| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Re-map IO memory to kernel address space so that we can access it. |
| * This is needed for high PCI addresses that aren't mapped in the |
| * 640k-1MB IO memory area on PC's |
| * |
| * (C) Copyright 1995 1996 Linus Torvalds |
| */ |
| |
| #include <linux/memblock.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/mmiotrace.h> |
| #include <linux/mem_encrypt.h> |
| #include <linux/efi.h> |
| #include <linux/pgtable.h> |
| |
| #include <asm/set_memory.h> |
| #include <asm/e820/api.h> |
| #include <asm/efi.h> |
| #include <asm/fixmap.h> |
| #include <asm/tlbflush.h> |
| #include <asm/pgalloc.h> |
| #include <asm/memtype.h> |
| #include <asm/setup.h> |
| |
| #include "physaddr.h" |
| |
| /* |
| * Descriptor controlling ioremap() behavior. |
| */ |
| struct ioremap_desc { |
| unsigned int flags; |
| }; |
| |
| /* |
| * Fix up the linear direct mapping of the kernel to avoid cache attribute |
| * conflicts. |
| */ |
| int ioremap_change_attr(unsigned long vaddr, unsigned long size, |
| enum page_cache_mode pcm) |
| { |
| unsigned long nrpages = size >> PAGE_SHIFT; |
| int err; |
| |
| switch (pcm) { |
| case _PAGE_CACHE_MODE_UC: |
| default: |
| err = _set_memory_uc(vaddr, nrpages); |
| break; |
| case _PAGE_CACHE_MODE_WC: |
| err = _set_memory_wc(vaddr, nrpages); |
| break; |
| case _PAGE_CACHE_MODE_WT: |
| err = _set_memory_wt(vaddr, nrpages); |
| break; |
| case _PAGE_CACHE_MODE_WB: |
| err = _set_memory_wb(vaddr, nrpages); |
| break; |
| } |
| |
| return err; |
| } |
| |
| /* Does the range (or a subset of) contain normal RAM? */ |
| static unsigned int __ioremap_check_ram(struct resource *res) |
| { |
| unsigned long start_pfn, stop_pfn; |
| unsigned long i; |
| |
| if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) |
| return 0; |
| |
| start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| stop_pfn = (res->end + 1) >> PAGE_SHIFT; |
| if (stop_pfn > start_pfn) { |
| for (i = 0; i < (stop_pfn - start_pfn); ++i) |
| if (pfn_valid(start_pfn + i) && |
| !PageReserved(pfn_to_page(start_pfn + i))) |
| return IORES_MAP_SYSTEM_RAM; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * In a SEV guest, NONE and RESERVED should not be mapped encrypted because |
| * there the whole memory is already encrypted. |
| */ |
| static unsigned int __ioremap_check_encrypted(struct resource *res) |
| { |
| if (!sev_active()) |
| return 0; |
| |
| switch (res->desc) { |
| case IORES_DESC_NONE: |
| case IORES_DESC_RESERVED: |
| break; |
| default: |
| return IORES_MAP_ENCRYPTED; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The EFI runtime services data area is not covered by walk_mem_res(), but must |
| * be mapped encrypted when SEV is active. |
| */ |
| static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc) |
| { |
| if (!sev_active()) |
| return; |
| |
| if (!IS_ENABLED(CONFIG_EFI)) |
| return; |
| |
| if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA) |
| desc->flags |= IORES_MAP_ENCRYPTED; |
| } |
| |
| static int __ioremap_collect_map_flags(struct resource *res, void *arg) |
| { |
| struct ioremap_desc *desc = arg; |
| |
| if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) |
| desc->flags |= __ioremap_check_ram(res); |
| |
| if (!(desc->flags & IORES_MAP_ENCRYPTED)) |
| desc->flags |= __ioremap_check_encrypted(res); |
| |
| return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == |
| (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); |
| } |
| |
| /* |
| * To avoid multiple resource walks, this function walks resources marked as |
| * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a |
| * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). |
| * |
| * After that, deal with misc other ranges in __ioremap_check_other() which do |
| * not fall into the above category. |
| */ |
| static void __ioremap_check_mem(resource_size_t addr, unsigned long size, |
| struct ioremap_desc *desc) |
| { |
| u64 start, end; |
| |
| start = (u64)addr; |
| end = start + size - 1; |
| memset(desc, 0, sizeof(struct ioremap_desc)); |
| |
| walk_mem_res(start, end, desc, __ioremap_collect_map_flags); |
| |
| __ioremap_check_other(addr, desc); |
