [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)}, |
| [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)}, |
| [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)}, |
| [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)}, |
| /* callee saved registers that in-kernel function will preserve */ |
| [BPF_REG_6] = {ARM_R5, ARM_R4}, |
| /* Stored on stack scratch space */ |
| [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)}, |
| [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)}, |
| [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)}, |
| /* Read only Frame Pointer to access Stack */ |
| [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)}, |
| /* Temporary Register for internal BPF JIT, can be used |
| * for constant blindings and others. |
| */ |
| [TMP_REG_1] = {ARM_R7, ARM_R6}, |
| [TMP_REG_2] = {ARM_R9, ARM_R8}, |
| /* Tail call count. Stored on stack scratch space. */ |
| [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)}, |
| /* temporary register for blinding constants. |
| * Stored on stack scratch space. |
| */ |
| [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)}, |
| }; |
| |
| #define dst_lo dst[1] |
| #define dst_hi dst[0] |
| #define src_lo src[1] |
| #define src_hi src[0] |
| |
| /* |
| * JIT Context: |
| * |
| * prog : bpf_prog |
| * idx : index of current last JITed instruction. |
| * prologue_bytes : bytes used in prologue. |
| * epilogue_offset : offset of epilogue starting. |
| * offsets : array of eBPF instruction offsets in |
| * JITed code. |
| * target : final JITed code. |
| * epilogue_bytes : no of bytes used in epilogue. |
| * imm_count : no of immediate counts used for global |
| * variables. |
| * imms : array of global variable addresses. |
| */ |
| |
| struct jit_ctx { |
| const struct bpf_prog *prog; |
| unsigned int idx; |
| unsigned int prologue_bytes; |
| unsigned int epilogue_offset; |
| unsigned int cpu_architecture; |
| u32 flags; |
| u32 *offsets; |
| u32 *target; |
| u32 stack_size; |
| #if __LINUX_ARM_ARCH__ < 7 |
| u16 epilogue_bytes; |
| u16 imm_count; |
| u32 *imms; |
| #endif |
| }; |
| |
| /* |
| * Wrappers which handle both OABI and EABI and assures Thumb2 interworking |
| * (where the assembly routines like __aeabi_uidiv could cause problems). |
| */ |
| static u32 jit_udiv32(u32 dividend, u32 divisor) |
| { |
| return dividend / divisor; |
| } |
| |
| static u32 jit_mod32(u32 dividend, u32 divisor) |
| { |
| return dividend % divisor; |
| } |
| |
| static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx) |
| { |
| inst |= (cond << 28); |
| inst = __opcode_to_mem_arm(inst); |
| |
| if (ctx->target != NULL) |
| ctx->target[ctx->idx] = inst; |
| |
| ctx->idx++; |
| } |
| |
| /* |
| * Emit an instruction that will be executed unconditionally. |
| */ |
| static inline void emit(u32 inst, struct jit_ctx *ctx) |
| { |
| _emit(ARM_COND_AL, inst, ctx); |
| } |
| |
| /* |
| * This is rather horrid, but necessary to convert an integer constant |
| * to an immediate operand for the opcodes, and be able to detect at |
| * build time whether the constant can't be converted (iow, usable in |
| * BUILD_BUG_ON()). |
| */ |
| #define imm12val(v, s) (rol32(v, (s)) | (s) << 7) |
| #define const_imm8m(x) \ |
| ({ int r; \ |
| u32 v = (x); \ |
| if (!(v & ~0x000000ff)) \ |
| r = imm12val(v, 0); \ |
| else if (!(v & ~0xc000003f)) \ |
| r = imm12val(v, 2); \ |
| else if (!(v & ~0xf000000f)) \ |
| r = imm12val(v, 4); \ |
| else if (!(v & ~0xfc000003)) \ |
| r = imm12val(v, 6); \ |
| else if (!(v & ~0xff000000)) \ |
| r = imm12val(v, 8); \ |
| else if (!(v & ~0x3fc00000)) \ |
| r = imm12val(v, 10); \ |
| else if (!(v & ~0x0ff00000)) \ |
| r = imm12val(v, 12); \ |
| else if (!(v & ~0x03fc0000)) \ |
| r = imm12val(v, 14); \ |
| else if (!(v & ~0x00ff0000)) \ |
| r = imm12val(v, 16); \ |
| else if (!(v & ~0x003fc000)) \ |
| r = imm12val(v, 18); \ |
| else if (!(v & ~0x000ff000)) \ |
| r = imm12val(v, 20); \ |
| else if (!(v & ~0x0003fc00)) \ |
| r = imm12val(v, 22); \ |
| else if (!(v & ~0x0000ff00)) \ |
| r = imm12val(v, 24); \ |
| else if (!(v & ~0x00003fc0)) \ |
| r = imm12val(v, 26); \ |
| else if (!(v & ~0x00000ff0)) \ |
| r = imm12val(v, 28); \ |
| else if (!(v & ~0x000003fc)) \ |
| r = imm12val(v, 30); \ |
| else \ |
| r = -1; \ |
| r; }) |
| |
| /* |
| * Checks if immediate value can be converted to imm12(12 bits) value. |
| */ |
| static int imm8m(u32 x) |
| { |
| u32 rot; |
| |
| for (rot = 0; rot < 16; rot++) |
| if ((x & ~ror32(0xff, 2 * rot)) == 0) |
| return rol32(x, 2 * rot) | (rot << 8); |
| return -1; |
| } |
| |
| #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x)) |
| |
| static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12) |
| { |
| op |= rt << 12 | rn << 16; |
| if (imm12 >= 0) |
| op |= ARM_INST_LDST__U; |
| else |
| imm12 = -imm12; |
| return op | (imm12 & ARM_INST_LDST__IMM12); |
| } |
| |
| static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8) |
| { |
| op |= rt << 12 | rn << 16; |
| if (imm8 >= 0) |
| op |= ARM_INST_LDST__U; |
| else |
| imm8 = -imm8; |
| return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f); |
| } |
| |
| #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off) |
| #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off) |
| #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off) |
| #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off) |
| |
| #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off) |
| #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off) |
| #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off) |
| #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off) |
| |
| /* |
| * Initializes the JIT space with undefined instructions. |
| */ |
| static void jit_fill_hole(void *area, unsigned int size) |
| { |
| u32 *ptr; |
| /* We are guaranteed to have aligned memory. */ |
| for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) |
| *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF); |
| } |
| |
| #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) |
| /* EABI requires the stack to be aligned to 64-bit boundaries */ |
| #define STACK_ALIGNMENT 8 |
| #else |
| /* Stack must be aligned to 32-bit boundaries */ |
| #define STACK_ALIGNMENT 4 |
| #endif |
| |
| /* total stack size used in JITed code */ |
| #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE) |
| #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT) |
| |
| #if __LINUX_ARM_ARCH__ < 7 |
| |
| static u16 imm_offset(u32 k, struct jit_ctx *ctx) |
| { |
| unsigned int i = 0, offset; |
| u16 imm; |
| |
| /* on the "fake" run we just count them (duplicates included) */ |
| if (ctx->target == NULL) { |
| ctx->imm_count++; |
| return 0; |
| } |
| |
| while ((i < ctx->imm_count) && ctx->imms[i]) { |
| if (ctx->imms[i] == k) |
| break; |
| i++; |
| } |
| |
| if (ctx->imms[i] == 0) |
| ctx->imms[i] = k; |
| |
| /* constants go just after the epilogue */ |
