| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #include "ice_sched.h" |
| |
| /** |
| * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB |
| * @pi: port information structure |
| * @info: Scheduler element information from firmware |
| * |
| * This function inserts the root node of the scheduling tree topology |
| * to the SW DB. |
| */ |
| static enum ice_status |
| ice_sched_add_root_node(struct ice_port_info *pi, |
| struct ice_aqc_txsched_elem_data *info) |
| { |
| struct ice_sched_node *root; |
| struct ice_hw *hw; |
| u16 max_children; |
| |
| if (!pi) |
| return ICE_ERR_PARAM; |
| |
| hw = pi->hw; |
| |
| root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); |
| if (!root) |
| return ICE_ERR_NO_MEMORY; |
| |
| max_children = le16_to_cpu(hw->layer_info[0].max_children); |
| root->children = devm_kcalloc(ice_hw_to_dev(hw), max_children, |
| sizeof(*root), GFP_KERNEL); |
| if (!root->children) { |
| devm_kfree(ice_hw_to_dev(hw), root); |
| return ICE_ERR_NO_MEMORY; |
| } |
| |
| memcpy(&root->info, info, sizeof(*info)); |
| pi->root = root; |
| return 0; |
| } |
| |
| /** |
| * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB |
| * @start_node: pointer to the starting ice_sched_node struct in a sub-tree |
| * @teid: node teid to search |
| * |
| * This function searches for a node matching the teid in the scheduling tree |
| * from the SW DB. The search is recursive and is restricted by the number of |
| * layers it has searched through; stopping at the max supported layer. |
| * |
| * This function needs to be called when holding the port_info->sched_lock |
| */ |
| struct ice_sched_node * |
| ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) |
| { |
| u16 i; |
| |
| /* The TEID is same as that of the start_node */ |
| if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) |
| return start_node; |
| |
| /* The node has no children or is at the max layer */ |
| if (!start_node->num_children || |
| start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || |
| start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) |
| return NULL; |
| |
| /* Check if teid matches to any of the children nodes */ |
| for (i = 0; i < start_node->num_children; i++) |
| if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) |
| return start_node->children[i]; |
| |
| /* Search within each child's sub-tree */ |
| for (i = 0; i < start_node->num_children; i++) { |
| struct ice_sched_node *tmp; |
| |
| tmp = ice_sched_find_node_by_teid(start_node->children[i], |
| teid); |
| if (tmp) |
| return tmp; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_sched_add_node - Insert the Tx scheduler node in SW DB |
| * @pi: port information structure |
| * @layer: Scheduler layer of the node |
| * @info: Scheduler element information from firmware |
| * |
| * This function inserts a scheduler node to the SW DB. |
| */ |
| enum ice_status |
| ice_sched_add_node(struct ice_port_info *pi, u8 layer, |
| struct ice_aqc_txsched_elem_data *info) |
| { |
| struct ice_sched_node *parent; |
| struct ice_sched_node *node; |
| struct ice_hw *hw; |
| u16 max_children; |
| |
| if (!pi) |
| return ICE_ERR_PARAM; |
| |
| hw = pi->hw; |
| |
| /* A valid parent node should be there */ |
| parent = ice_sched_find_node_by_teid(pi->root, |
| le32_to_cpu(info->parent_teid)); |
| if (!parent) { |
| ice_debug(hw, ICE_DBG_SCHED, |
| "Parent Node not found for parent_teid=0x%x\n", |
| le32_to_cpu(info->parent_teid)); |
| return ICE_ERR_PARAM; |
| } |
| |
| node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); |
| if (!node) |
| return ICE_ERR_NO_MEMORY; |
| max_children = le16_to_cpu(hw->layer_info[layer].max_children); |
| if (max_children) { |
| node->children = devm_kcalloc(ice_hw_to_dev(hw), max_children, |
| sizeof(*node), GFP_KERNEL); |
| if (!node->children) { |
| devm_kfree(ice_hw_to_dev(hw), node); |
| return ICE_ERR_NO_MEMORY; |
| } |
| } |
| |
| node->in_use = true; |
| node->parent = parent; |
| node->tx_sched_layer = layer; |
| parent->children[parent->num_children++] = node; |
| memcpy(&node->info, info, sizeof(*info)); |
| return 0; |
| } |
| |
| /** |
| * ice_aq_delete_sched_elems - delete scheduler elements |
| * @hw: pointer to the hw struct |
| * @grps_req: number of groups to delete |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @grps_del: returns total number of elements deleted |
| * @cd: pointer to command details structure or NULL |
| * |
| * Delete scheduling elements (0x040F) |
| */ |
| static enum ice_status |
| ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, |
| struct ice_aqc_delete_elem *buf, u16 buf_size, |
| u16 *grps_del, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_add_move_delete_elem *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| cmd = &desc.params.add_move_delete_elem; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_delete_sched_elems); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| cmd->num_grps_req = cpu_to_le16(grps_req); |
| |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (!status && grps_del) |
| *grps_del = le16_to_cpu(cmd->num_grps_updated); |
| |
| return status; |
| } |
| |
| /** |
| * ice_sched_remove_elems - remove nodes from hw |
| * @hw: pointer to the hw struct |
| * @parent: pointer to the parent node |
| * @num_nodes: number of nodes |
| * @node_teids: array of node teids to be deleted |
| * |
| * This function remove nodes from hw |
| */ |
| static enum ice_status |
| ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, |
| u16 num_nodes, u32 *node_teids) |
| { |
| struct ice_aqc_delete_elem *buf; |
| u16 i, num_groups_removed = 0; |
| enum ice_status status; |
| u16 buf_size; |
| |
| buf_size = sizeof(*buf) + sizeof(u32) * (num_nodes - 1); |
| buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); |
| if (!buf) |
| return ICE_ERR_NO_MEMORY; |
| buf->hdr.parent_teid = parent->info.node_teid; |
| buf->hdr.num_elems = cpu_to_le16(num_nodes); |
| for (i = 0; i < num_nodes; i++) |
| buf->teid[i] = cpu_to_le32(node_teids[i]); |