| } |
| |
| /* |
| * Remap an arbitrary physical address space into the kernel virtual |
| * address space. It transparently creates kernel huge I/O mapping when |
| * the physical address is aligned by a huge page size (1GB or 2MB) and |
| * the requested size is at least the huge page size. |
| * |
| * NOTE: MTRRs can override PAT memory types with a 4KB granularity. |
| * Therefore, the mapping code falls back to use a smaller page toward 4KB |
| * when a mapping range is covered by non-WB type of MTRRs. |
| * |
| * NOTE! We need to allow non-page-aligned mappings too: we will obviously |
| * have to convert them into an offset in a page-aligned mapping, but the |
| * caller shouldn't need to know that small detail. |
| */ |
| static void __iomem * |
| __ioremap_caller(resource_size_t phys_addr, unsigned long size, |
| enum page_cache_mode pcm, void *caller, bool encrypted) |
| { |
| unsigned long offset, vaddr; |
| resource_size_t last_addr; |
| const resource_size_t unaligned_phys_addr = phys_addr; |
| const unsigned long unaligned_size = size; |
| struct ioremap_desc io_desc; |
| struct vm_struct *area; |
| enum page_cache_mode new_pcm; |
| pgprot_t prot; |
| int retval; |
| void __iomem *ret_addr; |
| |
| /* Don't allow wraparound or zero size */ |
| last_addr = phys_addr + size - 1; |
| if (!size || last_addr < phys_addr) |
| return NULL; |
| |
| if (!phys_addr_valid(phys_addr)) { |
| printk(KERN_WARNING "ioremap: invalid physical address %llx\n", |
| (unsigned long long)phys_addr); |
| WARN_ON_ONCE(1); |
| return NULL; |
| } |
| |
| __ioremap_check_mem(phys_addr, size, &io_desc); |
| |
| /* |
| * Don't allow anybody to remap normal RAM that we're using.. |
| */ |
| if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { |
| WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", |
| &phys_addr, &last_addr); |
| return NULL; |
| } |
| |
| /* |
| * Mappings have to be page-aligned |
| */ |
| offset = phys_addr & ~PAGE_MASK; |
| phys_addr &= PHYSICAL_PAGE_MASK; |
| size = PAGE_ALIGN(last_addr+1) - phys_addr; |
| |
| retval = memtype_reserve(phys_addr, (u64)phys_addr + size, |
| pcm, &new_pcm); |
| if (retval) { |
| printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval); |
| return NULL; |
| } |
| |
| if (pcm != new_pcm) { |
| if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { |
| printk(KERN_ERR |
| "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", |
| (unsigned long long)phys_addr, |
| (unsigned long long)(phys_addr + size), |
| pcm, new_pcm); |
| goto err_free_memtype; |
| } |
| pcm = new_pcm; |
| } |
| |
| /* |
| * If the page being mapped is in memory and SEV is active then |
| * make sure the memory encryption attribute is enabled in the |
| * resulting mapping. |
| */ |
| prot = PAGE_KERNEL_IO; |
| if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) |
| prot = pgprot_encrypted(prot); |
| |
| switch (pcm) { |
| case _PAGE_CACHE_MODE_UC: |
| default: |
| prot = __pgprot(pgprot_val(prot) | |
| cachemode2protval(_PAGE_CACHE_MODE_UC)); |
| break; |
| case _PAGE_CACHE_MODE_UC_MINUS: |
| prot = __pgprot(pgprot_val(prot) | |
| cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); |
| break; |
| case _PAGE_CACHE_MODE_WC: |
| prot = __pgprot(pgprot_val(prot) | |
| cachemode2protval(_PAGE_CACHE_MODE_WC)); |
| break; |
| case _PAGE_CACHE_MODE_WT: |
| prot = __pgprot(pgprot_val(prot) | |
| cachemode2protval(_PAGE_CACHE_MODE_WT)); |
| break; |
| case _PAGE_CACHE_MODE_WB: |
| break; |
| } |
| |
| /* |
| * Ok, go for it.. |
| */ |
| area = get_vm_area_caller(size, VM_IOREMAP, caller); |
| if (!area) |
| goto err_free_memtype; |
| area->phys_addr = phys_addr; |
| vaddr = (unsigned long) area->addr; |
| |
| if (memtype_kernel_map_sync(phys_addr, size, pcm)) |
| goto err_free_area; |
| |
| if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) |
| goto err_free_area; |
| |
| ret_addr = (void __iomem *) (vaddr + offset); |
| mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); |
| |
| /* |
| * Check if the request spans more than any BAR in the iomem resource |
| * tree. |
| */ |
| if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) |
| pr_warn("caller %pS mapping multiple BARs\n", caller); |