| offset = ctx->offsets[ctx->prog->len - 1] * 4; |
| offset += ctx->prologue_bytes; |
| offset += ctx->epilogue_bytes; |
| offset += i * 4; |
| |
| ctx->target[offset / 4] = k; |
| |
| /* PC in ARM mode == address of the instruction + 8 */ |
| imm = offset - (8 + ctx->idx * 4); |
| |
| if (imm & ~0xfff) { |
| /* |
| * literal pool is too far, signal it into flags. we |
| * can only detect it on the second pass unfortunately. |
| */ |
| ctx->flags |= FLAG_IMM_OVERFLOW; |
| return 0; |
| } |
| |
| return imm; |
| } |
| |
| #endif /* __LINUX_ARM_ARCH__ */ |
| |
| static inline int bpf2a32_offset(int bpf_to, int bpf_from, |
| const struct jit_ctx *ctx) { |
| int to, from; |
| |
| if (ctx->target == NULL) |
| return 0; |
| to = ctx->offsets[bpf_to]; |
| from = ctx->offsets[bpf_from]; |
| |
| return to - from - 1; |
| } |
| |
| /* |
| * Move an immediate that's not an imm8m to a core register. |
| */ |
| static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx) |
| { |
| #if __LINUX_ARM_ARCH__ < 7 |
| emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx); |
| #else |
| emit(ARM_MOVW(rd, val & 0xffff), ctx); |
| if (val > 0xffff) |
| emit(ARM_MOVT(rd, val >> 16), ctx); |
| #endif |
| } |
| |
| static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx) |
| { |
| int imm12 = imm8m(val); |
| |
| if (imm12 >= 0) |
| emit(ARM_MOV_I(rd, imm12), ctx); |
| else |
| emit_mov_i_no8m(rd, val, ctx); |
| } |
| |
| static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx) |
| { |
| if (elf_hwcap & HWCAP_THUMB) |
| emit(ARM_BX(tgt_reg), ctx); |
| else |
| emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx); |
| } |
| |
| static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx) |
| { |
| #if __LINUX_ARM_ARCH__ < 5 |
| emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx); |
| emit_bx_r(tgt_reg, ctx); |
| #else |
| emit(ARM_BLX_R(tgt_reg), ctx); |
| #endif |
| } |
| |
| static inline int epilogue_offset(const struct jit_ctx *ctx) |
| { |
| int to, from; |
| /* No need for 1st dummy run */ |
| if (ctx->target == NULL) |
| return 0; |
| to = ctx->epilogue_offset; |
| from = ctx->idx; |
| |
| return to - from - 2; |
| } |
| |
| static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op) |
| { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| |
| #if __LINUX_ARM_ARCH__ == 7 |
| if (elf_hwcap & HWCAP_IDIVA) { |
| if (op == BPF_DIV) |
| emit(ARM_UDIV(rd, rm, rn), ctx); |
| else { |
| emit(ARM_UDIV(ARM_IP, rm, rn), ctx); |
| emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx); |
| } |
| return; |
| } |
| #endif |
| |
| /* |
| * For BPF_ALU | BPF_DIV | BPF_K instructions |
| * As ARM_R1 and ARM_R0 contains 1st argument of bpf |
| * function, we need to save it on caller side to save |
| * it from getting destroyed within callee. |
| * After the return from the callee, we restore ARM_R0 |
| * ARM_R1. |
| */ |
| if (rn != ARM_R1) { |
| emit(ARM_MOV_R(tmp[0], ARM_R1), ctx); |
| emit(ARM_MOV_R(ARM_R1, rn), ctx); |
| } |
| if (rm != ARM_R0) { |
| emit(ARM_MOV_R(tmp[1], ARM_R0), ctx); |
| emit(ARM_MOV_R(ARM_R0, rm), ctx); |
| } |
| |
| /* Call appropriate function */ |
| emit_mov_i(ARM_IP, op == BPF_DIV ? |
| (u32)jit_udiv32 : (u32)jit_mod32, ctx); |
| emit_blx_r(ARM_IP, ctx); |
| |
| /* Save return value */ |
| if (rd != ARM_R0) |
| emit(ARM_MOV_R(rd, ARM_R0), ctx); |
| |
| /* Restore ARM_R0 and ARM_R1 */ |
| if (rn != ARM_R1) |
| emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx); |
| if (rm != ARM_R0) |
| emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx); |
| } |
| |
| /* Is the translated BPF register on stack? */ |
| static bool is_stacked(s8 reg) |
| { |
| return reg < 0; |
| } |
| |
| /* If a BPF register is on the stack (stk is true), load it to the |
| * supplied temporary register and return the temporary register |
| * for subsequent operations, otherwise just use the CPU register. |
| */ |
| static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx) |
| { |
| if (is_stacked(reg)) { |
| emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx); |
| reg = tmp; |
| } |
| return reg; |
| } |
| |
| static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp, |
| struct jit_ctx *ctx) |
| { |
| if (is_stacked(reg[1])) { |
| if (__LINUX_ARM_ARCH__ >= 6 || |
| ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) { |
| emit(ARM_LDRD_I(tmp[1], ARM_FP, |
| EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); |
| } else { |
| emit(ARM_LDR_I(tmp[1], ARM_FP, |
| EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); |
| emit(ARM_LDR_I(tmp[0], ARM_FP, |
| EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx); |
| } |
| reg = tmp; |
| } |
| return reg; |
| } |
| |
| /* If a BPF register is on the stack (stk is true), save the register |
| * back to the stack. If the source register is not the same, then |
| * move it into the correct register. |
| */ |
| static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx) |
| { |
| if (is_stacked(reg)) |
| emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx); |
| else if (reg != src) |
| emit(ARM_MOV_R(reg, src), ctx); |
| } |
| |
| static void arm_bpf_put_reg64(const s8 *reg, const s8 *src, |
| struct jit_ctx *ctx) |
| { |
| if (is_stacked(reg[1])) { |
| if (__LINUX_ARM_ARCH__ >= 6 || |
| ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) { |
| emit(ARM_STRD_I(src[1], ARM_FP, |
| EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); |
| } else { |
| emit(ARM_STR_I(src[1], ARM_FP, |
| EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); |
| emit(ARM_STR_I(src[0], ARM_FP, |
| EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx); |
| } |
| } else { |
| if (reg[1] != src[1]) |
| emit(ARM_MOV_R(reg[1], src[1]), ctx); |
| if (reg[0] != src[0]) |
| emit(ARM_MOV_R(reg[0], src[0]), ctx); |
| } |
| } |
| |
| static inline void emit_a32_mov_i(const s8 dst, const u32 val, |
| struct jit_ctx *ctx) |
| { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| |
| if (is_stacked(dst)) { |
| emit_mov_i(tmp[1], val, ctx); |
| arm_bpf_put_reg32(dst, tmp[1], ctx); |
| } else { |
| emit_mov_i(dst, val, ctx); |
| } |
| } |
| |
| static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx) |
| { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *rd = is_stacked(dst_lo) ? tmp : dst; |
| |
| emit_mov_i(rd[1], (u32)val, ctx); |
| emit_mov_i(rd[0], val >> 32, ctx); |
| |
| arm_bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| /* Sign extended move */ |
| static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[], |
| const u32 val, struct jit_ctx *ctx) { |
| u64 val64 = val; |
| |
| if (is64 && (val & (1<<31))) |
| val64 |= 0xffffffff00000000ULL; |
| emit_a32_mov_i64(dst, val64, ctx); |
| } |
| |
| static inline void emit_a32_add_r(const u8 dst, const u8 src, |
| const bool is64, const bool hi, |
| struct jit_ctx *ctx) { |
| /* 64 bit : |
| * adds dst_lo, dst_lo, src_lo |
| * adc dst_hi, dst_hi, src_hi |
