| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * NUMA support for s390 | 
 |  * | 
 |  * NUMA emulation (aka fake NUMA) distributes the available memory to nodes | 
 |  * without using real topology information about the physical memory of the | 
 |  * machine. | 
 |  * | 
 |  * It distributes the available CPUs to nodes while respecting the original | 
 |  * machine topology information. This is done by trying to avoid to separate | 
 |  * CPUs which reside on the same book or even on the same MC. | 
 |  * | 
 |  * Because the current Linux scheduler code requires a stable cpu to node | 
 |  * mapping, cores are pinned to nodes when the first CPU thread is set online. | 
 |  * | 
 |  * Copyright IBM Corp. 2015 | 
 |  */ | 
 |  | 
 | #define KMSG_COMPONENT "numa_emu" | 
 | #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/node.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/slab.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/topology.h> | 
 | #include "numa_mode.h" | 
 | #include "toptree.h" | 
 |  | 
 | /* Distances between the different system components */ | 
 | #define DIST_EMPTY	0 | 
 | #define DIST_CORE	1 | 
 | #define DIST_MC		2 | 
 | #define DIST_BOOK	3 | 
 | #define DIST_DRAWER	4 | 
 | #define DIST_MAX	5 | 
 |  | 
 | /* Node distance reported to common code */ | 
 | #define EMU_NODE_DIST	10 | 
 |  | 
 | /* Node ID for free (not yet pinned) cores */ | 
 | #define NODE_ID_FREE	-1 | 
 |  | 
 | /* Different levels of toptree */ | 
 | enum toptree_level {CORE, MC, BOOK, DRAWER, NODE, TOPOLOGY}; | 
 |  | 
 | /* The two toptree IDs */ | 
 | enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA}; | 
 |  | 
 | /* Number of NUMA nodes */ | 
 | static int emu_nodes = 1; | 
 | /* NUMA stripe size */ | 
 | static unsigned long emu_size; | 
 |  | 
 | /* | 
 |  * Node to core pinning information updates are protected by | 
 |  * "sched_domains_mutex". | 
 |  */ | 
 | static struct { | 
 | 	s32 to_node_id[CONFIG_NR_CPUS];	/* Pinned core to node mapping */ | 
 | 	int total;			/* Total number of pinned cores */ | 
 | 	int per_node_target;		/* Cores per node without extra cores */ | 
 | 	int per_node[MAX_NUMNODES];	/* Number of cores pinned to node */ | 
 | } *emu_cores; | 
 |  | 
 | /* | 
 |  * Pin a core to a node | 
 |  */ | 
 | static void pin_core_to_node(int core_id, int node_id) | 
 | { | 
 | 	if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) { | 
 | 		emu_cores->per_node[node_id]++; | 
 | 		emu_cores->to_node_id[core_id] = node_id; | 
 | 		emu_cores->total++; | 
 | 	} else { | 
 | 		WARN_ON(emu_cores->to_node_id[core_id] != node_id); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Number of pinned cores of a node | 
 |  */ | 
 | static int cores_pinned(struct toptree *node) | 
 | { | 
 | 	return emu_cores->per_node[node->id]; | 
 | } | 
 |  | 
 | /* | 
 |  * ID of the node where the core is pinned (or NODE_ID_FREE) | 
 |  */ | 
 | static int core_pinned_to_node_id(struct toptree *core) | 
 | { | 
 | 	return emu_cores->to_node_id[core->id]; | 
 | } | 
 |  | 
 | /* | 
 |  * Number of cores in the tree that are not yet pinned | 
 |  */ | 
 | static int cores_free(struct toptree *tree) | 
 | { | 
 | 	struct toptree *core; | 
 | 	int count = 0; | 
 |  | 
 | 	toptree_for_each(core, tree, CORE) { | 
 | 		if (core_pinned_to_node_id(core) == NODE_ID_FREE) | 
 | 			count++; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Return node of core | 
 |  */ | 