| |
| return ret_addr; |
| err_free_area: |
| free_vm_area(area); |
| err_free_memtype: |
| memtype_free(phys_addr, phys_addr + size); |
| return NULL; |
| } |
| |
| /** |
| * ioremap - map bus memory into CPU space |
| * @phys_addr: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| * |
| * This version of ioremap ensures that the memory is marked uncachable |
| * on the CPU as well as honouring existing caching rules from things like |
| * the PCI bus. Note that there are other caches and buffers on many |
| * busses. In particular driver authors should read up on PCI writes |
| * |
| * It's useful if some control registers are in such an area and |
| * write combining or read caching is not desirable: |
| * |
| * Must be freed with iounmap. |
| */ |
| void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) |
| { |
| /* |
| * Ideally, this should be: |
| * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; |
| * |
| * Till we fix all X drivers to use ioremap_wc(), we will use |
| * UC MINUS. Drivers that are certain they need or can already |
| * be converted over to strong UC can use ioremap_uc(). |
| */ |
| enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; |
| |
| return __ioremap_caller(phys_addr, size, pcm, |
| __builtin_return_address(0), false); |
| } |
| EXPORT_SYMBOL(ioremap); |
| |
| /** |
| * ioremap_uc - map bus memory into CPU space as strongly uncachable |
| * @phys_addr: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap_uc performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| * |
| * This version of ioremap ensures that the memory is marked with a strong |
| * preference as completely uncachable on the CPU when possible. For non-PAT |
| * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT |
| * systems this will set the PAT entry for the pages as strong UC. This call |
| * will honor existing caching rules from things like the PCI bus. Note that |
| * there are other caches and buffers on many busses. In particular driver |
| * authors should read up on PCI writes. |
| * |
| * It's useful if some control registers are in such an area and |
| * write combining or read caching is not desirable: |
| * |
| * Must be freed with iounmap. |
| */ |
| void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) |
| { |
| enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; |
| |
| return __ioremap_caller(phys_addr, size, pcm, |
| __builtin_return_address(0), false); |
| } |
| EXPORT_SYMBOL_GPL(ioremap_uc); |
| |
| /** |
| * ioremap_wc - map memory into CPU space write combined |
| * @phys_addr: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * This version of ioremap ensures that the memory is marked write combining. |
| * Write combining allows faster writes to some hardware devices. |
| * |
| * Must be freed with iounmap. |
| */ |
| void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) |
| { |
| return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, |
| __builtin_return_address(0), false); |
| } |
| EXPORT_SYMBOL(ioremap_wc); |
| |
| /** |
| * ioremap_wt - map memory into CPU space write through |
| * @phys_addr: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * This version of ioremap ensures that the memory is marked write through. |
| * Write through stores data into memory while keeping the cache up-to-date. |
| * |
| * Must be freed with iounmap. |
| */ |
| void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) |
| { |
| return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, |
| __builtin_return_address(0), false); |
| } |
| EXPORT_SYMBOL(ioremap_wt); |
| |
| void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) |
| { |
| return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, |
| __builtin_return_address(0), true); |
| } |
| EXPORT_SYMBOL(ioremap_encrypted); |
| |
| void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) |
| { |
| return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, |
| __builtin_return_address(0), false); |
| } |
| EXPORT_SYMBOL(ioremap_cache); |
| |
| void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, |
| unsigned long prot_val) |
| { |
| return __ioremap_caller(phys_addr, size, |