| * 32 bit : |
| * add dst_lo, dst_lo, src_lo |
| */ |
| if (!hi && is64) |
| emit(ARM_ADDS_R(dst, dst, src), ctx); |
| else if (hi && is64) |
| emit(ARM_ADC_R(dst, dst, src), ctx); |
| else |
| emit(ARM_ADD_R(dst, dst, src), ctx); |
| } |
| |
| static inline void emit_a32_sub_r(const u8 dst, const u8 src, |
| const bool is64, const bool hi, |
| struct jit_ctx *ctx) { |
| /* 64 bit : |
| * subs dst_lo, dst_lo, src_lo |
| * sbc dst_hi, dst_hi, src_hi |
| * 32 bit : |
| * sub dst_lo, dst_lo, src_lo |
| */ |
| if (!hi && is64) |
| emit(ARM_SUBS_R(dst, dst, src), ctx); |
| else if (hi && is64) |
| emit(ARM_SBC_R(dst, dst, src), ctx); |
| else |
| emit(ARM_SUB_R(dst, dst, src), ctx); |
| } |
| |
| static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64, |
| const bool hi, const u8 op, struct jit_ctx *ctx){ |
| switch (BPF_OP(op)) { |
| /* dst = dst + src */ |
| case BPF_ADD: |
| emit_a32_add_r(dst, src, is64, hi, ctx); |
| break; |
| /* dst = dst - src */ |
| case BPF_SUB: |
| emit_a32_sub_r(dst, src, is64, hi, ctx); |
| break; |
| /* dst = dst | src */ |
| case BPF_OR: |
| emit(ARM_ORR_R(dst, dst, src), ctx); |
| break; |
| /* dst = dst & src */ |
| case BPF_AND: |
| emit(ARM_AND_R(dst, dst, src), ctx); |
| break; |
| /* dst = dst ^ src */ |
| case BPF_XOR: |
| emit(ARM_EOR_R(dst, dst, src), ctx); |
| break; |
| /* dst = dst * src */ |
| case BPF_MUL: |
| emit(ARM_MUL(dst, dst, src), ctx); |
| break; |
| /* dst = dst << src */ |
| case BPF_LSH: |
| emit(ARM_LSL_R(dst, dst, src), ctx); |
| break; |
| /* dst = dst >> src */ |
| case BPF_RSH: |
| emit(ARM_LSR_R(dst, dst, src), ctx); |
| break; |
| /* dst = dst >> src (signed)*/ |
| case BPF_ARSH: |
| emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx); |
| break; |
| } |
| } |
| |
| /* ALU operation (32 bit) |
| * dst = dst (op) src |
| */ |
| static inline void emit_a32_alu_r(const s8 dst, const s8 src, |
| struct jit_ctx *ctx, const bool is64, |
| const bool hi, const u8 op) { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| s8 rn, rd; |
| |
| rn = arm_bpf_get_reg32(src, tmp[1], ctx); |
| rd = arm_bpf_get_reg32(dst, tmp[0], ctx); |
| /* ALU operation */ |
| emit_alu_r(rd, rn, is64, hi, op, ctx); |
| arm_bpf_put_reg32(dst, rd, ctx); |
| } |
| |
| /* ALU operation (64 bit) */ |
| static inline void emit_a32_alu_r64(const bool is64, const s8 dst[], |
| const s8 src[], struct jit_ctx *ctx, |
| const u8 op) { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *rd; |
| |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| if (is64) { |
| const s8 *rs; |
| |
| rs = arm_bpf_get_reg64(src, tmp2, ctx); |
| |
| /* ALU operation */ |
| emit_alu_r(rd[1], rs[1], true, false, op, ctx); |
| emit_alu_r(rd[0], rs[0], true, true, op, ctx); |
| } else { |
| s8 rs; |
| |
| rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| |
| /* ALU operation */ |
| emit_alu_r(rd[1], rs, true, false, op, ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_a32_mov_i(rd[0], 0, ctx); |
| } |
| |
| arm_bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| /* dst = src (4 bytes)*/ |
| static inline void emit_a32_mov_r(const s8 dst, const s8 src, |
| struct jit_ctx *ctx) { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| s8 rt; |
| |
| rt = arm_bpf_get_reg32(src, tmp[0], ctx); |
| arm_bpf_put_reg32(dst, rt, ctx); |
| } |
| |
| /* dst = src */ |
| static inline void emit_a32_mov_r64(const bool is64, const s8 dst[], |
| const s8 src[], |
| struct jit_ctx *ctx) { |
| if (!is64) { |
| emit_a32_mov_r(dst_lo, src_lo, ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| /* Zero out high 4 bytes */ |
| emit_a32_mov_i(dst_hi, 0, ctx); |
| } else if (__LINUX_ARM_ARCH__ < 6 && |
| ctx->cpu_architecture < CPU_ARCH_ARMv5TE) { |
| /* complete 8 byte move */ |
| emit_a32_mov_r(dst_lo, src_lo, ctx); |
| emit_a32_mov_r(dst_hi, src_hi, ctx); |
| } else if (is_stacked(src_lo) && is_stacked(dst_lo)) { |
| const u8 *tmp = bpf2a32[TMP_REG_1]; |
| |
| emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx); |
| emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx); |
| } else if (is_stacked(src_lo)) { |
| emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx); |
| } else if (is_stacked(dst_lo)) { |
| emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx); |
| } else { |
| emit(ARM_MOV_R(dst[0], src[0]), ctx); |
| emit(ARM_MOV_R(dst[1], src[1]), ctx); |
| } |
| } |
| |
| /* Shift operations */ |
| static inline void emit_a32_alu_i(const s8 dst, const u32 val, |
| struct jit_ctx *ctx, const u8 op) { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| s8 rd; |
| |
| rd = arm_bpf_get_reg32(dst, tmp[0], ctx); |
| |
| /* Do shift operation */ |
| switch (op) { |
| case BPF_LSH: |
| emit(ARM_LSL_I(rd, rd, val), ctx); |
| break; |
| case BPF_RSH: |
| emit(ARM_LSR_I(rd, rd, val), ctx); |
| break; |
| case BPF_ARSH: |
| emit(ARM_ASR_I(rd, rd, val), ctx); |
| break; |
| case BPF_NEG: |
| emit(ARM_RSB_I(rd, rd, val), ctx); |
| break; |
| } |
| |
| arm_bpf_put_reg32(dst, rd, ctx); |
| } |
| |
| /* dst = ~dst (64 bit) */ |
| static inline void emit_a32_neg64(const s8 dst[], |
| struct jit_ctx *ctx){ |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *rd; |
| |
| /* Setup Operand */ |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| |
| /* Do Negate Operation */ |
| emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx); |
| emit(ARM_RSC_I(rd[0], rd[0], 0), ctx); |
| |
| arm_bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| /* dst = dst << src */ |
| static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[], |
| struct jit_ctx *ctx) { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *rd; |
| s8 rt; |
| |
| /* Setup Operands */ |
| rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| |
| /* Do LSH operation */ |
| emit(ARM_SUB_I(ARM_IP, rt, 32), ctx); |
| emit(ARM_RSB_I(tmp2[0], rt, 32), ctx); |
| emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx); |
| emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx); |
| emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx); |
| emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx); |
| |
| arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); |
| arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); |
| } |
| |
| /* dst = dst >> src (signed)*/ |
| static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[], |
| struct jit_ctx *ctx) { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *rd; |
| s8 rt; |
| |
| /* Setup Operands */ |
| rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| |
| /* Do the ARSH operation */ |
| emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); |
| emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); |
| emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx); |
| emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx); |
| _emit(ARM_COND_PL, |
| ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx); |
| emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx); |
| |
| arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); |
| arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); |
| } |
| |
| /* dst = dst >> src */ |
| static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[], |
| struct jit_ctx *ctx) { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *rd; |
| s8 rt; |
| |
| /* Setup Operands */ |
| rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| |
| /* Do RSH operation */ |
| emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); |
| emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); |
| emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx); |
| emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx); |
| emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx); |
| emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx); |
| |
| arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); |
| arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); |
| } |
| |
| /* dst = dst << val */ |
| static inline void emit_a32_lsh_i64(const s8 dst[], |
| const u32 val, struct jit_ctx *ctx){ |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *rd; |
| |
| /* Setup operands */ |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| |
| /* Do LSH operation */ |
| if (val < 32) { |
| emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx); |
| emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx); |
| emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx); |
| } else { |
| if (val == 32) |
| emit(ARM_MOV_R(rd[0], rd[1]), ctx); |
| else |
| emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx); |
| emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx); |
| } |
| |
| arm_bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| /* dst = dst >> val */ |
| static inline void emit_a32_rsh_i64(const s8 dst[], |
| const u32 val, struct jit_ctx *ctx) { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *rd; |
| |
| /* Setup operands */ |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| |
| /* Do LSR operation */ |
| if (val == 0) { |
| /* An immediate value of 0 encodes a shift amount of 32 |
| * for LSR. To shift by 0, don't do anything. |
| */ |
| } else if (val < 32) { |
| emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx); |
| emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx); |
| emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx); |
| } else if (val == 32) { |
| emit(ARM_MOV_R(rd[1], rd[0]), ctx); |
| emit(ARM_MOV_I(rd[0], 0), ctx); |
| } else { |
| emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx); |
| emit(ARM_MOV_I(rd[0], 0), ctx); |
| } |
| |
| arm_bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| /* dst = dst >> val (signed) */ |
| static inline void emit_a32_arsh_i64(const s8 dst[], |
| const u32 val, struct jit_ctx *ctx){ |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *rd; |
| |
| /* Setup operands */ |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| |
| /* Do ARSH operation */ |
| if (val == 0) { |
| /* An immediate value of 0 encodes a shift amount of 32 |
| * for ASR. To shift by 0, don't do anything. |
| */ |
| } else if (val < 32) { |
| emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx); |
| emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx); |
| emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx); |
| } else if (val == 32) { |
| emit(ARM_MOV_R(rd[1], rd[0]), ctx); |
| emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx); |
| } else { |
| emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx); |
| emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx); |
| } |
| |
| arm_bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[], |
| struct jit_ctx *ctx) { |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *rd, *rt; |
| |
| /* Setup operands for multiplication */ |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| rt = arm_bpf_get_reg64(src, tmp2, ctx); |
| |
| /* Do Multiplication */ |
| emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx); |
| emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx); |
| emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx); |
| |
| emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx); |
| emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx); |
| |
| arm_bpf_put_reg32(dst_lo, ARM_IP, ctx); |
| arm_bpf_put_reg32(dst_hi, rd[0], ctx); |
| } |
| |
| static bool is_ldst_imm(s16 off, const u8 size) |
| { |
| s16 off_max = 0; |
| |
| switch (size) { |
| case BPF_B: |
| case BPF_W: |
| off_max = 0xfff; |
| break; |
| case BPF_H: |
| off_max = 0xff; |
| break; |
| case BPF_DW: |
| /* Need to make sure off+4 does not overflow. */ |
| off_max = 0xfff - 4; |
| break; |
| } |
| return -off_max <= off && off <= off_max; |
| } |
| |
| /* *(size *)(dst + off) = src */ |
| static inline void emit_str_r(const s8 dst, const s8 src[], |
| s16 off, struct jit_ctx *ctx, const u8 sz){ |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| s8 rd; |
| |
| rd = arm_bpf_get_reg32(dst, tmp[1], ctx); |
| |
| if (!is_ldst_imm(off, sz)) { |
| emit_a32_mov_i(tmp[0], off, ctx); |
| emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx); |
| rd = tmp[0]; |
| off = 0; |
| } |
| switch (sz) { |
| case BPF_B: |
| /* Store a Byte */ |
| emit(ARM_STRB_I(src_lo, rd, off), ctx); |
| break; |
| case BPF_H: |
| /* Store a HalfWord */ |
| emit(ARM_STRH_I(src_lo, rd, off), ctx); |
| break; |
| case BPF_W: |
| /* Store a Word */ |
| emit(ARM_STR_I(src_lo, rd, off), ctx); |
| break; |
| case BPF_DW: |
| /* Store a Double Word */ |
| emit(ARM_STR_I(src_lo, rd, off), ctx); |
| emit(ARM_STR_I(src_hi, rd, off + 4), ctx); |
| break; |
| } |
| } |
| |
| /* dst = *(size*)(src + off) */ |
| static inline void emit_ldx_r(const s8 dst[], const s8 src, |
| s16 off, struct jit_ctx *ctx, const u8 sz){ |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *rd = is_stacked(dst_lo) ? tmp : dst; |
| s8 rm = src; |
| |
| if (!is_ldst_imm(off, sz)) { |
| emit_a32_mov_i(tmp[0], off, ctx); |
| emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx); |
| rm = tmp[0]; |
| off = 0; |
| } else if (rd[1] == rm) { |
| emit(ARM_MOV_R(tmp[0], rm), ctx); |
| rm = tmp[0]; |
| } |
| switch (sz) { |
| case BPF_B: |
| /* Load a Byte */ |
| emit(ARM_LDRB_I(rd[1], rm, off), ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_a32_mov_i(rd[0], 0, ctx); |
| break; |
| case BPF_H: |
| /* Load a HalfWord */ |
| emit(ARM_LDRH_I(rd[1], rm, off), ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_a32_mov_i(rd[0], 0, ctx); |
| break; |
| case BPF_W: |
| /* Load a Word */ |
| emit(ARM_LDR_I(rd[1], rm, off), ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_a32_mov_i(rd[0], 0, ctx); |
| break; |
| case BPF_DW: |
| /* Load a Double Word */ |
| emit(ARM_LDR_I(rd[1], rm, off), ctx); |
| emit(ARM_LDR_I(rd[0], rm, off + 4), ctx); |
| break; |
| } |
