| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Common EFI memory map functions. |
| */ |
| |
| #define pr_fmt(fmt) "efi: " fmt |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/efi.h> |
| #include <linux/io.h> |
| #include <asm/early_ioremap.h> |
| #include <linux/memblock.h> |
| #include <linux/slab.h> |
| |
| static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size) |
| { |
| return memblock_phys_alloc(size, SMP_CACHE_BYTES); |
| } |
| |
| static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size) |
| { |
| unsigned int order = get_order(size); |
| struct page *p = alloc_pages(GFP_KERNEL, order); |
| |
| if (!p) |
| return 0; |
| |
| return PFN_PHYS(page_to_pfn(p)); |
| } |
| |
| void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags) |
| { |
| if (flags & EFI_MEMMAP_MEMBLOCK) { |
| if (slab_is_available()) |
| memblock_free_late(phys, size); |
| else |
| memblock_free(phys, size); |
| } else if (flags & EFI_MEMMAP_SLAB) { |
| struct page *p = pfn_to_page(PHYS_PFN(phys)); |
| unsigned int order = get_order(size); |
| |
| free_pages((unsigned long) page_address(p), order); |
| } |
| } |
| |
| static void __init efi_memmap_free(void) |
| { |
| __efi_memmap_free(efi.memmap.phys_map, |
| efi.memmap.desc_size * efi.memmap.nr_map, |
| efi.memmap.flags); |
| } |
| |
| /** |
| * efi_memmap_alloc - Allocate memory for the EFI memory map |
| * @num_entries: Number of entries in the allocated map. |
| * @data: efi memmap installation parameters |
| * |
| * Depending on whether mm_init() has already been invoked or not, |
| * either memblock or "normal" page allocation is used. |
| * |
| * Returns the physical address of the allocated memory map on |
| * success, zero on failure. |
| */ |
| int __init efi_memmap_alloc(unsigned int num_entries, |
| struct efi_memory_map_data *data) |
| { |
| /* Expect allocation parameters are zero initialized */ |
| WARN_ON(data->phys_map || data->size); |
| |
| data->size = num_entries * efi.memmap.desc_size; |
| data->desc_version = efi.memmap.desc_version; |
| data->desc_size = efi.memmap.desc_size; |
| data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK); |
| data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE; |
| |
| if (slab_is_available()) { |
| data->flags |= EFI_MEMMAP_SLAB; |
| data->phys_map = __efi_memmap_alloc_late(data->size); |
| } else { |
| data->flags |= EFI_MEMMAP_MEMBLOCK; |
| data->phys_map = __efi_memmap_alloc_early(data->size); |
| } |
| |
| if (!data->phys_map) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /** |
| * __efi_memmap_init - Common code for mapping the EFI memory map |
| * @data: EFI memory map data |
| * |
| * This function takes care of figuring out which function to use to |
| * map the EFI memory map in efi.memmap based on how far into the boot |
| * we are. |
| * |
| * During bootup EFI_MEMMAP_LATE in data->flags should be clear since we |
| * only have access to the early_memremap*() functions as the vmalloc |
| * space isn't setup. Once the kernel is fully booted we can fallback |
| * to the more robust memremap*() API. |
| * |
| * Returns zero on success, a negative error code on failure. |
| */ |
| static int __init __efi_memmap_init(struct efi_memory_map_data *data) |
| { |
| struct efi_memory_map map; |
| phys_addr_t phys_map; |
| |
| if (efi_enabled(EFI_PARAVIRT)) |
| return 0; |
| |
| phys_map = data->phys_map; |
| |
| if (data->flags & EFI_MEMMAP_LATE) |
| map.map = memremap(phys_map, data->size, MEMREMAP_WB); |
| else |
| map.map = early_memremap(phys_map, data->size); |
| |
| if (!map.map) { |
| pr_err("Could not map the memory map!\n"); |
| return -ENOMEM; |
| } |
| |