| pgprot2cachemode(__pgprot(prot_val)), |
| __builtin_return_address(0), false); |
| } |
| EXPORT_SYMBOL(ioremap_prot); |
| |
| /** |
| * iounmap - Free a IO remapping |
| * @addr: virtual address from ioremap_* |
| * |
| * Caller must ensure there is only one unmapping for the same pointer. |
| */ |
| void iounmap(volatile void __iomem *addr) |
| { |
| struct vm_struct *p, *o; |
| |
| if ((void __force *)addr <= high_memory) |
| return; |
| |
| /* |
| * The PCI/ISA range special-casing was removed from __ioremap() |
| * so this check, in theory, can be removed. However, there are |
| * cases where iounmap() is called for addresses not obtained via |
| * ioremap() (vga16fb for example). Add a warning so that these |
| * cases can be caught and fixed. |
| */ |
| if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && |
| (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { |
| WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); |
| return; |
| } |
| |
| mmiotrace_iounmap(addr); |
| |
| addr = (volatile void __iomem *) |
| (PAGE_MASK & (unsigned long __force)addr); |
| |
| /* Use the vm area unlocked, assuming the caller |
| ensures there isn't another iounmap for the same address |
| in parallel. Reuse of the virtual address is prevented by |
| leaving it in the global lists until we're done with it. |
| cpa takes care of the direct mappings. */ |
| p = find_vm_area((void __force *)addr); |
| |
| if (!p) { |
| printk(KERN_ERR "iounmap: bad address %p\n", addr); |
| dump_stack(); |
| return; |
| } |
| |
| memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p)); |
| |
| /* Finally remove it */ |
| o = remove_vm_area((void __force *)addr); |
| BUG_ON(p != o || o == NULL); |
| kfree(p); |
| } |
| EXPORT_SYMBOL(iounmap); |
| |
| int __init arch_ioremap_p4d_supported(void) |
| { |
| return 0; |
| } |
| |
| int __init arch_ioremap_pud_supported(void) |
| { |
| #ifdef CONFIG_X86_64 |
| return boot_cpu_has(X86_FEATURE_GBPAGES); |
| #else |
| return 0; |
| #endif |
| } |
| |
| int __init arch_ioremap_pmd_supported(void) |
| { |
| return boot_cpu_has(X86_FEATURE_PSE); |
| } |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| void *xlate_dev_mem_ptr(phys_addr_t phys) |
| { |
| unsigned long start = phys & PAGE_MASK; |
| unsigned long offset = phys & ~PAGE_MASK; |
| void *vaddr; |
| |
| /* memremap() maps if RAM, otherwise falls back to ioremap() */ |
| vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); |
| |
| /* Only add the offset on success and return NULL if memremap() failed */ |
| if (vaddr) |
| vaddr += offset; |
| |
| return vaddr; |
| } |
| |
| void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) |
| { |
| memunmap((void *)((unsigned long)addr & PAGE_MASK)); |
| } |
| |
| /* |
| * Examine the physical address to determine if it is an area of memory |
| * that should be mapped decrypted. If the memory is not part of the |
| * kernel usable area it was accessed and created decrypted, so these |
| * areas should be mapped decrypted. And since the encryption key can |
| * change across reboots, persistent memory should also be mapped |
| * decrypted. |
| * |
| * If SEV is active, that implies that BIOS/UEFI also ran encrypted so |
| * only persistent memory should be mapped decrypted. |
| */ |
| static bool memremap_should_map_decrypted(resource_size_t phys_addr, |
| unsigned long size) |
| { |
| int is_pmem; |
| |
| /* |
| * Check if the address is part of a persistent memory region. |
| * This check covers areas added by E820, EFI and ACPI. |
| */ |
| is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, |
| IORES_DESC_PERSISTENT_MEMORY); |
| if (is_pmem != REGION_DISJOINT) |
| return true; |
| |
| /* |
| * Check if the non-volatile attribute is set for an EFI |
| * reserved area. |
| */ |
| if (efi_enabled(EFI_BOOT)) { |
| switch (efi_mem_type(phys_addr)) { |
| case EFI_RESERVED_TYPE: |
| if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) |
| return true; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Check if the address is outside kernel usable area */ |
| switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { |
| case E820_TYPE_RESERVED: |
| case E820_TYPE_ACPI: |