| arm_bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| /* Arithmatic Operation */ |
| static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm, |
| const u8 rn, struct jit_ctx *ctx, u8 op, |
| bool is_jmp64) { |
| switch (op) { |
| case BPF_JSET: |
| if (is_jmp64) { |
| emit(ARM_AND_R(ARM_IP, rt, rn), ctx); |
| emit(ARM_AND_R(ARM_LR, rd, rm), ctx); |
| emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx); |
| } else { |
| emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx); |
| } |
| break; |
| case BPF_JEQ: |
| case BPF_JNE: |
| case BPF_JGT: |
| case BPF_JGE: |
| case BPF_JLE: |
| case BPF_JLT: |
| if (is_jmp64) { |
| emit(ARM_CMP_R(rd, rm), ctx); |
| /* Only compare low halve if high halve are equal. */ |
| _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx); |
| } else { |
| emit(ARM_CMP_R(rt, rn), ctx); |
| } |
| break; |
| case BPF_JSLE: |
| case BPF_JSGT: |
| emit(ARM_CMP_R(rn, rt), ctx); |
| if (is_jmp64) |
| emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx); |
| break; |
| case BPF_JSLT: |
| case BPF_JSGE: |
| emit(ARM_CMP_R(rt, rn), ctx); |
| if (is_jmp64) |
| emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx); |
| break; |
| } |
| } |
| |
| static int out_offset = -1; /* initialized on the first pass of build_body() */ |
| static int emit_bpf_tail_call(struct jit_ctx *ctx) |
| { |
| |
| /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ |
| const s8 *r2 = bpf2a32[BPF_REG_2]; |
| const s8 *r3 = bpf2a32[BPF_REG_3]; |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *tcc = bpf2a32[TCALL_CNT]; |
| const s8 *tc; |
| const int idx0 = ctx->idx; |
| #define cur_offset (ctx->idx - idx0) |
| #define jmp_offset (out_offset - (cur_offset) - 2) |
| u32 lo, hi; |
| s8 r_array, r_index; |
| int off; |
| |
| /* if (index >= array->map.max_entries) |
| * goto out; |
| */ |
| BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) > |
| ARM_INST_LDST__IMM12); |
| off = offsetof(struct bpf_array, map.max_entries); |
| r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx); |
| /* index is 32-bit for arrays */ |
| r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx); |
| /* array->map.max_entries */ |
| emit(ARM_LDR_I(tmp[1], r_array, off), ctx); |
| /* index >= array->map.max_entries */ |
| emit(ARM_CMP_R(r_index, tmp[1]), ctx); |
| _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); |
| |
| /* tmp2[0] = array, tmp2[1] = index */ |
| |
| /* if (tail_call_cnt > MAX_TAIL_CALL_CNT) |
| * goto out; |
| * tail_call_cnt++; |
| */ |
| lo = (u32)MAX_TAIL_CALL_CNT; |
| hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32); |
| tc = arm_bpf_get_reg64(tcc, tmp, ctx); |
| emit(ARM_CMP_I(tc[0], hi), ctx); |
| _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx); |
| _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx); |
| emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx); |
| emit(ARM_ADC_I(tc[0], tc[0], 0), ctx); |
| arm_bpf_put_reg64(tcc, tmp, ctx); |
| |
| /* prog = array->ptrs[index] |
| * if (prog == NULL) |
| * goto out; |
| */ |
| BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0); |
| off = imm8m(offsetof(struct bpf_array, ptrs)); |
| emit(ARM_ADD_I(tmp[1], r_array, off), ctx); |
| emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx); |
| emit(ARM_CMP_I(tmp[1], 0), ctx); |
| _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx); |
| |
| /* goto *(prog->bpf_func + prologue_size); */ |
| BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) > |
| ARM_INST_LDST__IMM12); |
| off = offsetof(struct bpf_prog, bpf_func); |
| emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx); |
| emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx); |
| emit_bx_r(tmp[1], ctx); |
| |
| /* out: */ |
| if (out_offset == -1) |
| out_offset = cur_offset; |
| if (cur_offset != out_offset) { |
| pr_err_once("tail_call out_offset = %d, expected %d!\n", |
| cur_offset, out_offset); |
| return -1; |
| } |
| return 0; |
| #undef cur_offset |
| #undef jmp_offset |
| } |
| |
| /* 0xabcd => 0xcdab */ |
| static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx) |
| { |
| #if __LINUX_ARM_ARCH__ < 6 |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| |
| emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); |
| emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx); |
| emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx); |
| emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx); |
| #else /* ARMv6+ */ |
| emit(ARM_REV16(rd, rn), ctx); |
| #endif |
| } |
| |
| /* 0xabcdefgh => 0xghefcdab */ |
| static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx) |
| { |
| #if __LINUX_ARM_ARCH__ < 6 |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| |
| emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); |
| emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx); |
| emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx); |
| |
| emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx); |
| emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx); |
| emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx); |
| emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx); |
| emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx); |
| emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx); |
| emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx); |
| |
| #else /* ARMv6+ */ |
| emit(ARM_REV(rd, rn), ctx); |
| #endif |
| } |
| |
| // push the scratch stack register on top of the stack |
| static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx) |
| { |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s8 *rt; |
| u16 reg_set = 0; |
| |
| rt = arm_bpf_get_reg64(src, tmp2, ctx); |
| |
| reg_set = (1 << rt[1]) | (1 << rt[0]); |
| emit(ARM_PUSH(reg_set), ctx); |
| } |
| |
| static void build_prologue(struct jit_ctx *ctx) |
| { |
| const s8 arm_r0 = bpf2a32[BPF_REG_0][1]; |
| const s8 *bpf_r1 = bpf2a32[BPF_REG_1]; |
| const s8 *bpf_fp = bpf2a32[BPF_REG_FP]; |
| const s8 *tcc = bpf2a32[TCALL_CNT]; |
| |
| /* Save callee saved registers. */ |
| #ifdef CONFIG_FRAME_POINTER |
| u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC; |
| emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx); |
| emit(ARM_PUSH(reg_set), ctx); |
| emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx); |
| #else |
| emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx); |
| emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx); |
| #endif |
| /* mov r3, #0 */ |
| /* sub r2, sp, #SCRATCH_SIZE */ |
| emit(ARM_MOV_I(bpf_r1[0], 0), ctx); |
| emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx); |
| |
| ctx->stack_size = imm8m(STACK_SIZE); |
| |
| /* Set up function call stack */ |
| emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx); |
| |
| /* Set up BPF prog stack base register */ |
| emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx); |
| |
| /* Initialize Tail Count */ |
| emit(ARM_MOV_I(bpf_r1[1], 0), ctx); |