| status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, |
| &num_groups_removed, NULL); |
| if (status || num_groups_removed != 1) |
| ice_debug(hw, ICE_DBG_SCHED, "remove elements failed\n"); |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_get_first_node - get the first node of the given layer |
| * @hw: pointer to the hw struct |
| * @parent: pointer the base node of the subtree |
| * @layer: layer number |
| * |
| * This function retrieves the first node of the given layer from the subtree |
| */ |
| static struct ice_sched_node * |
| ice_sched_get_first_node(struct ice_hw *hw, struct ice_sched_node *parent, |
| u8 layer) |
| { |
| u8 i; |
| |
| if (layer < hw->sw_entry_point_layer) |
| return NULL; |
| for (i = 0; i < parent->num_children; i++) { |
| struct ice_sched_node *node = parent->children[i]; |
| |
| if (node) { |
| if (node->tx_sched_layer == layer) |
| return node; |
| /* this recursion is intentional, and wouldn't |
| * go more than 9 calls |
| */ |
| return ice_sched_get_first_node(hw, node, layer); |
| } |
| } |
| return NULL; |
| } |
| |
| /** |
| * ice_sched_get_tc_node - get pointer to TC node |
| * @pi: port information structure |
| * @tc: TC number |
| * |
| * This function returns the TC node pointer |
| */ |
| struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) |
| { |
| u8 i; |
| |
| if (!pi) |
| return NULL; |
| for (i = 0; i < pi->root->num_children; i++) |
| if (pi->root->children[i]->tc_num == tc) |
| return pi->root->children[i]; |
| return NULL; |
| } |
| |
| /** |
| * ice_free_sched_node - Free a Tx scheduler node from SW DB |
| * @pi: port information structure |
| * @node: pointer to the ice_sched_node struct |
| * |
| * This function frees up a node from SW DB as well as from HW |
| * |
| * This function needs to be called with the port_info->sched_lock held |
| */ |
| void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) |
| { |
| struct ice_sched_node *parent; |
| struct ice_hw *hw = pi->hw; |
| u8 i, j; |
| |
| /* Free the children before freeing up the parent node |
| * The parent array is updated below and that shifts the nodes |
| * in the array. So always pick the first child if num children > 0 |
| */ |
| while (node->num_children) |
| ice_free_sched_node(pi, node->children[0]); |
| |
| /* Leaf, TC and root nodes can't be deleted by SW */ |
| if (node->tx_sched_layer >= hw->sw_entry_point_layer && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { |
| u32 teid = le32_to_cpu(node->info.node_teid); |
| enum ice_status status; |
| |
| status = ice_sched_remove_elems(hw, node->parent, 1, &teid); |
| if (status) |
| ice_debug(hw, ICE_DBG_SCHED, |
| "remove element failed %d\n", status); |
| } |
| parent = node->parent; |
| /* root has no parent */ |
| if (parent) { |
| struct ice_sched_node *p, *tc_node; |
| |
| /* update the parent */ |
| for (i = 0; i < parent->num_children; i++) |
| if (parent->children[i] == node) { |
| for (j = i + 1; j < parent->num_children; j++) |
| parent->children[j - 1] = |
| parent->children[j]; |
| parent->num_children--; |
| break; |
| } |
| |
| /* search for previous sibling that points to this node and |
| * remove the reference |
| */ |
| tc_node = ice_sched_get_tc_node(pi, node->tc_num); |
| if (!tc_node) { |
| ice_debug(hw, ICE_DBG_SCHED, |
| "Invalid TC number %d\n", node->tc_num); |
| goto err_exit; |
| } |
| p = ice_sched_get_first_node(hw, tc_node, node->tx_sched_layer); |
| while (p) { |
| if (p->sibling == node) { |
| p->sibling = node->sibling; |
| break; |
| } |
| p = p->sibling; |
| } |
| } |
| err_exit: |
| /* leaf nodes have no children */ |
| if (node->children) |
| devm_kfree(ice_hw_to_dev(hw), node->children); |
| devm_kfree(ice_hw_to_dev(hw), node); |
| } |
| |
| /** |
| * ice_aq_get_dflt_topo - gets default scheduler topology |
| * @hw: pointer to the hw struct |
| * @lport: logical port number |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @num_branches: returns total number of queue to port branches |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get default scheduler topology (0x400) |
| */ |
| static enum ice_status |
| ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, |
| struct ice_aqc_get_topo_elem *buf, u16 buf_size, |
| u8 *num_branches, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_get_topo *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| cmd = &desc.params.get_topo; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); |
| cmd->port_num = lport; |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (!status && num_branches) |
| *num_branches = cmd->num_branches; |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_add_sched_elems - adds scheduling element |
| * @hw: pointer to the hw struct |
| * @grps_req: the number of groups that are requested to be added |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @grps_added: returns total number of groups added |
| * @cd: pointer to command details structure or NULL |
| * |
| * Add scheduling elements (0x0401) |
| */ |
| static enum ice_status |
| ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, |
| struct ice_aqc_add_elem *buf, u16 buf_size, |
| u16 *grps_added, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_add_move_delete_elem *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| cmd = &desc.params.add_move_delete_elem; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_sched_elems); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| cmd->num_grps_req = cpu_to_le16(grps_req); |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (!status && grps_added) |
| *grps_added = le16_to_cpu(cmd->num_grps_updated); |
| |
| return status; |
| } |
| |
| /** |
| * ice_suspend_resume_elems - suspend/resume scheduler elements |
| * @hw: pointer to the hw struct |
| * @elems_req: number of elements to suspend |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @elems_ret: returns total number of elements suspended |
| * @cd: pointer to command details structure or NULL |
| * @cmd_code: command code for suspend or resume |