 | static struct toptree *core_node(struct toptree *core) | 
 | { | 
 | 	return core->parent->parent->parent->parent; | 
 | } | 
 |  | 
 | /* | 
 |  * Return drawer of core | 
 |  */ | 
 | static struct toptree *core_drawer(struct toptree *core) | 
 | { | 
 | 	return core->parent->parent->parent; | 
 | } | 
 |  | 
 | /* | 
 |  * Return book of core | 
 |  */ | 
 | static struct toptree *core_book(struct toptree *core) | 
 | { | 
 | 	return core->parent->parent; | 
 | } | 
 |  | 
 | /* | 
 |  * Return mc of core | 
 |  */ | 
 | static struct toptree *core_mc(struct toptree *core) | 
 | { | 
 | 	return core->parent; | 
 | } | 
 |  | 
 | /* | 
 |  * Distance between two cores | 
 |  */ | 
 | static int dist_core_to_core(struct toptree *core1, struct toptree *core2) | 
 | { | 
 | 	if (core_drawer(core1)->id != core_drawer(core2)->id) | 
 | 		return DIST_DRAWER; | 
 | 	if (core_book(core1)->id != core_book(core2)->id) | 
 | 		return DIST_BOOK; | 
 | 	if (core_mc(core1)->id != core_mc(core2)->id) | 
 | 		return DIST_MC; | 
 | 	/* Same core or sibling on same MC */ | 
 | 	return DIST_CORE; | 
 | } | 
 |  | 
 | /* | 
 |  * Distance of a node to a core | 
 |  */ | 
 | static int dist_node_to_core(struct toptree *node, struct toptree *core) | 
 | { | 
 | 	struct toptree *core_node; | 
 | 	int dist_min = DIST_MAX; | 
 |  | 
 | 	toptree_for_each(core_node, node, CORE) | 
 | 		dist_min = min(dist_min, dist_core_to_core(core_node, core)); | 
 | 	return dist_min == DIST_MAX ? DIST_EMPTY : dist_min; | 
 | } | 
 |  | 
 | /* | 
 |  * Unify will delete empty nodes, therefore recreate nodes. | 
 |  */ | 
 | static void toptree_unify_tree(struct toptree *tree) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	toptree_unify(tree); | 
 | 	for (nid = 0; nid < emu_nodes; nid++) | 
 | 		toptree_get_child(tree, nid); | 
 | } | 
 |  | 
 | /* | 
 |  * Find the best/nearest node for a given core and ensure that no node | 
 |  * gets more than "emu_cores->per_node_target + extra" cores. | 
 |  */ | 
 | static struct toptree *node_for_core(struct toptree *numa, struct toptree *core, | 
 | 				     int extra) | 
 | { | 
 | 	struct toptree *node, *node_best = NULL; | 
 | 	int dist_cur, dist_best, cores_target; | 
 |  | 
 | 	cores_target = emu_cores->per_node_target + extra; | 
 | 	dist_best = DIST_MAX; | 
 | 	node_best = NULL; | 
 | 	toptree_for_each(node, numa, NODE) { | 
 | 		/* Already pinned cores must use their nodes */ | 
 | 		if (core_pinned_to_node_id(core) == node->id) { | 
 | 			node_best = node; | 
 | 			break; | 
 | 		} | 
 | 		/* Skip nodes that already have enough cores */ | 
 | 		if (cores_pinned(node) >= cores_target) | 
 | 			continue; | 
 | 		dist_cur = dist_node_to_core(node, core); | 
 | 		if (dist_cur < dist_best) { | 
 | 			dist_best = dist_cur; | 
 | 			node_best = node; | 
 | 		} | 
 | 	} | 
 | 	return node_best; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the best node for each core with respect to "extra" core count | 
 |  */ | 
 | static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys, | 
 | 				   int extra) | 
 | { | 
 | 	struct toptree *node, *core, *tmp; | 
 |  | 
 | 	toptree_for_each_safe(core, tmp, phys, CORE) { | 
 | 		node = node_for_core(numa, core, extra); | 
 | 		if (!node) | 
 | 			return; | 
 | 		toptree_move(core, node); | 
 | 		pin_core_to_node(core->id, node->id); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Move structures of given level to specified NUMA node | 
