blob: e6b8d6dfb598efd578a34493f9eec559775aa860 [file] [log] [blame]
/*
* Copyright (c) 2006 Dave Airlie <airlied@linux.ie>
* Copyright © 2006-2008,2010 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
#include <linux/export.h>
#include <linux/i2c-algo-bit.h>
#include <linux/i2c.h>
#include <drm/drm_hdcp.h>
#include "i915_drv.h"
#include "intel_display_types.h"
#include "intel_gmbus.h"
struct gmbus_pin {
const char *name;
enum i915_gpio gpio;
};
/* Map gmbus pin pairs to names and registers. */
static const struct gmbus_pin gmbus_pins[] = {
[GMBUS_PIN_SSC] = { "ssc", GPIOB },
[GMBUS_PIN_VGADDC] = { "vga", GPIOA },
[GMBUS_PIN_PANEL] = { "panel", GPIOC },
[GMBUS_PIN_DPC] = { "dpc", GPIOD },
[GMBUS_PIN_DPB] = { "dpb", GPIOE },
[GMBUS_PIN_DPD] = { "dpd", GPIOF },
};
static const struct gmbus_pin gmbus_pins_bdw[] = {
[GMBUS_PIN_VGADDC] = { "vga", GPIOA },
[GMBUS_PIN_DPC] = { "dpc", GPIOD },
[GMBUS_PIN_DPB] = { "dpb", GPIOE },
[GMBUS_PIN_DPD] = { "dpd", GPIOF },
};
static const struct gmbus_pin gmbus_pins_skl[] = {
[GMBUS_PIN_DPC] = { "dpc", GPIOD },
[GMBUS_PIN_DPB] = { "dpb", GPIOE },
[GMBUS_PIN_DPD] = { "dpd", GPIOF },
};
static const struct gmbus_pin gmbus_pins_bxt[] = {
[GMBUS_PIN_1_BXT] = { "dpb", GPIOB },
[GMBUS_PIN_2_BXT] = { "dpc", GPIOC },
[GMBUS_PIN_3_BXT] = { "misc", GPIOD },
};
static const struct gmbus_pin gmbus_pins_cnp[] = {
[GMBUS_PIN_1_BXT] = { "dpb", GPIOB },
[GMBUS_PIN_2_BXT] = { "dpc", GPIOC },
[GMBUS_PIN_3_BXT] = { "misc", GPIOD },
[GMBUS_PIN_4_CNP] = { "dpd", GPIOE },
};
static const struct gmbus_pin gmbus_pins_icp[] = {
[GMBUS_PIN_1_BXT] = { "dpa", GPIOB },
[GMBUS_PIN_2_BXT] = { "dpb", GPIOC },
[GMBUS_PIN_3_BXT] = { "dpc", GPIOD },
[GMBUS_PIN_9_TC1_ICP] = { "tc1", GPIOJ },
[GMBUS_PIN_10_TC2_ICP] = { "tc2", GPIOK },
[GMBUS_PIN_11_TC3_ICP] = { "tc3", GPIOL },
[GMBUS_PIN_12_TC4_ICP] = { "tc4", GPIOM },
[GMBUS_PIN_13_TC5_TGP] = { "tc5", GPION },
[GMBUS_PIN_14_TC6_TGP] = { "tc6", GPIOO },
};
/* pin is expected to be valid */
static const struct gmbus_pin *get_gmbus_pin(struct drm_i915_private *dev_priv,
unsigned int pin)
{
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
return &gmbus_pins_icp[pin];
else if (HAS_PCH_CNP(dev_priv))
return &gmbus_pins_cnp[pin];
else if (IS_GEN9_LP(dev_priv))
return &gmbus_pins_bxt[pin];
else if (IS_GEN9_BC(dev_priv))
return &gmbus_pins_skl[pin];
else if (IS_BROADWELL(dev_priv))
return &gmbus_pins_bdw[pin];
else
return &gmbus_pins[pin];
}
bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
unsigned int pin)
{
unsigned int size;
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
size = ARRAY_SIZE(gmbus_pins_icp);
else if (HAS_PCH_CNP(dev_priv))
size = ARRAY_SIZE(gmbus_pins_cnp);
else if (IS_GEN9_LP(dev_priv))
size = ARRAY_SIZE(gmbus_pins_bxt);
else if (IS_GEN9_BC(dev_priv))
size = ARRAY_SIZE(gmbus_pins_skl);
else if (IS_BROADWELL(dev_priv))
size = ARRAY_SIZE(gmbus_pins_bdw);
else
size = ARRAY_SIZE(gmbus_pins);
return pin < size && get_gmbus_pin(dev_priv, pin)->name;
}
/* Intel GPIO access functions */
#define I2C_RISEFALL_TIME 10
static inline struct intel_gmbus *
to_intel_gmbus(struct i2c_adapter *i2c)
{
return container_of(i2c, struct intel_gmbus, adapter);
}
void
intel_gmbus_reset(struct drm_i915_private *dev_priv)
{
intel_de_write(dev_priv, GMBUS0, 0);