| * |
| * suspend/resume scheduler elements |
| */ |
| static enum ice_status |
| ice_suspend_resume_elems(struct ice_hw *hw, u16 elems_req, |
| struct ice_aqc_suspend_resume_elem *buf, u16 buf_size, |
| u16 *elems_ret, struct ice_sq_cd *cd, |
| enum ice_adminq_opc cmd_code) |
| { |
| struct ice_aqc_get_cfg_elem *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| cmd = &desc.params.get_update_elem; |
| ice_fill_dflt_direct_cmd_desc(&desc, cmd_code); |
| cmd->num_elem_req = cpu_to_le16(elems_req); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (!status && elems_ret) |
| *elems_ret = le16_to_cpu(cmd->num_elem_resp); |
| return status; |
| } |
| |
| /** |
| * ice_aq_suspend_sched_elems - suspend scheduler elements |
| * @hw: pointer to the hw struct |
| * @elems_req: number of elements to suspend |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @elems_ret: returns total number of elements suspended |
| * @cd: pointer to command details structure or NULL |
| * |
| * Suspend scheduling elements (0x0409) |
| */ |
| static enum ice_status |
| ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, |
| struct ice_aqc_suspend_resume_elem *buf, |
| u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) |
| { |
| return ice_suspend_resume_elems(hw, elems_req, buf, buf_size, elems_ret, |
| cd, ice_aqc_opc_suspend_sched_elems); |
| } |
| |
| /** |
| * ice_aq_resume_sched_elems - resume scheduler elements |
| * @hw: pointer to the hw struct |
| * @elems_req: number of elements to resume |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @elems_ret: returns total number of elements resumed |
| * @cd: pointer to command details structure or NULL |
| * |
| * resume scheduling elements (0x040A) |
| */ |
| static enum ice_status |
| ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, |
| struct ice_aqc_suspend_resume_elem *buf, |
| u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) |
| { |
| return ice_suspend_resume_elems(hw, elems_req, buf, buf_size, elems_ret, |
| cd, ice_aqc_opc_resume_sched_elems); |
| } |
| |
| /** |
| * ice_aq_query_sched_res - query scheduler resource |
| * @hw: pointer to the hw struct |
| * @buf_size: buffer size in bytes |
| * @buf: pointer to buffer |
| * @cd: pointer to command details structure or NULL |
| * |
| * Query scheduler resource allocation (0x0412) |
| */ |
| static enum ice_status |
| ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, |
| struct ice_aqc_query_txsched_res_resp *buf, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aq_desc desc; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); |
| return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| } |
| |
| /** |
| * ice_sched_suspend_resume_elems - suspend or resume hw nodes |
| * @hw: pointer to the hw struct |
| * @num_nodes: number of nodes |
| * @node_teids: array of node teids to be suspended or resumed |
| * @suspend: true means suspend / false means resume |
| * |
| * This function suspends or resumes hw nodes |
| */ |
| static enum ice_status |
| ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, |
| bool suspend) |
| { |
| struct ice_aqc_suspend_resume_elem *buf; |
| u16 i, buf_size, num_elem_ret = 0; |
| enum ice_status status; |
| |
| buf_size = sizeof(*buf) * num_nodes; |
| buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); |
| if (!buf) |
| return ICE_ERR_NO_MEMORY; |
| |
| for (i = 0; i < num_nodes; i++) |
| buf->teid[i] = cpu_to_le32(node_teids[i]); |
| |
| if (suspend) |
| status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, |
| buf_size, &num_elem_ret, |
| NULL); |
| else |
| status = ice_aq_resume_sched_elems(hw, num_nodes, buf, |
| buf_size, &num_elem_ret, |
| NULL); |
| if (status || num_elem_ret != num_nodes) |
| ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); |
| |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_clear_tx_topo - clears the schduler tree nodes |
| * @pi: port information structure |
| * |
| * This function removes all the nodes from HW as well as from SW DB. |
| */ |
| static void ice_sched_clear_tx_topo(struct ice_port_info *pi) |
| { |
| struct ice_sched_agg_info *agg_info; |
| struct ice_sched_vsi_info *vsi_elem; |
| struct ice_sched_agg_info *atmp; |
| struct ice_sched_vsi_info *tmp; |
| struct ice_hw *hw; |
| |
| if (!pi) |
| return; |
| |
| hw = pi->hw; |
| |
| list_for_each_entry_safe(agg_info, atmp, &pi->agg_list, list_entry) { |
| struct ice_sched_agg_vsi_info *agg_vsi_info; |
| struct ice_sched_agg_vsi_info *vtmp; |
| |
| list_for_each_entry_safe(agg_vsi_info, vtmp, |
| &agg_info->agg_vsi_list, list_entry) { |
| list_del(&agg_vsi_info->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); |
| } |
| } |
| |
| /* remove the vsi list */ |
| list_for_each_entry_safe(vsi_elem, tmp, &pi->vsi_info_list, |
| list_entry) { |
| list_del(&vsi_elem->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), vsi_elem); |
| } |
| |
| if (pi->root) { |
| ice_free_sched_node(pi, pi->root); |
| pi->root = NULL; |
| } |
| } |
| |
| /** |
| * ice_sched_clear_port - clear the scheduler elements from SW DB for a port |
| * @pi: port information structure |
| * |
| * Cleanup scheduling elements from SW DB |
| */ |
| static void ice_sched_clear_port(struct ice_port_info *pi) |
| { |
| if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) |
| return; |
| |
| pi->port_state = ICE_SCHED_PORT_STATE_INIT; |
| mutex_lock(&pi->sched_lock); |
| ice_sched_clear_tx_topo(pi); |
| mutex_unlock(&pi->sched_lock); |
| mutex_destroy(&pi->sched_lock); |
| } |
| |
| /** |
| * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports |
| * @hw: pointer to the hw struct |
| * |
| * Cleanup scheduling elements from SW DB for all the ports |
| */ |
| void ice_sched_cleanup_all(struct ice_hw *hw) |
| { |
| if (!hw || !hw->port_info) |
| return; |
| |
| if (hw->layer_info) |
| devm_kfree(ice_hw_to_dev(hw), hw->layer_info); |
| |
| ice_sched_clear_port(hw->port_info); |
| |
| hw->num_tx_sched_layers = 0; |
| hw->num_tx_sched_phys_layers = 0; |