 |  */ | 
 | static void move_level_to_numa_node(struct toptree *node, struct toptree *phys, | 
 | 				    enum toptree_level level, bool perfect) | 
 | { | 
 | 	int cores_free, cores_target = emu_cores->per_node_target; | 
 | 	struct toptree *cur, *tmp; | 
 |  | 
 | 	toptree_for_each_safe(cur, tmp, phys, level) { | 
 | 		cores_free = cores_target - toptree_count(node, CORE); | 
 | 		if (perfect) { | 
 | 			if (cores_free == toptree_count(cur, CORE)) | 
 | 				toptree_move(cur, node); | 
 | 		} else { | 
 | 			if (cores_free >= toptree_count(cur, CORE)) | 
 | 				toptree_move(cur, node); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Move structures of a given level to NUMA nodes. If "perfect" is specified | 
 |  * move only perfectly fitting structures. Otherwise move also smaller | 
 |  * than needed structures. | 
 |  */ | 
 | static void move_level_to_numa(struct toptree *numa, struct toptree *phys, | 
 | 			       enum toptree_level level, bool perfect) | 
 | { | 
 | 	struct toptree *node; | 
 |  | 
 | 	toptree_for_each(node, numa, NODE) | 
 | 		move_level_to_numa_node(node, phys, level, perfect); | 
 | } | 
 |  | 
 | /* | 
 |  * For the first run try to move the big structures | 
 |  */ | 
 | static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys) | 
 | { | 
 | 	struct toptree *core; | 
 |  | 
 | 	/* Always try to move perfectly fitting structures first */ | 
 | 	move_level_to_numa(numa, phys, DRAWER, true); | 
 | 	move_level_to_numa(numa, phys, DRAWER, false); | 
 | 	move_level_to_numa(numa, phys, BOOK, true); | 
 | 	move_level_to_numa(numa, phys, BOOK, false); | 
 | 	move_level_to_numa(numa, phys, MC, true); | 
 | 	move_level_to_numa(numa, phys, MC, false); | 
 | 	/* Now pin all the moved cores */ | 
 | 	toptree_for_each(core, numa, CORE) | 
 | 		pin_core_to_node(core->id, core_node(core)->id); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate new topology and create required nodes | 
 |  */ | 
 | static struct toptree *toptree_new(int id, int nodes) | 
 | { | 
 | 	struct toptree *tree; | 
 | 	int nid; | 
 |  | 
 | 	tree = toptree_alloc(TOPOLOGY, id); | 
 | 	if (!tree) | 
 | 		goto fail; | 
 | 	for (nid = 0; nid < nodes; nid++) { | 
 | 		if (!toptree_get_child(tree, nid)) | 
 | 			goto fail; | 
 | 	} | 
 | 	return tree; | 
 | fail: | 
 | 	panic("NUMA emulation could not allocate topology"); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate and initialize core to node mapping | 
 |  */ | 
 | static void __ref create_core_to_node_map(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	emu_cores = memblock_virt_alloc(sizeof(*emu_cores), 8); | 
 | 	for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++) | 
 | 		emu_cores->to_node_id[i] = NODE_ID_FREE; | 
 | } | 
 |  | 
 | /* | 
 |  * Move cores from physical topology into NUMA target topology | 
 |  * and try to keep as much of the physical topology as possible. | 
 |  */ | 
 | static struct toptree *toptree_to_numa(struct toptree *phys) | 
 | { | 
 | 	static int first = 1; | 
 | 	struct toptree *numa; | 
 | 	int cores_total; | 
 |  | 
 | 	cores_total = emu_cores->total + cores_free(phys); | 
 | 	emu_cores->per_node_target = cores_total / emu_nodes; | 
 | 	numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes); | 
 | 	if (first) { | 
 | 		toptree_to_numa_first(numa, phys); | 
 | 		first = 0; | 
 | 	} | 
 | 	toptree_to_numa_single(numa, phys, 0); | 
 | 	toptree_to_numa_single(numa, phys, 1); | 