intel_de_write(dev_priv, GMBUS4, 0);
}
static void pnv_gmbus_clock_gating(struct drm_i915_private *dev_priv,
bool enable)
{
u32 val;
/* When using bit bashing for I2C, this bit needs to be set to 1 */
val = intel_de_read(dev_priv, DSPCLK_GATE_D);
if (!enable)
val |= PNV_GMBUSUNIT_CLOCK_GATE_DISABLE;
else
val &= ~PNV_GMBUSUNIT_CLOCK_GATE_DISABLE;
intel_de_write(dev_priv, DSPCLK_GATE_D, val);
}
static void pch_gmbus_clock_gating(struct drm_i915_private *dev_priv,
bool enable)
{
u32 val;
val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
if (!enable)
val |= PCH_GMBUSUNIT_CLOCK_GATE_DISABLE;
else
val &= ~PCH_GMBUSUNIT_CLOCK_GATE_DISABLE;
intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
}
static void bxt_gmbus_clock_gating(struct drm_i915_private *dev_priv,
bool enable)
{
u32 val;
val = intel_de_read(dev_priv, GEN9_CLKGATE_DIS_4);
if (!enable)
val |= BXT_GMBUS_GATING_DIS;
else
val &= ~BXT_GMBUS_GATING_DIS;
intel_de_write(dev_priv, GEN9_CLKGATE_DIS_4, val);
}
static u32 get_reserved(struct intel_gmbus *bus)
{
struct drm_i915_private *i915 = bus->dev_priv;
struct intel_uncore *uncore = &i915->uncore;
u32 reserved = 0;
/* On most chips, these bits must be preserved in software. */
if (!IS_I830(i915) && !IS_I845G(i915))
reserved = intel_uncore_read_notrace(uncore, bus->gpio_reg) &
(GPIO_DATA_PULLUP_DISABLE |
GPIO_CLOCK_PULLUP_DISABLE);
return reserved;
}
static int get_clock(void *data)
{
struct intel_gmbus *bus = data;
struct intel_uncore *uncore = &bus->dev_priv->uncore;
u32 reserved = get_reserved(bus);
intel_uncore_write_notrace(uncore,
bus->gpio_reg,
reserved | GPIO_CLOCK_DIR_MASK);
intel_uncore_write_notrace(uncore, bus->gpio_reg, reserved);
return (intel_uncore_read_notrace(uncore, bus->gpio_reg) &
GPIO_CLOCK_VAL_IN) != 0;
}
static int get_data(void *data)
{
struct intel_gmbus *bus = data;
struct intel_uncore *uncore = &bus->dev_priv->uncore;
u32 reserved = get_reserved(bus);
intel_uncore_write_notrace(uncore,
bus->gpio_reg,
reserved | GPIO_DATA_DIR_MASK);
intel_uncore_write_notrace(uncore, bus->gpio_reg, reserved);
return (intel_uncore_read_notrace(uncore, bus->gpio_reg) &
GPIO_DATA_VAL_IN) != 0;
}
static void set_clock(void *data, int state_high)
{
struct intel_gmbus *bus = data;
struct intel_uncore *uncore = &bus->dev_priv->uncore;
u32 reserved = get_reserved(bus);
u32 clock_bits;
if (state_high)
clock_bits = GPIO_CLOCK_DIR_IN | GPIO_CLOCK_DIR_MASK;
else
clock_bits = GPIO_CLOCK_DIR_OUT | GPIO_CLOCK_DIR_MASK |
GPIO_CLOCK_VAL_MASK;
intel_uncore_write_notrace(uncore,
bus->gpio_reg,
reserved | clock_bits);
intel_uncore_posting_read(uncore, bus->gpio_reg);
}
static void set_data(void *data, int state_high)
{
struct intel_gmbus *bus = data;
struct intel_uncore *uncore = &bus->dev_priv->uncore;
u32 reserved = get_reserved(bus);
u32 data_bits;
if (state_high)
data_bits = GPIO_DATA_DIR_IN | GPIO_DATA_DIR_MASK;
else
data_bits = GPIO_DATA_DIR_OUT | GPIO_DATA_DIR_MASK |
GPIO_DATA_VAL_MASK;
intel_uncore_write_notrace(uncore, bus->gpio_reg, reserved | data_bits);
intel_uncore_posting_read(uncore, bus->gpio_reg);
}
static int
intel_gpio_pre_xfer(struct i2c_adapter *adapter)
{
struct intel_gmbus *bus = container_of(adapter,
struct intel_gmbus,
adapter);
struct drm_i915_private *dev_priv = bus->dev_priv;
intel_gmbus_reset(dev_priv);