| hw->flattened_layers = 0; |
| hw->max_cgds = 0; |
| } |
| |
| /** |
| * ice_sched_create_vsi_info_entry - create an empty new VSI entry |
| * @pi: port information structure |
| * @vsi_id: VSI Id |
| * |
| * This function creates a new VSI entry and adds it to list |
| */ |
| static struct ice_sched_vsi_info * |
| ice_sched_create_vsi_info_entry(struct ice_port_info *pi, u16 vsi_id) |
| { |
| struct ice_sched_vsi_info *vsi_elem; |
| |
| if (!pi) |
| return NULL; |
| |
| vsi_elem = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*vsi_elem), |
| GFP_KERNEL); |
| if (!vsi_elem) |
| return NULL; |
| |
| list_add(&vsi_elem->list_entry, &pi->vsi_info_list); |
| vsi_elem->vsi_id = vsi_id; |
| return vsi_elem; |
| } |
| |
| /** |
| * ice_sched_add_elems - add nodes to hw and SW DB |
| * @pi: port information structure |
| * @tc_node: pointer to the branch node |
| * @parent: pointer to the parent node |
| * @layer: layer number to add nodes |
| * @num_nodes: number of nodes |
| * @num_nodes_added: pointer to num nodes added |
| * @first_node_teid: if new nodes are added then return the teid of first node |
| * |
| * This function add nodes to hw as well as to SW DB for a given layer |
| */ |
| static enum ice_status |
| ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, |
| struct ice_sched_node *parent, u8 layer, u16 num_nodes, |
| u16 *num_nodes_added, u32 *first_node_teid) |
| { |
| struct ice_sched_node *prev, *new_node; |
| struct ice_aqc_add_elem *buf; |
| u16 i, num_groups_added = 0; |
| enum ice_status status = 0; |
| struct ice_hw *hw = pi->hw; |
| u16 buf_size; |
| u32 teid; |
| |
| buf_size = sizeof(*buf) + sizeof(*buf->generic) * (num_nodes - 1); |
| buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); |
| if (!buf) |
| return ICE_ERR_NO_MEMORY; |
| |
| buf->hdr.parent_teid = parent->info.node_teid; |
| buf->hdr.num_elems = cpu_to_le16(num_nodes); |
| for (i = 0; i < num_nodes; i++) { |
| buf->generic[i].parent_teid = parent->info.node_teid; |
| buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; |
| buf->generic[i].data.valid_sections = |
| ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | |
| ICE_AQC_ELEM_VALID_EIR; |
| buf->generic[i].data.generic = 0; |
| buf->generic[i].data.cir_bw.bw_profile_idx = |
| ICE_SCHED_DFLT_RL_PROF_ID; |
| buf->generic[i].data.eir_bw.bw_profile_idx = |
| ICE_SCHED_DFLT_RL_PROF_ID; |
| } |
| |
| status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, |
| &num_groups_added, NULL); |
| if (status || num_groups_added != 1) { |
| ice_debug(hw, ICE_DBG_SCHED, "add elements failed\n"); |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return ICE_ERR_CFG; |
| } |
| |
| *num_nodes_added = num_nodes; |
| /* add nodes to the SW DB */ |
| for (i = 0; i < num_nodes; i++) { |
| status = ice_sched_add_node(pi, layer, &buf->generic[i]); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SCHED, |
| "add nodes in SW DB failed status =%d\n", |
| status); |
| break; |
| } |
| |
| teid = le32_to_cpu(buf->generic[i].node_teid); |
| new_node = ice_sched_find_node_by_teid(parent, teid); |
| |
| if (!new_node) { |
| ice_debug(hw, ICE_DBG_SCHED, |
| "Node is missing for teid =%d\n", teid); |
| break; |
| } |
| |
| new_node->sibling = NULL; |
| new_node->tc_num = tc_node->tc_num; |
| |
| /* add it to previous node sibling pointer */ |
| /* Note: siblings are not linked across branches */ |
| prev = ice_sched_get_first_node(hw, tc_node, layer); |
| |
| if (prev && prev != new_node) { |
| while (prev->sibling) |
| prev = prev->sibling; |
| prev->sibling = new_node; |
| } |
| |
| if (i == 0) |
| *first_node_teid = teid; |
| } |
| |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_add_nodes_to_layer - Add nodes to a given layer |
| * @pi: port information structure |
| * @tc_node: pointer to TC node |
| * @parent: pointer to parent node |
| * @layer: layer number to add nodes |
| * @num_nodes: number of nodes to be added |
| * @first_node_teid: pointer to the first node teid |
| * @num_nodes_added: pointer to number of nodes added |
| * |
| * This function add nodes to a given layer. |
| */ |
| static enum ice_status |
| ice_sched_add_nodes_to_layer(struct ice_port_info *pi, |
| struct ice_sched_node *tc_node, |
| struct ice_sched_node *parent, u8 layer, |
| u16 num_nodes, u32 *first_node_teid, |
| u16 *num_nodes_added) |
| { |
| u32 *first_teid_ptr = first_node_teid; |
| u16 new_num_nodes, max_child_nodes; |
| enum ice_status status = 0; |
| struct ice_hw *hw = pi->hw; |
| u16 num_added = 0; |
| u32 temp; |
| |
| if (!num_nodes) |
| return status; |
| |
| if (!parent || layer < hw->sw_entry_point_layer) |
| return ICE_ERR_PARAM; |
| |
| *num_nodes_added = 0; |
| |
| /* max children per node per layer */ |
| max_child_nodes = |
| le16_to_cpu(hw->layer_info[parent->tx_sched_layer].max_children); |
| |
| /* current number of children + required nodes exceed max children ? */ |
| if ((parent->num_children + num_nodes) > max_child_nodes) { |
| /* Fail if the parent is a TC node */ |
| if (parent == tc_node) |
| return ICE_ERR_CFG; |
| |
| /* utilize all the spaces if the parent is not full */ |
| if (parent->num_children < max_child_nodes) { |
| new_num_nodes = max_child_nodes - parent->num_children; |
| /* this recursion is intentional, and wouldn't |
| * go more than 2 calls |
| */ |
| status = ice_sched_add_nodes_to_layer(pi, tc_node, |
| parent, layer, |
| new_num_nodes, |
| first_node_teid, |
| &num_added); |
| if (status) |
| return status; |
| |
| *num_nodes_added += num_added; |
| } |
| /* Don't modify the first node teid memory if the first node was |
| * added already in the above call. Instead send some temp |
| * memory for all other recursive calls. |
| */ |
| if (num_added) |
| first_teid_ptr = &temp; |
| |
| new_num_nodes = num_nodes - num_added; |
| |
| /* This parent is full, try the next sibling */ |
| parent = parent->sibling; |
| |
| /* this recursion is intentional, for 1024 queues |
| * per VSI, it goes max of 16 iterations. |
| * 1024 / 8 = 128 layer 8 nodes |