| case E820_TYPE_NVS: |
| case E820_TYPE_UNUSABLE: |
| /* For SEV, these areas are encrypted */ |
| if (sev_active()) |
| break; |
| fallthrough; |
| |
| case E820_TYPE_PRAM: |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Examine the physical address to determine if it is EFI data. Check |
| * it against the boot params structure and EFI tables and memory types. |
| */ |
| static bool memremap_is_efi_data(resource_size_t phys_addr, |
| unsigned long size) |
| { |
| u64 paddr; |
| |
| /* Check if the address is part of EFI boot/runtime data */ |
| if (!efi_enabled(EFI_BOOT)) |
| return false; |
| |
| paddr = boot_params.efi_info.efi_memmap_hi; |
| paddr <<= 32; |
| paddr |= boot_params.efi_info.efi_memmap; |
| if (phys_addr == paddr) |
| return true; |
| |
| paddr = boot_params.efi_info.efi_systab_hi; |
| paddr <<= 32; |
| paddr |= boot_params.efi_info.efi_systab; |
| if (phys_addr == paddr) |
| return true; |
| |
| if (efi_is_table_address(phys_addr)) |
| return true; |
| |
| switch (efi_mem_type(phys_addr)) { |
| case EFI_BOOT_SERVICES_DATA: |
| case EFI_RUNTIME_SERVICES_DATA: |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Examine the physical address to determine if it is boot data by checking |
| * it against the boot params setup_data chain. |
| */ |
| static bool memremap_is_setup_data(resource_size_t phys_addr, |
| unsigned long size) |
| { |
| struct setup_data *data; |
| u64 paddr, paddr_next; |
| |
| paddr = boot_params.hdr.setup_data; |
| while (paddr) { |
| unsigned int len; |
| |
| if (phys_addr == paddr) |
| return true; |
| |
| data = memremap(paddr, sizeof(*data), |
| MEMREMAP_WB | MEMREMAP_DEC); |
| |
| paddr_next = data->next; |
| len = data->len; |
| |
| if ((phys_addr > paddr) && (phys_addr < (paddr + len))) { |
| memunmap(data); |
| return true; |
| } |
| |
| if (data->type == SETUP_INDIRECT && |
| ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) { |
| paddr = ((struct setup_indirect *)data->data)->addr; |
| len = ((struct setup_indirect *)data->data)->len; |
| } |
| |
| memunmap(data); |
| |
| if ((phys_addr > paddr) && (phys_addr < (paddr + len))) |
| return true; |
| |
| paddr = paddr_next; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Examine the physical address to determine if it is boot data by checking |
| * it against the boot params setup_data chain (early boot version). |
| */ |
| static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, |
| unsigned long size) |
| { |
| struct setup_data *data; |
| u64 paddr, paddr_next; |
| |
| paddr = boot_params.hdr.setup_data; |
| while (paddr) { |
| unsigned int len; |
| |
| if (phys_addr == paddr) |
| return true; |
| |
| data = early_memremap_decrypted(paddr, sizeof(*data)); |
| |
| paddr_next = data->next; |
| len = data->len; |
| |
| early_memunmap(data, sizeof(*data)); |
| |
| if ((phys_addr > paddr) && (phys_addr < (paddr + len))) |
| return true; |
| |
| paddr = paddr_next; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Architecture function to determine if RAM remap is allowed. By default, a |
| * RAM remap will map the data as encrypted. Determine if a RAM remap should |
| * not be done so that the data will be mapped decrypted. |
| */ |
| bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, |
| unsigned long flags) |
| { |
| if (!mem_encrypt_active()) |
| return true; |
| |
| if (flags & MEMREMAP_ENC) |
| return true; |
| |
| if (flags & MEMREMAP_DEC) |
| return false; |
| |
| if (sme_active()) { |
| if (memremap_is_setup_data(phys_addr, size) || |
| memremap_is_efi_data(phys_addr, size)) |
| return false; |
| } |
| |
| return !memremap_should_map_decrypted(phys_addr, size); |
| } |
| |
| /* |
| * Architecture override of __weak function to adjust the protection attributes |
| * used when remapping memory. By default, early_memremap() will map the data |
| * as encrypted. Determine if an encrypted mapping should not be done and set |
| * the appropriate protection attributes. |
| */ |
| pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, |
| unsigned long size, |
| pgprot_t prot) |
| { |
| bool encrypted_prot; |
| |
| if (!mem_encrypt_active()) |
| return prot; |
| |
| encrypted_prot = true; |