 | 	toptree_unify_tree(numa); | 
 |  | 
 | 	WARN_ON(cpumask_weight(&phys->mask)); | 
 | 	return numa; | 
 | } | 
 |  | 
 | /* | 
 |  * Create a toptree out of the physical topology that we got from the hypervisor | 
 |  */ | 
 | static struct toptree *toptree_from_topology(void) | 
 | { | 
 | 	struct toptree *phys, *node, *drawer, *book, *mc, *core; | 
 | 	struct cpu_topology_s390 *top; | 
 | 	int cpu; | 
 |  | 
 | 	phys = toptree_new(TOPTREE_ID_PHYS, 1); | 
 |  | 
 | 	for_each_cpu(cpu, &cpus_with_topology) { | 
 | 		top = &cpu_topology[cpu]; | 
 | 		node = toptree_get_child(phys, 0); | 
 | 		drawer = toptree_get_child(node, top->drawer_id); | 
 | 		book = toptree_get_child(drawer, top->book_id); | 
 | 		mc = toptree_get_child(book, top->socket_id); | 
 | 		core = toptree_get_child(mc, smp_get_base_cpu(cpu)); | 
 | 		if (!drawer || !book || !mc || !core) | 
 | 			panic("NUMA emulation could not allocate memory"); | 
 | 		cpumask_set_cpu(cpu, &core->mask); | 
 | 		toptree_update_mask(mc); | 
 | 	} | 
 | 	return phys; | 
 | } | 
 |  | 
 | /* | 
 |  * Add toptree core to topology and create correct CPU masks | 
 |  */ | 
 | static void topology_add_core(struct toptree *core) | 
 | { | 
 | 	struct cpu_topology_s390 *top; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_cpu(cpu, &core->mask) { | 
 | 		top = &cpu_topology[cpu]; | 
 | 		cpumask_copy(&top->thread_mask, &core->mask); | 
 | 		cpumask_copy(&top->core_mask, &core_mc(core)->mask); | 
 | 		cpumask_copy(&top->book_mask, &core_book(core)->mask); | 
 | 		cpumask_copy(&top->drawer_mask, &core_drawer(core)->mask); | 
 | 		cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]); | 
 | 		top->node_id = core_node(core)->id; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Apply toptree to topology and create CPU masks | 
 |  */ | 
 | static void toptree_to_topology(struct toptree *numa) | 
 | { | 
 | 	struct toptree *core; | 
 | 	int i; | 
 |  | 
 | 	/* Clear all node masks */ | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) | 
 | 		cpumask_clear(&node_to_cpumask_map[i]); | 
 |  | 
 | 	/* Rebuild all masks */ | 
 | 	toptree_for_each(core, numa, CORE) | 
 | 		topology_add_core(core); | 
 | } | 
 |  | 
 | /* | 
 |  * Show the node to core mapping | 
 |  */ | 
 | static void print_node_to_core_map(void) | 
 | { | 
 | 	int nid, cid; | 
 |  | 
 | 	if (!numa_debug_enabled) | 
 | 		return; | 
 | 	printk(KERN_DEBUG "NUMA node to core mapping\n"); | 
 | 	for (nid = 0; nid < emu_nodes; nid++) { | 
 | 		printk(KERN_DEBUG "  node %3d: ", nid); | 
 | 		for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) { | 
 | 			if (emu_cores->to_node_id[cid] == nid) | 
 | 				printk(KERN_CONT "%d ", cid); | 
 | 		} | 
 | 		printk(KERN_CONT "\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static void pin_all_possible_cpus(void) | 
 | { | 
 | 	int core_id, node_id, cpu; | 
 | 	static int initialized; | 
 |  | 
 | 	if (initialized) | 
 | 		return; | 
 | 	print_node_to_core_map(); | 
 | 	node_id = 0; | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		core_id = smp_get_base_cpu(cpu); | 
 | 		if (emu_cores->to_node_id[core_id] != NODE_ID_FREE) | 
 | 			continue; | 
 | 		pin_core_to_node(core_id, node_id); | 
 | 		cpu_topology[cpu].node_id = node_id; | 
 | 		node_id = (node_id + 1) % emu_nodes; | 
 | 	} | 
 | 	print_node_to_core_map(); | 
 | 	initialized = 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Transfer physical topology into a NUMA topology and modify CPU masks | 