| * 128 /8 = 16 (add 8 nodes per iteration) |
| */ |
| status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, |
| layer, new_num_nodes, |
| first_teid_ptr, |
| &num_added); |
| *num_nodes_added += num_added; |
| return status; |
| } |
| |
| status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, |
| num_nodes_added, first_node_teid); |
| return status; |
| } |
| |
| /** |
| * ice_sched_get_qgrp_layer - get the current queue group layer number |
| * @hw: pointer to the hw struct |
| * |
| * This function returns the current queue group layer number |
| */ |
| static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) |
| { |
| /* It's always total layers - 1, the array is 0 relative so -2 */ |
| return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; |
| } |
| |
| /** |
| * ice_sched_get_vsi_layer - get the current VSI layer number |
| * @hw: pointer to the hw struct |
| * |
| * This function returns the current VSI layer number |
| */ |
| static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) |
| { |
| /* Num Layers VSI layer |
| * 9 6 |
| * 7 4 |
| * 5 or less sw_entry_point_layer |
| */ |
| /* calculate the vsi layer based on number of layers. */ |
| if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { |
| u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; |
| |
| if (layer > hw->sw_entry_point_layer) |
| return layer; |
| } |
| return hw->sw_entry_point_layer; |
| } |
| |
| /** |
| * ice_sched_get_num_nodes_per_layer - Get the total number of nodes per layer |
| * @pi: pointer to the port info struct |
| * @layer: layer number |
| * |
| * This function calculates the number of nodes present in the scheduler tree |
| * including all the branches for a given layer |
| */ |
| static u16 |
| ice_sched_get_num_nodes_per_layer(struct ice_port_info *pi, u8 layer) |
| { |
| struct ice_hw *hw; |
| u16 num_nodes = 0; |
| u8 i; |
| |
| if (!pi) |
| return num_nodes; |
| |
| hw = pi->hw; |
| |
| /* Calculate the number of nodes for all TCs */ |
| for (i = 0; i < pi->root->num_children; i++) { |
| struct ice_sched_node *tc_node, *node; |
| |
| tc_node = pi->root->children[i]; |
| |
| /* Get the first node */ |
| node = ice_sched_get_first_node(hw, tc_node, layer); |
| if (!node) |
| continue; |
| |
| /* count the siblings */ |
| while (node) { |
| num_nodes++; |
| node = node->sibling; |
| } |
| } |
| |
| return num_nodes; |
| } |
| |
| /** |
| * ice_sched_val_max_nodes - check max number of nodes reached or not |
| * @pi: port information structure |
| * @new_num_nodes_per_layer: pointer to the new number of nodes array |
| * |
| * This function checks whether the scheduler tree layers have enough space to |
| * add new nodes |
| */ |
| static enum ice_status |
| ice_sched_validate_for_max_nodes(struct ice_port_info *pi, |
| u16 *new_num_nodes_per_layer) |
| { |
| struct ice_hw *hw = pi->hw; |
| u8 i, qg_layer; |
| u16 num_nodes; |
| |
| qg_layer = ice_sched_get_qgrp_layer(hw); |
| |
| /* walk through all the layers from SW entry point to qgroup layer */ |
| for (i = hw->sw_entry_point_layer; i <= qg_layer; i++) { |
| num_nodes = ice_sched_get_num_nodes_per_layer(pi, i); |
| if (num_nodes + new_num_nodes_per_layer[i] > |
| le16_to_cpu(hw->layer_info[i].max_pf_nodes)) { |
| ice_debug(hw, ICE_DBG_SCHED, |
| "max nodes reached for layer = %d\n", i); |
| return ICE_ERR_CFG; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_rm_dflt_leaf_node - remove the default leaf node in the tree |
| * @pi: port information structure |
| * |
| * This function removes the leaf node that was created by the FW |
| * during initialization |
| */ |
| static void |
| ice_rm_dflt_leaf_node(struct ice_port_info *pi) |
| { |
| struct ice_sched_node *node; |
| |
| node = pi->root; |
| while (node) { |
| if (!node->num_children) |
| break; |
| node = node->children[0]; |
| } |
| if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { |
| u32 teid = le32_to_cpu(node->info.node_teid); |
| enum ice_status status; |
| |
| /* remove the default leaf node */ |
| status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); |
| if (!status) |
| ice_free_sched_node(pi, node); |
| } |
| } |
| |
| /** |
| * ice_sched_rm_dflt_nodes - free the default nodes in the tree |
| * @pi: port information structure |
| * |
| * This function frees all the nodes except root and TC that were created by |
| * the FW during initialization |
| */ |
| static void |
| ice_sched_rm_dflt_nodes(struct ice_port_info *pi) |
| { |
| struct ice_sched_node *node; |
| |
| ice_rm_dflt_leaf_node(pi); |
| |
| /* remove the default nodes except TC and root nodes */ |
| node = pi->root; |
| while (node) { |
| if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { |
| ice_free_sched_node(pi, node); |
| break; |
| } |
| |
| if (!node->num_children) |
| break; |
| node = node->children[0]; |
| } |
| } |
| |
| /** |
| * ice_sched_init_port - Initialize scheduler by querying information from FW |
| * @pi: port info structure for the tree to cleanup |
| * |
| * This function is the initial call to find the total number of Tx scheduler |
| * resources, default topology created by firmware and storing the information |
| * in SW DB. |
| */ |
| enum ice_status ice_sched_init_port(struct ice_port_info *pi) |
| { |
| struct ice_aqc_get_topo_elem *buf; |
| enum ice_status status; |
| struct ice_hw *hw; |
| u8 num_branches; |
| u16 num_elems; |
| u8 i, j; |
| |
| if (!pi) |
| return ICE_ERR_PARAM; |
| hw = pi->hw; |
| |
| /* Query the Default Topology from FW */ |
| buf = devm_kcalloc(ice_hw_to_dev(hw), ICE_TXSCHED_MAX_BRANCHES, |
| sizeof(*buf), GFP_KERNEL); |
| if (!buf) |
| return ICE_ERR_NO_MEMORY; |
| |
| /* Query default scheduling tree topology */ |
| status = ice_aq_get_dflt_topo(hw, pi->lport, buf, |
| sizeof(*buf) * ICE_TXSCHED_MAX_BRANCHES, |
| &num_branches, NULL); |
| if (status) |
| goto err_init_port; |
| |
| /* num_branches should be between 1-8 */ |
| if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { |
| ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", |