| |
| if (sme_active()) { |
| if (early_memremap_is_setup_data(phys_addr, size) || |
| memremap_is_efi_data(phys_addr, size)) |
| encrypted_prot = false; |
| } |
| |
| if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) |
| encrypted_prot = false; |
| |
| return encrypted_prot ? pgprot_encrypted(prot) |
| : pgprot_decrypted(prot); |
| } |
| |
| bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) |
| { |
| return arch_memremap_can_ram_remap(phys_addr, size, 0); |
| } |
| |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| /* Remap memory with encryption */ |
| void __init *early_memremap_encrypted(resource_size_t phys_addr, |
| unsigned long size) |
| { |
| return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); |
| } |
| |
| /* |
| * Remap memory with encryption and write-protected - cannot be called |
| * before pat_init() is called |
| */ |
| void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, |
| unsigned long size) |
| { |
| if (!x86_has_pat_wp()) |
| return NULL; |
| return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); |
| } |
| |
| /* Remap memory without encryption */ |
| void __init *early_memremap_decrypted(resource_size_t phys_addr, |
| unsigned long size) |
| { |
| return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); |
| } |
| |
| /* |
| * Remap memory without encryption and write-protected - cannot be called |
| * before pat_init() is called |
| */ |
| void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, |
| unsigned long size) |
| { |
| if (!x86_has_pat_wp()) |
| return NULL; |
| return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); |
| } |
| #endif /* CONFIG_AMD_MEM_ENCRYPT */ |
| |
| static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; |
| |
| static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) |
| { |
| /* Don't assume we're using swapper_pg_dir at this point */ |
| pgd_t *base = __va(read_cr3_pa()); |
| pgd_t *pgd = &base[pgd_index(addr)]; |
| p4d_t *p4d = p4d_offset(pgd, addr); |
| pud_t *pud = pud_offset(p4d, addr); |
| pmd_t *pmd = pmd_offset(pud, addr); |
| |
| return pmd; |
| } |
| |
| static inline pte_t * __init early_ioremap_pte(unsigned long addr) |
| { |
| return &bm_pte[pte_index(addr)]; |
| } |
| |
| bool __init is_early_ioremap_ptep(pte_t *ptep) |
| { |
| return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; |
| } |
| |
| void __init early_ioremap_init(void) |
| { |
| pmd_t *pmd; |
| |
| #ifdef CONFIG_X86_64 |
| BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); |
| #else |
| WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); |
| #endif |
| |
| early_ioremap_setup(); |
| |
| pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); |
| memset(bm_pte, 0, sizeof(bm_pte)); |
| pmd_populate_kernel(&init_mm, pmd, bm_pte); |
| |
| /* |
| * The boot-ioremap range spans multiple pmds, for which |
| * we are not prepared: |
| */ |
| #define __FIXADDR_TOP (-PAGE_SIZE) |
| BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) |
| != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); |
| #undef __FIXADDR_TOP |
| if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { |
| WARN_ON(1); |
| printk(KERN_WARNING "pmd %p != %p\n", |
| pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); |
| printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", |
| fix_to_virt(FIX_BTMAP_BEGIN)); |
| printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", |
| fix_to_virt(FIX_BTMAP_END)); |
| |
| printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); |
| printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", |
| FIX_BTMAP_BEGIN); |
| } |
| } |
| |
| void __init __early_set_fixmap(enum fixed_addresses idx, |
| phys_addr_t phys, pgprot_t flags) |
| { |
| unsigned long addr = __fix_to_virt(idx); |
| pte_t *pte; |
| |
| if (idx >= __end_of_fixed_addresses) { |
| BUG(); |
| return; |
| } |
| pte = early_ioremap_pte(addr); |
| |
| /* Sanitize 'prot' against any unsupported bits: */ |
| pgprot_val(flags) &= __supported_pte_mask; |
| |
| if (pgprot_val(flags)) |
| set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); |
| else |
| pte_clear(&init_mm, addr, pte); |
| flush_tlb_one_kernel(addr); |
| } |