| emit_a32_mov_r64(true, tcc, bpf_r1, ctx); |
| |
| /* Move BPF_CTX to BPF_R1 */ |
| emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx); |
| |
| /* end of prologue */ |
| } |
| |
| /* restore callee saved registers. */ |
| static void build_epilogue(struct jit_ctx *ctx) |
| { |
| #ifdef CONFIG_FRAME_POINTER |
| /* When using frame pointers, some additional registers need to |
| * be loaded. */ |
| u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP; |
| emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx); |
| emit(ARM_LDM(ARM_SP, reg_set), ctx); |
| #else |
| /* Restore callee saved registers. */ |
| emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx); |
| emit(ARM_POP(CALLEE_POP_MASK), ctx); |
| #endif |
| } |
| |
| /* |
| * Convert an eBPF instruction to native instruction, i.e |
| * JITs an eBPF instruction. |
| * Returns : |
| * 0 - Successfully JITed an 8-byte eBPF instruction |
| * >0 - Successfully JITed a 16-byte eBPF instruction |
| * <0 - Failed to JIT. |
| */ |
| static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) |
| { |
| const u8 code = insn->code; |
| const s8 *dst = bpf2a32[insn->dst_reg]; |
| const s8 *src = bpf2a32[insn->src_reg]; |
| const s8 *tmp = bpf2a32[TMP_REG_1]; |
| const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| const s16 off = insn->off; |
| const s32 imm = insn->imm; |
| const int i = insn - ctx->prog->insnsi; |
| const bool is64 = BPF_CLASS(code) == BPF_ALU64; |
| const s8 *rd, *rs; |
| s8 rd_lo, rt, rm, rn; |
| s32 jmp_offset; |
| |
| #define check_imm(bits, imm) do { \ |
| if ((imm) >= (1 << ((bits) - 1)) || \ |
| (imm) < -(1 << ((bits) - 1))) { \ |
| pr_info("[%2d] imm=%d(0x%x) out of range\n", \ |
| i, imm, imm); \ |
| return -EINVAL; \ |
| } \ |
| } while (0) |
| #define check_imm24(imm) check_imm(24, imm) |
| |
| switch (code) { |
| /* ALU operations */ |
| |
| /* dst = src */ |
| case BPF_ALU | BPF_MOV | BPF_K: |
| case BPF_ALU | BPF_MOV | BPF_X: |
| case BPF_ALU64 | BPF_MOV | BPF_K: |
| case BPF_ALU64 | BPF_MOV | BPF_X: |
| switch (BPF_SRC(code)) { |
| case BPF_X: |
| if (imm == 1) { |
| /* Special mov32 for zext */ |
| emit_a32_mov_i(dst_hi, 0, ctx); |
| break; |
| } |
| emit_a32_mov_r64(is64, dst, src, ctx); |
| break; |
| case BPF_K: |
| /* Sign-extend immediate value to destination reg */ |
| emit_a32_mov_se_i64(is64, dst, imm, ctx); |
| break; |
| } |
| break; |
| /* dst = dst + src/imm */ |
| /* dst = dst - src/imm */ |
| /* dst = dst | src/imm */ |
| /* dst = dst & src/imm */ |
| /* dst = dst ^ src/imm */ |
| /* dst = dst * src/imm */ |
| /* dst = dst << src */ |
| /* dst = dst >> src */ |
| case BPF_ALU | BPF_ADD | BPF_K: |
| case BPF_ALU | BPF_ADD | BPF_X: |
| case BPF_ALU | BPF_SUB | BPF_K: |
| case BPF_ALU | BPF_SUB | BPF_X: |
| case BPF_ALU | BPF_OR | BPF_K: |
| case BPF_ALU | BPF_OR | BPF_X: |
| case BPF_ALU | BPF_AND | BPF_K: |
| case BPF_ALU | BPF_AND | BPF_X: |
| case BPF_ALU | BPF_XOR | BPF_K: |
| case BPF_ALU | BPF_XOR | BPF_X: |
| case BPF_ALU | BPF_MUL | BPF_K: |
| case BPF_ALU | BPF_MUL | BPF_X: |
| case BPF_ALU | BPF_LSH | BPF_X: |
| case BPF_ALU | BPF_RSH | BPF_X: |
| case BPF_ALU | BPF_ARSH | BPF_X: |
| case BPF_ALU64 | BPF_ADD | BPF_K: |
| case BPF_ALU64 | BPF_ADD | BPF_X: |
| case BPF_ALU64 | BPF_SUB | BPF_K: |
| case BPF_ALU64 | BPF_SUB | BPF_X: |
| case BPF_ALU64 | BPF_OR | BPF_K: |
| case BPF_ALU64 | BPF_OR | BPF_X: |
| case BPF_ALU64 | BPF_AND | BPF_K: |
| case BPF_ALU64 | BPF_AND | BPF_X: |
| case BPF_ALU64 | BPF_XOR | BPF_K: |
| case BPF_ALU64 | BPF_XOR | BPF_X: |
| switch (BPF_SRC(code)) { |
| case BPF_X: |
| emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code)); |
| break; |
| case BPF_K: |
| /* Move immediate value to the temporary register |
| * and then do the ALU operation on the temporary |
| * register as this will sign-extend the immediate |
| * value into temporary reg and then it would be |
| * safe to do the operation on it. |
| */ |
| emit_a32_mov_se_i64(is64, tmp2, imm, ctx); |
| emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code)); |
| break; |
| } |
| break; |
| /* dst = dst / src(imm) */ |
| /* dst = dst % src(imm) */ |
| case BPF_ALU | BPF_DIV | BPF_K: |
| case BPF_ALU | BPF_DIV | BPF_X: |
| case BPF_ALU | BPF_MOD | BPF_K: |
| case BPF_ALU | BPF_MOD | BPF_X: |
| rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx); |
| switch (BPF_SRC(code)) { |
| case BPF_X: |
| rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx); |
| break; |
| case BPF_K: |
| rt = tmp2[0]; |
| emit_a32_mov_i(rt, imm, ctx); |
| break; |
| default: |
| rt = src_lo; |
| break; |
| } |
| emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code)); |
| arm_bpf_put_reg32(dst_lo, rd_lo, ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_a32_mov_i(dst_hi, 0, ctx); |
| break; |
| case BPF_ALU64 | BPF_DIV | BPF_K: |
| case BPF_ALU64 | BPF_DIV | BPF_X: |
| case BPF_ALU64 | BPF_MOD | BPF_K: |
| case BPF_ALU64 | BPF_MOD | BPF_X: |
| goto notyet; |
| /* dst = dst << imm */ |
| /* dst = dst >> imm */ |
| /* dst = dst >> imm (signed) */ |
| case BPF_ALU | BPF_LSH | BPF_K: |
| case BPF_ALU | BPF_RSH | BPF_K: |
| case BPF_ALU | BPF_ARSH | BPF_K: |
| if (unlikely(imm > 31)) |
| return -EINVAL; |
| if (imm) |
| emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code)); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_a32_mov_i(dst_hi, 0, ctx); |
| break; |
| /* dst = dst << imm */ |
| case BPF_ALU64 | BPF_LSH | BPF_K: |
| if (unlikely(imm > 63)) |
| return -EINVAL; |
| emit_a32_lsh_i64(dst, imm, ctx); |
| break; |
| /* dst = dst >> imm */ |
| case BPF_ALU64 | BPF_RSH | BPF_K: |
| if (unlikely(imm > 63)) |
| return -EINVAL; |
| emit_a32_rsh_i64(dst, imm, ctx); |
| break; |
| /* dst = dst << src */ |
| case BPF_ALU64 | BPF_LSH | BPF_X: |
| emit_a32_lsh_r64(dst, src, ctx); |
| break; |
| /* dst = dst >> src */ |
| case BPF_ALU64 | BPF_RSH | BPF_X: |
| emit_a32_rsh_r64(dst, src, ctx); |
| break; |
| /* dst = dst >> src (signed) */ |
| case BPF_ALU64 | BPF_ARSH | BPF_X: |
| emit_a32_arsh_r64(dst, src, ctx); |
| break; |
| /* dst = dst >> imm (signed) */ |
| case BPF_ALU64 | BPF_ARSH | BPF_K: |
| if (unlikely(imm > 63)) |
| return -EINVAL; |
| emit_a32_arsh_i64(dst, imm, ctx); |
| break; |
| /* dst = ~dst */ |
| case BPF_ALU | BPF_NEG: |
| emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code)); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_a32_mov_i(dst_hi, 0, ctx); |
| break; |
| /* dst = ~dst (64 bit) */ |
| case BPF_ALU64 | BPF_NEG: |
| emit_a32_neg64(dst, ctx); |
| break; |
| /* dst = dst * src/imm */ |
| case BPF_ALU64 | BPF_MUL | BPF_X: |
| case BPF_ALU64 | BPF_MUL | BPF_K: |
| switch (BPF_SRC(code)) { |
| case BPF_X: |
| emit_a32_mul_r64(dst, src, ctx); |
| break; |
| case BPF_K: |
| /* Move immediate value to the temporary register |
| * and then do the multiplication on it as this |
| * will sign-extend the immediate value into temp |
| * reg then it would be safe to do the operation |