| num_branches); |
| status = ICE_ERR_PARAM; |
| goto err_init_port; |
| } |
| |
| /* get the number of elements on the default/first branch */ |
| num_elems = le16_to_cpu(buf[0].hdr.num_elems); |
| |
| /* num_elems should always be between 1-9 */ |
| if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { |
| ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", |
| num_elems); |
| status = ICE_ERR_PARAM; |
| goto err_init_port; |
| } |
| |
| /* If the last node is a leaf node then the index of the Q group |
| * layer is two less than the number of elements. |
| */ |
| if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == |
| ICE_AQC_ELEM_TYPE_LEAF) |
| pi->last_node_teid = |
| le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); |
| else |
| pi->last_node_teid = |
| le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); |
| |
| /* Insert the Tx Sched root node */ |
| status = ice_sched_add_root_node(pi, &buf[0].generic[0]); |
| if (status) |
| goto err_init_port; |
| |
| /* Parse the default tree and cache the information */ |
| for (i = 0; i < num_branches; i++) { |
| num_elems = le16_to_cpu(buf[i].hdr.num_elems); |
| |
| /* Skip root element as already inserted */ |
| for (j = 1; j < num_elems; j++) { |
| /* update the sw entry point */ |
| if (buf[0].generic[j].data.elem_type == |
| ICE_AQC_ELEM_TYPE_ENTRY_POINT) |
| hw->sw_entry_point_layer = j; |
| |
| status = ice_sched_add_node(pi, j, &buf[i].generic[j]); |
| if (status) |
| goto err_init_port; |
| } |
| } |
| |
| /* Remove the default nodes. */ |
| if (pi->root) |
| ice_sched_rm_dflt_nodes(pi); |
| |
| /* initialize the port for handling the scheduler tree */ |
| pi->port_state = ICE_SCHED_PORT_STATE_READY; |
| mutex_init(&pi->sched_lock); |
| INIT_LIST_HEAD(&pi->agg_list); |
| INIT_LIST_HEAD(&pi->vsi_info_list); |
| |
| err_init_port: |
| if (status && pi->root) { |
| ice_free_sched_node(pi, pi->root); |
| pi->root = NULL; |
| } |
| |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_query_res_alloc - query the FW for num of logical sched layers |
| * @hw: pointer to the HW struct |
| * |
| * query FW for allocated scheduler resources and store in HW struct |
| */ |
| enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) |
| { |
| struct ice_aqc_query_txsched_res_resp *buf; |
| enum ice_status status = 0; |
| |
| if (hw->layer_info) |
| return status; |
| |
| buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); |
| if (!buf) |
| return ICE_ERR_NO_MEMORY; |
| |
| status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); |
| if (status) |
| goto sched_query_out; |
| |
| hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); |
| hw->num_tx_sched_phys_layers = |
| le16_to_cpu(buf->sched_props.phys_levels); |
| hw->flattened_layers = buf->sched_props.flattening_bitmap; |
| hw->max_cgds = buf->sched_props.max_pf_cgds; |
| |
| hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, |
| (hw->num_tx_sched_layers * |
| sizeof(*hw->layer_info)), |
| GFP_KERNEL); |
| if (!hw->layer_info) { |
| status = ICE_ERR_NO_MEMORY; |
| goto sched_query_out; |
| } |
| |
| sched_query_out: |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_get_vsi_info_entry - Get the vsi entry list for given vsi_id |
| * @pi: port information structure |
| * @vsi_id: vsi id |
| * |
| * This function retrieves the vsi list for the given vsi id |
| */ |
| static struct ice_sched_vsi_info * |
| ice_sched_get_vsi_info_entry(struct ice_port_info *pi, u16 vsi_id) |
| { |
| struct ice_sched_vsi_info *list_elem; |
| |
| if (!pi) |
| return NULL; |
| |
| list_for_each_entry(list_elem, &pi->vsi_info_list, list_entry) |
| if (list_elem->vsi_id == vsi_id) |
| return list_elem; |
| return NULL; |
| } |
| |
| /** |
| * ice_sched_find_node_in_subtree - Find node in part of base node subtree |
| * @hw: pointer to the hw struct |
| * @base: pointer to the base node |
| * @node: pointer to the node to search |
| * |
| * This function checks whether a given node is part of the base node |
| * subtree or not |
| */ |
| static bool |
| ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, |
| struct ice_sched_node *node) |
| { |
| u8 i; |
| |
| for (i = 0; i < base->num_children; i++) { |
| struct ice_sched_node *child = base->children[i]; |
| |
| if (node == child) |
| return true; |
| |
| if (child->tx_sched_layer > node->tx_sched_layer) |
| return false; |
| |
| /* this recursion is intentional, and wouldn't |
| * go more than 8 calls |
| */ |
| if (ice_sched_find_node_in_subtree(hw, child, node)) |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * ice_sched_get_free_qparent - Get a free lan or rdma q group node |
| * @pi: port information structure |
| * @vsi_id: vsi id |
| * @tc: branch number |
| * @owner: lan or rdma |
| * |
| * This function retrieves a free lan or rdma q group node |
| */ |
| struct ice_sched_node * |
| ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_id, u8 tc, |
| u8 owner) |
| { |
| struct ice_sched_node *vsi_node, *qgrp_node = NULL; |
| struct ice_sched_vsi_info *list_elem; |
| u16 max_children; |
| u8 qgrp_layer; |
| |
| qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); |
| max_children = le16_to_cpu(pi->hw->layer_info[qgrp_layer].max_children); |
| |
| list_elem = ice_sched_get_vsi_info_entry(pi, vsi_id); |
| if (!list_elem) |
| goto lan_q_exit; |
| |
| vsi_node = list_elem->vsi_node[tc]; |
| |
| /* validate invalid VSI id */ |
| if (!vsi_node) |
| goto lan_q_exit; |
| |
| /* get the first q group node from VSI sub-tree */ |
| qgrp_node = ice_sched_get_first_node(pi->hw, vsi_node, qgrp_layer); |
| while (qgrp_node) { |
| /* make sure the qgroup node is part of the VSI subtree */ |
| if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) |
| if (qgrp_node->num_children < max_children && |
| qgrp_node->owner == owner) |
| break; |
| qgrp_node = qgrp_node->sibling; |
| } |
| |
| lan_q_exit: |
| return qgrp_node; |
| } |
| |
| /** |
| * ice_sched_get_vsi_node - Get a VSI node based on VSI id |
| * @hw: pointer to the hw struct |