 |  * according to the NUMA topology. | 
 |  * | 
 |  * Must be called with "sched_domains_mutex" lock held. | 
 |  */ | 
 | static void emu_update_cpu_topology(void) | 
 | { | 
 | 	struct toptree *phys, *numa; | 
 |  | 
 | 	if (emu_cores == NULL) | 
 | 		create_core_to_node_map(); | 
 | 	phys = toptree_from_topology(); | 
 | 	numa = toptree_to_numa(phys); | 
 | 	toptree_free(phys); | 
 | 	toptree_to_topology(numa); | 
 | 	toptree_free(numa); | 
 | 	pin_all_possible_cpus(); | 
 | } | 
 |  | 
 | /* | 
 |  * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum | 
 |  * alignment (needed for memory hotplug). | 
 |  */ | 
 | static unsigned long emu_setup_size_adjust(unsigned long size) | 
 | { | 
 | 	unsigned long size_new; | 
 |  | 
 | 	size = size ? : CONFIG_EMU_SIZE; | 
 | 	size_new = roundup(size, memory_block_size_bytes()); | 
 | 	if (size_new == size) | 
 | 		return size; | 
 | 	pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n", | 
 | 		size >> 20, size_new >> 20); | 
 | 	return size_new; | 
 | } | 
 |  | 
 | /* | 
 |  * If we have not enough memory for the specified nodes, reduce the node count. | 
 |  */ | 
 | static int emu_setup_nodes_adjust(int nodes) | 
 | { | 
 | 	int nodes_max; | 
 |  | 
 | 	nodes_max = memblock.memory.total_size / emu_size; | 
 | 	nodes_max = max(nodes_max, 1); | 
 | 	if (nodes_max >= nodes) | 
 | 		return nodes; | 
 | 	pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes); | 
 | 	return nodes_max; | 
 | } | 
 |  | 
 | /* | 
 |  * Early emu setup | 
 |  */ | 
 | static void emu_setup(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	emu_size = emu_setup_size_adjust(emu_size); | 
 | 	emu_nodes = emu_setup_nodes_adjust(emu_nodes); | 
 | 	for (nid = 0; nid < emu_nodes; nid++) | 
 | 		node_set(nid, node_possible_map); | 
 | 	pr_info("Creating %d nodes with memory stripe size %ld MB\n", | 
 | 		emu_nodes, emu_size >> 20); | 
 | } | 
 |  | 
 | /* | 
 |  * Return node id for given page number | 
 |  */ | 
 | static int emu_pfn_to_nid(unsigned long pfn) | 
 | { | 
 | 	return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes; | 
 | } | 
 |  | 
 | /* | 
 |  * Return stripe size | 
 |  */ | 
 | static unsigned long emu_align(void) | 
 | { | 
 | 	return emu_size; | 
 | } | 
 |  | 
 | /* | 
 |  * Return distance between two nodes | 
 |  */ | 
 | static int emu_distance(int node1, int node2) | 
 | { | 
 | 	return (node1 != node2) * EMU_NODE_DIST; | 
 | } | 
 |  | 
 | /* | 
 |  * Define callbacks for generic s390 NUMA infrastructure | 
 |  */ | 
 | const struct numa_mode numa_mode_emu = { | 
 | 	.name = "emu", | 
 | 	.setup = emu_setup, | 
 | 	.update_cpu_topology = emu_update_cpu_topology, | 
 | 	.__pfn_to_nid = emu_pfn_to_nid, | 
 | 	.align = emu_align, | 
 | 	.distance = emu_distance, | 
 | }; | 
 |  | 
 | /* | 
 |  * Kernel parameter: emu_nodes=<n> | 
 |  */ | 
 | static int __init early_parse_emu_nodes(char *p) | 
 | { | 
 | 	int count; | 
 |  | 
 | 	if (kstrtoint(p, 0, &count) != 0 || count <= 0) | 
 | 		return 0; | 
 | 	if (count <= 0) | 
 | 		return 0; | 
 | 	emu_nodes = min(count, MAX_NUMNODES); | 
 | 	return 0; | 
 | } | 
 | early_param("emu_nodes", early_parse_emu_nodes); | 
 |  | 
 | /* | 
 |  * Kernel parameter: emu_size=[<n>[k|M|G|T]] | 
 |  */ | 
 | static int __init early_parse_emu_size(char *p) | 
 | { | 
 | 	emu_size = memparse(p, NULL); | 
 | 	return 0; | 
 | } | 
 | early_param("emu_size", early_parse_emu_size); |