| /* NOP if data->flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB) == 0 */ |
| efi_memmap_free(); |
| |
| map.phys_map = data->phys_map; |
| map.nr_map = data->size / data->desc_size; |
| map.map_end = map.map + data->size; |
| |
| map.desc_version = data->desc_version; |
| map.desc_size = data->desc_size; |
| map.flags = data->flags; |
| |
| set_bit(EFI_MEMMAP, &efi.flags); |
| |
| efi.memmap = map; |
| |
| return 0; |
| } |
| |
| /** |
| * efi_memmap_init_early - Map the EFI memory map data structure |
| * @data: EFI memory map data |
| * |
| * Use early_memremap() to map the passed in EFI memory map and assign |
| * it to efi.memmap. |
| */ |
| int __init efi_memmap_init_early(struct efi_memory_map_data *data) |
| { |
| /* Cannot go backwards */ |
| WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE); |
| |
| data->flags = 0; |
| return __efi_memmap_init(data); |
| } |
| |
| void __init efi_memmap_unmap(void) |
| { |
| if (!efi_enabled(EFI_MEMMAP)) |
| return; |
| |
| if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) { |
| unsigned long size; |
| |
| size = efi.memmap.desc_size * efi.memmap.nr_map; |
| early_memunmap(efi.memmap.map, size); |
| } else { |
| memunmap(efi.memmap.map); |
| } |
| |
| efi.memmap.map = NULL; |
| clear_bit(EFI_MEMMAP, &efi.flags); |
| } |
| |
| /** |
| * efi_memmap_init_late - Map efi.memmap with memremap() |
| * @phys_addr: Physical address of the new EFI memory map |
| * @size: Size in bytes of the new EFI memory map |
| * |
| * Setup a mapping of the EFI memory map using ioremap_cache(). This |
| * function should only be called once the vmalloc space has been |
| * setup and is therefore not suitable for calling during early EFI |
| * initialise, e.g. in efi_init(). Additionally, it expects |
| * efi_memmap_init_early() to have already been called. |
| * |
| * The reason there are two EFI memmap initialisation |
| * (efi_memmap_init_early() and this late version) is because the |
| * early EFI memmap should be explicitly unmapped once EFI |
| * initialisation is complete as the fixmap space used to map the EFI |
| * memmap (via early_memremap()) is a scarce resource. |
| * |
| * This late mapping is intended to persist for the duration of |
| * runtime so that things like efi_mem_desc_lookup() and |
| * efi_mem_attributes() always work. |
| * |
| * Returns zero on success, a negative error code on failure. |
| */ |
| int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size) |
| { |
| struct efi_memory_map_data data = { |
| .phys_map = addr, |
| .size = size, |
| .flags = EFI_MEMMAP_LATE, |
| }; |
| |
| /* Did we forget to unmap the early EFI memmap? */ |
| WARN_ON(efi.memmap.map); |
| |
| /* Were we already called? */ |
| WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE); |
| |
| /* |
| * It makes no sense to allow callers to register different |
| * values for the following fields. Copy them out of the |
| * existing early EFI memmap. |
| */ |
| data.desc_version = efi.memmap.desc_version; |
| data.desc_size = efi.memmap.desc_size; |
| |
| return __efi_memmap_init(&data); |
| } |
| |
| /** |
| * efi_memmap_install - Install a new EFI memory map in efi.memmap |
| * @ctx: map allocation parameters (address, size, flags) |
| * |
| * Unlike efi_memmap_init_*(), this function does not allow the caller |
| * to switch from early to late mappings. It simply uses the existing |
| * mapping function and installs the new memmap. |
| * |
| * Returns zero on success, a negative error code on failure. |
| */ |
| int __init efi_memmap_install(struct efi_memory_map_data *data) |
| { |
| efi_memmap_unmap(); |
| |
| return __efi_memmap_init(data); |
| } |
| |
| /** |
| * efi_memmap_split_count - Count number of additional EFI memmap entries |