| * @tc_node: pointer to the TC node |
| * @vsi_id: VSI id |
| * |
| * This function retrieves a VSI node for a given VSI id from a given |
| * TC branch |
| */ |
| static struct ice_sched_node * |
| ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node, |
| u16 vsi_id) |
| { |
| struct ice_sched_node *node; |
| u8 vsi_layer; |
| |
| vsi_layer = ice_sched_get_vsi_layer(hw); |
| node = ice_sched_get_first_node(hw, tc_node, vsi_layer); |
| |
| /* Check whether it already exists */ |
| while (node) { |
| if (node->vsi_id == vsi_id) |
| return node; |
| node = node->sibling; |
| } |
| |
| return node; |
| } |
| |
| /** |
| * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes |
| * @hw: pointer to the hw struct |
| * @num_qs: number of queues |
| * @num_nodes: num nodes array |
| * |
| * This function calculates the number of VSI child nodes based on the |
| * number of queues. |
| */ |
| static void |
| ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) |
| { |
| u16 num = num_qs; |
| u8 i, qgl, vsil; |
| |
| qgl = ice_sched_get_qgrp_layer(hw); |
| vsil = ice_sched_get_vsi_layer(hw); |
| |
| /* calculate num nodes from q group to VSI layer */ |
| for (i = qgl; i > vsil; i--) { |
| u16 max_children = le16_to_cpu(hw->layer_info[i].max_children); |
| |
| /* round to the next integer if there is a remainder */ |
| num = DIV_ROUND_UP(num, max_children); |
| |
| /* need at least one node */ |
| num_nodes[i] = num ? num : 1; |
| } |
| } |
| |
| /** |
| * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree |
| * @pi: port information structure |
| * @vsi_id: VSI id |
| * @tc_node: pointer to the TC node |
| * @num_nodes: pointer to the num nodes that needs to be added per layer |
| * @owner: node owner (lan or rdma) |
| * |
| * This function adds the VSI child nodes to tree. It gets called for |
| * lan and rdma separately. |
| */ |
| static enum ice_status |
| ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_id, |
| struct ice_sched_node *tc_node, u16 *num_nodes, |
| u8 owner) |
| { |
| struct ice_sched_node *parent, *node; |
| struct ice_hw *hw = pi->hw; |
| enum ice_status status; |
| u32 first_node_teid; |
| u16 num_added = 0; |
| u8 i, qgl, vsil; |
| |
| status = ice_sched_validate_for_max_nodes(pi, num_nodes); |
| if (status) |
| return status; |
| |
| qgl = ice_sched_get_qgrp_layer(hw); |
| vsil = ice_sched_get_vsi_layer(hw); |
| parent = ice_sched_get_vsi_node(hw, tc_node, vsi_id); |
| for (i = vsil + 1; i <= qgl; i++) { |
| if (!parent) |
| return ICE_ERR_CFG; |
| status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, |
| num_nodes[i], |
| &first_node_teid, |
| &num_added); |
| if (status || num_nodes[i] != num_added) |
| return ICE_ERR_CFG; |
| |
| /* The newly added node can be a new parent for the next |
| * layer nodes |
| */ |
| if (num_added) { |
| parent = ice_sched_find_node_by_teid(tc_node, |
| first_node_teid); |
| node = parent; |
| while (node) { |
| node->owner = owner; |
| node = node->sibling; |
| } |
| } else { |
| parent = parent->children[0]; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sched_rm_vsi_child_nodes - remove VSI child nodes from the tree |
| * @pi: port information structure |
| * @vsi_node: pointer to the VSI node |
| * @num_nodes: pointer to the num nodes that needs to be removed per layer |
| * @owner: node owner (lan or rdma) |
| * |
| * This function removes the VSI child nodes from the tree. It gets called for |
| * lan and rdma separately. |
| */ |
| static void |
| ice_sched_rm_vsi_child_nodes(struct ice_port_info *pi, |
| struct ice_sched_node *vsi_node, u16 *num_nodes, |
| u8 owner) |
| { |
| struct ice_sched_node *node, *next; |
| u8 i, qgl, vsil; |
| u16 num; |
| |
| qgl = ice_sched_get_qgrp_layer(pi->hw); |
| vsil = ice_sched_get_vsi_layer(pi->hw); |
| |
| for (i = qgl; i > vsil; i--) { |
| num = num_nodes[i]; |
| node = ice_sched_get_first_node(pi->hw, vsi_node, i); |
| while (node && num) { |
| next = node->sibling; |
| if (node->owner == owner && !node->num_children) { |
| ice_free_sched_node(pi, node); |
| num--; |
| } |
| node = next; |
| } |
| } |
| } |
| |
| /** |
| * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes |
| * @hw: pointer to the hw struct |
| * @tc_node: pointer to TC node |
| * @num_nodes: pointer to num nodes array |
| * |
| * This function calculates the number of supported nodes needed to add this |
| * VSI into tx tree including the VSI, parent and intermediate nodes in below |
| * layers |
| */ |
| static void |
| ice_sched_calc_vsi_support_nodes(struct ice_hw *hw, |
| struct ice_sched_node *tc_node, u16 *num_nodes) |
| { |
| struct ice_sched_node *node; |
| u16 max_child; |
| u8 i, vsil; |
| |
| vsil = ice_sched_get_vsi_layer(hw); |
| for (i = vsil; i >= hw->sw_entry_point_layer; i--) |
| /* Add intermediate nodes if TC has no children and |
| * need at least one node for VSI |
| */ |
| if (!tc_node->num_children || i == vsil) { |
| num_nodes[i]++; |
| } else { |
| /* If intermediate nodes are reached max children |
| * then add a new one. |
| */ |
| node = ice_sched_get_first_node(hw, tc_node, i); |
| max_child = le16_to_cpu(hw->layer_info[i].max_children); |
| |
| /* scan all the siblings */ |
| while (node) { |
| if (node->num_children < max_child) |
| break; |
| node = node->sibling; |
| } |
| |
| /* all the nodes are full, allocate a new one */ |
| if (!node) |
| num_nodes[i]++; |
| } |
| } |
| |
| /** |
| * ice_sched_add_vsi_support_nodes - add VSI supported nodes into tx tree |
| * @pi: port information structure |
| * @vsi_id: VSI Id |
| * @tc_node: pointer to TC node |
| * @num_nodes: pointer to num nodes array |
| * |
| * This function adds the VSI supported nodes into tx tree including the |
| * VSI, its parent and intermediate nodes in below layers |
| */ |
| static enum ice_status |
| ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_id, |
| struct ice_sched_node *tc_node, u16 *num_nodes) |
| { |
| struct ice_sched_node *parent = tc_node; |
| enum ice_status status; |
| u32 first_node_teid; |