| * on it. |
| */ |
| emit_a32_mov_se_i64(is64, tmp2, imm, ctx); |
| emit_a32_mul_r64(dst, tmp2, ctx); |
| break; |
| } |
| break; |
| /* dst = htole(dst) */ |
| /* dst = htobe(dst) */ |
| case BPF_ALU | BPF_END | BPF_FROM_LE: |
| case BPF_ALU | BPF_END | BPF_FROM_BE: |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| if (BPF_SRC(code) == BPF_FROM_LE) |
| goto emit_bswap_uxt; |
| switch (imm) { |
| case 16: |
| emit_rev16(rd[1], rd[1], ctx); |
| goto emit_bswap_uxt; |
| case 32: |
| emit_rev32(rd[1], rd[1], ctx); |
| goto emit_bswap_uxt; |
| case 64: |
| emit_rev32(ARM_LR, rd[1], ctx); |
| emit_rev32(rd[1], rd[0], ctx); |
| emit(ARM_MOV_R(rd[0], ARM_LR), ctx); |
| break; |
| } |
| goto exit; |
| emit_bswap_uxt: |
| switch (imm) { |
| case 16: |
| /* zero-extend 16 bits into 64 bits */ |
| #if __LINUX_ARM_ARCH__ < 6 |
| emit_a32_mov_i(tmp2[1], 0xffff, ctx); |
| emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx); |
| #else /* ARMv6+ */ |
| emit(ARM_UXTH(rd[1], rd[1]), ctx); |
| #endif |
| if (!ctx->prog->aux->verifier_zext) |
| emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx); |
| break; |
| case 32: |
| /* zero-extend 32 bits into 64 bits */ |
| if (!ctx->prog->aux->verifier_zext) |
| emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx); |
| break; |
| case 64: |
| /* nop */ |
| break; |
| } |
| exit: |
| arm_bpf_put_reg64(dst, rd, ctx); |
| break; |
| /* dst = imm64 */ |
| case BPF_LD | BPF_IMM | BPF_DW: |
| { |
| u64 val = (u32)imm | (u64)insn[1].imm << 32; |
| |
| emit_a32_mov_i64(dst, val, ctx); |
| |
| return 1; |
| } |
| /* LDX: dst = *(size *)(src + off) */ |
| case BPF_LDX | BPF_MEM | BPF_W: |
| case BPF_LDX | BPF_MEM | BPF_H: |
| case BPF_LDX | BPF_MEM | BPF_B: |
| case BPF_LDX | BPF_MEM | BPF_DW: |
| rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code)); |
| break; |
| /* ST: *(size *)(dst + off) = imm */ |
| case BPF_ST | BPF_MEM | BPF_W: |
| case BPF_ST | BPF_MEM | BPF_H: |
| case BPF_ST | BPF_MEM | BPF_B: |
| case BPF_ST | BPF_MEM | BPF_DW: |
| switch (BPF_SIZE(code)) { |
| case BPF_DW: |
| /* Sign-extend immediate value into temp reg */ |
| emit_a32_mov_se_i64(true, tmp2, imm, ctx); |
| break; |
| case BPF_W: |
| case BPF_H: |
| case BPF_B: |
| emit_a32_mov_i(tmp2[1], imm, ctx); |
| break; |
| } |
| emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code)); |
| break; |
| /* Atomic ops */ |
| case BPF_STX | BPF_ATOMIC | BPF_W: |
| case BPF_STX | BPF_ATOMIC | BPF_DW: |
| goto notyet; |
| /* STX: *(size *)(dst + off) = src */ |
| case BPF_STX | BPF_MEM | BPF_W: |
| case BPF_STX | BPF_MEM | BPF_H: |
| case BPF_STX | BPF_MEM | BPF_B: |
| case BPF_STX | BPF_MEM | BPF_DW: |
| rs = arm_bpf_get_reg64(src, tmp2, ctx); |
| emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code)); |
| break; |
| /* PC += off if dst == src */ |
| /* PC += off if dst > src */ |
| /* PC += off if dst >= src */ |
| /* PC += off if dst < src */ |
| /* PC += off if dst <= src */ |
| /* PC += off if dst != src */ |
| /* PC += off if dst > src (signed) */ |
| /* PC += off if dst >= src (signed) */ |
| /* PC += off if dst < src (signed) */ |
| /* PC += off if dst <= src (signed) */ |
| /* PC += off if dst & src */ |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| case BPF_JMP | BPF_JGT | BPF_X: |
| case BPF_JMP | BPF_JGE | BPF_X: |
| case BPF_JMP | BPF_JNE | BPF_X: |
| case BPF_JMP | BPF_JSGT | BPF_X: |
| case BPF_JMP | BPF_JSGE | BPF_X: |
| case BPF_JMP | BPF_JSET | BPF_X: |
| case BPF_JMP | BPF_JLE | BPF_X: |
| case BPF_JMP | BPF_JLT | BPF_X: |
| case BPF_JMP | BPF_JSLT | BPF_X: |
| case BPF_JMP | BPF_JSLE | BPF_X: |
| case BPF_JMP32 | BPF_JEQ | BPF_X: |
| case BPF_JMP32 | BPF_JGT | BPF_X: |
| case BPF_JMP32 | BPF_JGE | BPF_X: |
| case BPF_JMP32 | BPF_JNE | BPF_X: |
| case BPF_JMP32 | BPF_JSGT | BPF_X: |
| case BPF_JMP32 | BPF_JSGE | BPF_X: |
| case BPF_JMP32 | BPF_JSET | BPF_X: |
| case BPF_JMP32 | BPF_JLE | BPF_X: |
| case BPF_JMP32 | BPF_JLT | BPF_X: |
| case BPF_JMP32 | BPF_JSLT | BPF_X: |
| case BPF_JMP32 | BPF_JSLE | BPF_X: |
| /* Setup source registers */ |
| rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx); |
| rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| goto go_jmp; |
| /* PC += off if dst == imm */ |
| /* PC += off if dst > imm */ |
| /* PC += off if dst >= imm */ |
| /* PC += off if dst < imm */ |
| /* PC += off if dst <= imm */ |
| /* PC += off if dst != imm */ |
| /* PC += off if dst > imm (signed) */ |
| /* PC += off if dst >= imm (signed) */ |
| /* PC += off if dst < imm (signed) */ |
| /* PC += off if dst <= imm (signed) */ |
| /* PC += off if dst & imm */ |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| case BPF_JMP | BPF_JGT | BPF_K: |
| case BPF_JMP | BPF_JGE | BPF_K: |
| case BPF_JMP | BPF_JNE | BPF_K: |
| case BPF_JMP | BPF_JSGT | BPF_K: |
| case BPF_JMP | BPF_JSGE | BPF_K: |
| case BPF_JMP | BPF_JSET | BPF_K: |
| case BPF_JMP | BPF_JLT | BPF_K: |
| case BPF_JMP | BPF_JLE | BPF_K: |
| case BPF_JMP | BPF_JSLT | BPF_K: |
| case BPF_JMP | BPF_JSLE | BPF_K: |
| case BPF_JMP32 | BPF_JEQ | BPF_K: |
| case BPF_JMP32 | BPF_JGT | BPF_K: |
| case BPF_JMP32 | BPF_JGE | BPF_K: |
| case BPF_JMP32 | BPF_JNE | BPF_K: |
| case BPF_JMP32 | BPF_JSGT | BPF_K: |
| case BPF_JMP32 | BPF_JSGE | BPF_K: |
| case BPF_JMP32 | BPF_JSET | BPF_K: |
| case BPF_JMP32 | BPF_JLT | BPF_K: |
| case BPF_JMP32 | BPF_JLE | BPF_K: |
| case BPF_JMP32 | BPF_JSLT | BPF_K: |
| case BPF_JMP32 | BPF_JSLE | BPF_K: |
| if (off == 0) |
| break; |
| rm = tmp2[0]; |
| rn = tmp2[1]; |
| /* Sign-extend immediate value */ |
| emit_a32_mov_se_i64(true, tmp2, imm, ctx); |
| go_jmp: |
| /* Setup destination register */ |
| rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| |
| /* Check for the condition */ |
| emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code), |
| BPF_CLASS(code) == BPF_JMP); |
| |
| /* Setup JUMP instruction */ |
| jmp_offset = bpf2a32_offset(i+off, i, ctx); |
| switch (BPF_OP(code)) { |
| case BPF_JNE: |
| case BPF_JSET: |
| _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx); |
| break; |
| case BPF_JEQ: |
| _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx); |
| break; |
| case BPF_JGT: |
| _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx); |
| break; |
| case BPF_JGE: |
| _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); |
| break; |
| case BPF_JSGT: |
| _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx); |
| break; |
| case BPF_JSGE: |
| _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx); |
| break; |
| case BPF_JLE: |
| _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx); |
| break; |
| case BPF_JLT: |
| _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx); |
| break; |
| case BPF_JSLT: |
| _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx); |
| break; |
| case BPF_JSLE: |
| _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx); |
| break; |
| } |
| break; |