| * @md: EFI memory descriptor to split |
| * @range: Address range (start, end) to split around |
| * |
| * Returns the number of additional EFI memmap entries required to |
| * accomodate @range. |
| */ |
| int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range) |
| { |
| u64 m_start, m_end; |
| u64 start, end; |
| int count = 0; |
| |
| start = md->phys_addr; |
| end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1; |
| |
| /* modifying range */ |
| m_start = range->start; |
| m_end = range->end; |
| |
| if (m_start <= start) { |
| /* split into 2 parts */ |
| if (start < m_end && m_end < end) |
| count++; |
| } |
| |
| if (start < m_start && m_start < end) { |
| /* split into 3 parts */ |
| if (m_end < end) |
| count += 2; |
| /* split into 2 parts */ |
| if (end <= m_end) |
| count++; |
| } |
| |
| return count; |
| } |
| |
| /** |
| * efi_memmap_insert - Insert a memory region in an EFI memmap |
| * @old_memmap: The existing EFI memory map structure |
| * @buf: Address of buffer to store new map |
| * @mem: Memory map entry to insert |
| * |
| * It is suggested that you call efi_memmap_split_count() first |
| * to see how large @buf needs to be. |
| */ |
| void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf, |
| struct efi_mem_range *mem) |
| { |
| u64 m_start, m_end, m_attr; |
| efi_memory_desc_t *md; |
| u64 start, end; |
| void *old, *new; |
| |
| /* modifying range */ |
| m_start = mem->range.start; |
| m_end = mem->range.end; |
| m_attr = mem->attribute; |
| |
| /* |
| * The EFI memory map deals with regions in EFI_PAGE_SIZE |
| * units. Ensure that the region described by 'mem' is aligned |
| * correctly. |
| */ |
| if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) || |
| !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) { |
| WARN_ON(1); |
| return; |
| } |
| |
| for (old = old_memmap->map, new = buf; |
| old < old_memmap->map_end; |
| old += old_memmap->desc_size, new += old_memmap->desc_size) { |
| |
| /* copy original EFI memory descriptor */ |
| memcpy(new, old, old_memmap->desc_size); |
| md = new; |
| start = md->phys_addr; |
| end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; |
| |
| if (m_start <= start && end <= m_end) |
| md->attribute |= m_attr; |
| |
| if (m_start <= start && |
| (start < m_end && m_end < end)) { |
| /* first part */ |
| md->attribute |= m_attr; |
| md->num_pages = (m_end - md->phys_addr + 1) >> |
| EFI_PAGE_SHIFT; |
| /* latter part */ |
| new += old_memmap->desc_size; |
| memcpy(new, old, old_memmap->desc_size); |
| md = new; |
| md->phys_addr = m_end + 1; |
| md->num_pages = (end - md->phys_addr + 1) >> |
| EFI_PAGE_SHIFT; |
| } |
| |
| if ((start < m_start && m_start < end) && m_end < end) { |
| /* first part */ |
| md->num_pages = (m_start - md->phys_addr) >> |
| EFI_PAGE_SHIFT; |
| /* middle part */ |
| new += old_memmap->desc_size; |
| memcpy(new, old, old_memmap->desc_size); |
| md = new; |
| md->attribute |= m_attr; |
| md->phys_addr = m_start; |
| md->num_pages = (m_end - m_start + 1) >> |
| EFI_PAGE_SHIFT; |
| /* last part */ |
| new += old_memmap->desc_size; |
| memcpy(new, old, old_memmap->desc_size); |
| md = new; |
| md->phys_addr = m_end + 1; |
| md->num_pages = (end - m_end) >> |
| EFI_PAGE_SHIFT; |
| } |
| |
| if ((start < m_start && m_start < end) && |
| (end <= m_end)) { |
| /* first part */ |
| md->num_pages = (m_start - md->phys_addr) >> |
| EFI_PAGE_SHIFT; |
| /* latter part */ |
| new += old_memmap->desc_size; |
| memcpy(new, old, old_memmap->desc_size); |
| md = new; |
| md->phys_addr = m_start; |
| md->num_pages = (end - md->phys_addr + 1) >> |
| EFI_PAGE_SHIFT; |
| md->attribute |= m_attr; |
| } |
| } |
| } |