| u16 num_added = 0; |
| u8 i, vsil; |
| |
| if (!pi) |
| return ICE_ERR_PARAM; |
| |
| status = ice_sched_validate_for_max_nodes(pi, num_nodes); |
| if (status) |
| return status; |
| |
| vsil = ice_sched_get_vsi_layer(pi->hw); |
| for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { |
| status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, |
| i, num_nodes[i], |
| &first_node_teid, |
| &num_added); |
| if (status || num_nodes[i] != num_added) |
| return ICE_ERR_CFG; |
| |
| /* The newly added node can be a new parent for the next |
| * layer nodes |
| */ |
| if (num_added) |
| parent = ice_sched_find_node_by_teid(tc_node, |
| first_node_teid); |
| else |
| parent = parent->children[0]; |
| |
| if (!parent) |
| return ICE_ERR_CFG; |
| |
| if (i == vsil) |
| parent->vsi_id = vsi_id; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_sched_add_vsi_to_topo - add a new VSI into tree |
| * @pi: port information structure |
| * @vsi_id: VSI Id |
| * @tc: TC number |
| * |
| * This function adds a new VSI into scheduler tree |
| */ |
| static enum ice_status |
| ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_id, u8 tc) |
| { |
| u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; |
| struct ice_sched_node *tc_node; |
| struct ice_hw *hw = pi->hw; |
| |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (!tc_node) |
| return ICE_ERR_PARAM; |
| |
| /* calculate number of supported nodes needed for this VSI */ |
| ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes); |
| |
| /* add vsi supported nodes to tc subtree */ |
| return ice_sched_add_vsi_support_nodes(pi, vsi_id, tc_node, num_nodes); |
| } |
| |
| /** |
| * ice_sched_update_vsi_child_nodes - update VSI child nodes |
| * @pi: port information structure |
| * @vsi_id: VSI Id |
| * @tc: TC number |
| * @new_numqs: new number of max queues |
| * @owner: owner of this subtree |
| * |
| * This function updates the VSI child nodes based on the number of queues |
| */ |
| static enum ice_status |
| ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_id, u8 tc, |
| u16 new_numqs, u8 owner) |
| { |
| u16 prev_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; |
| u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; |
| struct ice_sched_node *vsi_node; |
| struct ice_sched_node *tc_node; |
| struct ice_sched_vsi_info *vsi; |
| enum ice_status status = 0; |
| struct ice_hw *hw = pi->hw; |
| u16 prev_numqs; |
| u8 i; |
| |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (!tc_node) |
| return ICE_ERR_CFG; |
| |
| vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_id); |
| if (!vsi_node) |
| return ICE_ERR_CFG; |
| |
| vsi = ice_sched_get_vsi_info_entry(pi, vsi_id); |
| if (!vsi) |
| return ICE_ERR_CFG; |
| |
| if (owner == ICE_SCHED_NODE_OWNER_LAN) |
| prev_numqs = vsi->max_lanq[tc]; |
| else |
| return ICE_ERR_PARAM; |
| |
| /* num queues are not changed */ |
| if (prev_numqs == new_numqs) |
| return status; |
| |
| /* calculate number of nodes based on prev/new number of qs */ |
| if (prev_numqs) |
| ice_sched_calc_vsi_child_nodes(hw, prev_numqs, prev_num_nodes); |
| |
| if (new_numqs) |
| ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); |
| |
| if (prev_numqs > new_numqs) { |
| for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) |
| new_num_nodes[i] = prev_num_nodes[i] - new_num_nodes[i]; |
| |
| ice_sched_rm_vsi_child_nodes(pi, vsi_node, new_num_nodes, |
| owner); |
| } else { |
| for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) |
| new_num_nodes[i] -= prev_num_nodes[i]; |
| |
| status = ice_sched_add_vsi_child_nodes(pi, vsi_id, tc_node, |
| new_num_nodes, owner); |
| if (status) |
| return status; |
| } |
| |
| if (owner == ICE_SCHED_NODE_OWNER_LAN) |
| vsi->max_lanq[tc] = new_numqs; |
| |
| return status; |
| } |
| |
| /** |
| * ice_sched_cfg_vsi - configure the new/exisiting VSI |
| * @pi: port information structure |
| * @vsi_id: VSI Id |
| * @tc: TC number |
| * @maxqs: max number of queues |
| * @owner: lan or rdma |
| * @enable: TC enabled or disabled |
| * |
| * This function adds/updates VSI nodes based on the number of queues. If TC is |
| * enabled and VSI is in suspended state then resume the VSI back. If TC is |
| * disabled then suspend the VSI if it is not already. |
| */ |
| enum ice_status |
| ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_id, u8 tc, u16 maxqs, |
| u8 owner, bool enable) |
| { |
| struct ice_sched_node *vsi_node, *tc_node; |
| struct ice_sched_vsi_info *vsi; |
| enum ice_status status = 0; |
| struct ice_hw *hw = pi->hw; |
| |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (!tc_node) |
| return ICE_ERR_PARAM; |
| |
| vsi = ice_sched_get_vsi_info_entry(pi, vsi_id); |
| if (!vsi) |
| vsi = ice_sched_create_vsi_info_entry(pi, vsi_id); |
| if (!vsi) |
| return ICE_ERR_NO_MEMORY; |
| |
| vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_id); |
| |
| /* suspend the VSI if tc is not enabled */ |
| if (!enable) { |
| if (vsi_node && vsi_node->in_use) { |
| u32 teid = le32_to_cpu(vsi_node->info.node_teid); |
| |
| status = ice_sched_suspend_resume_elems(hw, 1, &teid, |
| true); |
| if (!status) |
| vsi_node->in_use = false; |
| } |
| return status; |
| } |
| |
| /* TC is enabled, if it is a new VSI then add it to the tree */ |
| if (!vsi_node) { |
| status = ice_sched_add_vsi_to_topo(pi, vsi_id, tc); |
| if (status) |
| return status; |
| vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_id); |
| if (!vsi_node) |
| return ICE_ERR_CFG; |
| vsi->vsi_node[tc] = vsi_node; |
| vsi_node->in_use = true; |
| } |
| |
| /* update the VSI child nodes */ |
| status = ice_sched_update_vsi_child_nodes(pi, vsi_id, tc, maxqs, owner); |
| if (status) |
| return status; |
| |
| /* TC is enabled, resume the VSI if it is in the suspend state */ |
| if (!vsi_node->in_use) { |
| u32 teid = le32_to_cpu(vsi_node->info.node_teid); |
| |
| status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); |
| if (!status) |
| vsi_node->in_use = true; |
| } |
| |
| return status; |
| } |