| /* JMP OFF */ |
| case BPF_JMP | BPF_JA: |
| { |
| if (off == 0) |
| break; |
| jmp_offset = bpf2a32_offset(i+off, i, ctx); |
| check_imm24(jmp_offset); |
| emit(ARM_B(jmp_offset), ctx); |
| break; |
| } |
| /* tail call */ |
| case BPF_JMP | BPF_TAIL_CALL: |
| if (emit_bpf_tail_call(ctx)) |
| return -EFAULT; |
| break; |
| /* function call */ |
| case BPF_JMP | BPF_CALL: |
| { |
| const s8 *r0 = bpf2a32[BPF_REG_0]; |
| const s8 *r1 = bpf2a32[BPF_REG_1]; |
| const s8 *r2 = bpf2a32[BPF_REG_2]; |
| const s8 *r3 = bpf2a32[BPF_REG_3]; |
| const s8 *r4 = bpf2a32[BPF_REG_4]; |
| const s8 *r5 = bpf2a32[BPF_REG_5]; |
| const u32 func = (u32)__bpf_call_base + (u32)imm; |
| |
| emit_a32_mov_r64(true, r0, r1, ctx); |
| emit_a32_mov_r64(true, r1, r2, ctx); |
| emit_push_r64(r5, ctx); |
| emit_push_r64(r4, ctx); |
| emit_push_r64(r3, ctx); |
| |
| emit_a32_mov_i(tmp[1], func, ctx); |
| emit_blx_r(tmp[1], ctx); |
| |
| emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean |
| break; |
| } |
| /* function return */ |
| case BPF_JMP | BPF_EXIT: |
| /* Optimization: when last instruction is EXIT |
| * simply fallthrough to epilogue. |
| */ |
| if (i == ctx->prog->len - 1) |
| break; |
| jmp_offset = epilogue_offset(ctx); |
| check_imm24(jmp_offset); |
| emit(ARM_B(jmp_offset), ctx); |
| break; |
| notyet: |
| pr_info_once("*** NOT YET: opcode %02x ***\n", code); |
| return -EFAULT; |
| default: |
| pr_err_once("unknown opcode %02x\n", code); |
| return -EINVAL; |
| } |
| |
| if (ctx->flags & FLAG_IMM_OVERFLOW) |
| /* |
| * this instruction generated an overflow when |
| * trying to access the literal pool, so |
| * delegate this filter to the kernel interpreter. |
| */ |
| return -1; |
| return 0; |
| } |
| |
| static int build_body(struct jit_ctx *ctx) |
| { |
| const struct bpf_prog *prog = ctx->prog; |
| unsigned int i; |
| |
| for (i = 0; i < prog->len; i++) { |
| const struct bpf_insn *insn = &(prog->insnsi[i]); |
| int ret; |
| |
| ret = build_insn(insn, ctx); |
| |
| /* It's used with loading the 64 bit immediate value. */ |
| if (ret > 0) { |
| i++; |
| if (ctx->target == NULL) |
| ctx->offsets[i] = ctx->idx; |
| continue; |
| } |
| |
| if (ctx->target == NULL) |
| ctx->offsets[i] = ctx->idx; |
| |
| /* If unsuccesfull, return with error code */ |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int validate_code(struct jit_ctx *ctx) |
| { |
| int i; |
| |
| for (i = 0; i < ctx->idx; i++) { |
| if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF)) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| void bpf_jit_compile(struct bpf_prog *prog) |
| { |
| /* Nothing to do here. We support Internal BPF. */ |
| } |
| |
| bool bpf_jit_needs_zext(void) |
| { |
| return true; |
| } |
| |
| struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) |
| { |
| struct bpf_prog *tmp, *orig_prog = prog; |
| struct bpf_binary_header *header; |
| bool tmp_blinded = false; |
| struct jit_ctx ctx; |
| unsigned int tmp_idx; |
| unsigned int image_size; |
| u8 *image_ptr; |
| |
| /* If BPF JIT was not enabled then we must fall back to |
| * the interpreter. |
| */ |
| if (!prog->jit_requested) |
| return orig_prog; |
| |
| /* If constant blinding was enabled and we failed during blinding |
| * then we must fall back to the interpreter. Otherwise, we save |
| * the new JITed code. |
| */ |
| tmp = bpf_jit_blind_constants(prog); |
| |
| if (IS_ERR(tmp)) |
| return orig_prog; |
| if (tmp != prog) { |
| tmp_blinded = true; |
| prog = tmp; |
| } |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| ctx.prog = prog; |
| ctx.cpu_architecture = cpu_architecture(); |
| |
| /* Not able to allocate memory for offsets[] , then |
| * we must fall back to the interpreter |
| */ |
| ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL); |
| if (ctx.offsets == NULL) { |
| prog = orig_prog; |
| goto out; |
| } |
| |
| /* 1) fake pass to find in the length of the JITed code, |
| * to compute ctx->offsets and other context variables |
| * needed to compute final JITed code. |
| * Also, calculate random starting pointer/start of JITed code |
| * which is prefixed by random number of fault instructions. |
| * |
| * If the first pass fails then there is no chance of it |
| * being successful in the second pass, so just fall back |
| * to the interpreter. |
| */ |
| if (build_body(&ctx)) { |
| prog = orig_prog; |
| goto out_off; |
| } |
| |
| tmp_idx = ctx.idx; |
| build_prologue(&ctx); |
| ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4; |
| |
| ctx.epilogue_offset = ctx.idx; |
| |
| #if __LINUX_ARM_ARCH__ < 7 |
| tmp_idx = ctx.idx; |
| build_epilogue(&ctx); |
| ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4; |
| |
| ctx.idx += ctx.imm_count; |
| if (ctx.imm_count) { |
| ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL); |
| if (ctx.imms == NULL) { |
| prog = orig_prog; |
| goto out_off; |
| } |
| } |
| #else |
| /* there's nothing about the epilogue on ARMv7 */ |
| build_epilogue(&ctx); |
| #endif |
| /* Now we can get the actual image size of the JITed arm code. |
| * Currently, we are not considering the THUMB-2 instructions |
| * for jit, although it can decrease the size of the image. |
| * |
| * As each arm instruction is of length 32bit, we are translating |
| * number of JITed intructions into the size required to store these |
| * JITed code. |
| */ |
| image_size = sizeof(u32) * ctx.idx; |
| |
| /* Now we know the size of the structure to make */ |
| header = bpf_jit_binary_alloc(image_size, &image_ptr, |
| sizeof(u32), jit_fill_hole); |
| /* Not able to allocate memory for the structure then |
| * we must fall back to the interpretation |
| */ |
| if (header == NULL) { |
| prog = orig_prog; |
| goto out_imms; |
| } |
| |
| /* 2.) Actual pass to generate final JIT code */ |
| ctx.target = (u32 *) image_ptr; |
| ctx.idx = 0; |
| |
| build_prologue(&ctx); |
| |
| /* If building the body of the JITed code fails somehow, |
| * we fall back to the interpretation. |
| */ |
| if (build_body(&ctx) < 0) { |
| image_ptr = NULL; |
| bpf_jit_binary_free(header); |
| prog = orig_prog; |
| goto out_imms; |
| } |
| build_epilogue(&ctx); |
| |
| /* 3.) Extra pass to validate JITed Code */ |
| if (validate_code(&ctx)) { |
| image_ptr = NULL; |
| bpf_jit_binary_free(header); |
| prog = orig_prog; |
| goto out_imms; |
| } |
| flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx)); |
| |
| if (bpf_jit_enable > 1) |
| /* there are 2 passes here */ |
| bpf_jit_dump(prog->len, image_size, 2, ctx.target); |
| |
| bpf_jit_binary_lock_ro(header); |
| prog->bpf_func = (void *)ctx.target; |
| prog->jited = 1; |
| prog->jited_len = image_size; |
| |
| out_imms: |
| #if __LINUX_ARM_ARCH__ < 7 |
| if (ctx.imm_count) |
| kfree(ctx.imms); |
| #endif |
| out_off: |
| kfree(ctx.offsets); |
| out: |
| if (tmp_blinded) |
| bpf_jit_prog_release_other(prog, prog == orig_prog ? |
| tmp : orig_prog); |
| return prog; |
| } |
| |