if (IS_PINEVIEW(dev_priv))
pnv_gmbus_clock_gating(dev_priv, false);
set_data(bus, 1);
set_clock(bus, 1);
udelay(I2C_RISEFALL_TIME);
return 0;
}
static void
intel_gpio_post_xfer(struct i2c_adapter *adapter)
{
struct intel_gmbus *bus = container_of(adapter,
struct intel_gmbus,
adapter);
struct drm_i915_private *dev_priv = bus->dev_priv;
set_data(bus, 1);
set_clock(bus, 1);
if (IS_PINEVIEW(dev_priv))
pnv_gmbus_clock_gating(dev_priv, true);
}
static void
intel_gpio_setup(struct intel_gmbus *bus, unsigned int pin)
{
struct drm_i915_private *dev_priv = bus->dev_priv;
struct i2c_algo_bit_data *algo;
algo = &bus->bit_algo;
bus->gpio_reg = GPIO(get_gmbus_pin(dev_priv, pin)->gpio);
bus->adapter.algo_data = algo;
algo->setsda = set_data;
algo->setscl = set_clock;
algo->getsda = get_data;
algo->getscl = get_clock;
algo->pre_xfer = intel_gpio_pre_xfer;
algo->post_xfer = intel_gpio_post_xfer;
algo->udelay = I2C_RISEFALL_TIME;
algo->timeout = usecs_to_jiffies(2200);
algo->data = bus;
}
static int gmbus_wait(struct drm_i915_private *dev_priv, u32 status, u32 irq_en)
{
DEFINE_WAIT(wait);
u32 gmbus2;
int ret;
/* Important: The hw handles only the first bit, so set only one! Since
* we also need to check for NAKs besides the hw ready/idle signal, we
* need to wake up periodically and check that ourselves.
*/
if (!HAS_GMBUS_IRQ(dev_priv))
irq_en = 0;
add_wait_queue(&dev_priv->gmbus_wait_queue, &wait);
intel_de_write_fw(dev_priv, GMBUS4, irq_en);
status |= GMBUS_SATOER;
ret = wait_for_us((gmbus2 = intel_de_read_fw(dev_priv, GMBUS2)) & status,
2);
if (ret)
ret = wait_for((gmbus2 = intel_de_read_fw(dev_priv, GMBUS2)) & status,
50);
intel_de_write_fw(dev_priv, GMBUS4, 0);
remove_wait_queue(&dev_priv->gmbus_wait_queue, &wait);
if (gmbus2 & GMBUS_SATOER)
return -ENXIO;
return ret;
}
static int
gmbus_wait_idle(struct drm_i915_private *dev_priv)
{
DEFINE_WAIT(wait);
u32 irq_enable;
int ret;
/* Important: The hw handles only the first bit, so set only one! */
irq_enable = 0;
if (HAS_GMBUS_IRQ(dev_priv))
irq_enable = GMBUS_IDLE_EN;
add_wait_queue(&dev_priv->gmbus_wait_queue, &wait);
intel_de_write_fw(dev_priv, GMBUS4, irq_enable);
ret = intel_wait_for_register_fw(&dev_priv->uncore,
GMBUS2, GMBUS_ACTIVE, 0,
10);
intel_de_write_fw(dev_priv, GMBUS4, 0);
remove_wait_queue(&dev_priv->gmbus_wait_queue, &wait);
return ret;
}
static unsigned int gmbus_max_xfer_size(struct drm_i915_private *dev_priv)
{
return INTEL_GEN(dev_priv) >= 9 ? GEN9_GMBUS_BYTE_COUNT_MAX :
GMBUS_BYTE_COUNT_MAX;
}
static int
gmbus_xfer_read_chunk(struct drm_i915_private *dev_priv,
unsigned short addr, u8 *buf, unsigned int len,
u32 gmbus0_reg, u32 gmbus1_index)
{
unsigned int size = len;
bool burst_read = len > gmbus_max_xfer_size(dev_priv);
bool extra_byte_added = false;
if (burst_read) {
/*
* As per HW Spec, for 512Bytes need to read extra Byte and
* Ignore the extra byte read.
*/
if (len == 512) {
extra_byte_added = true;
len++;
}
size = len % 256 + 256;
intel_de_write_fw(dev_priv, GMBUS0,
gmbus0_reg | GMBUS_BYTE_CNT_OVERRIDE);
}
intel_de_write_fw(dev_priv, GMBUS1,
gmbus1_index | GMBUS_CYCLE_WAIT | (size << GMBUS_BYTE_COUNT_SHIFT) | (addr << GMBUS_SLAVE_ADDR_SHIFT) | GMBUS_SLAVE_READ | GMBUS_SW_RDY);
while (len) {
int ret;
u32 val, loop = 0;
ret = gmbus_wait(dev_priv, GMBUS_HW_RDY, GMBUS_HW_RDY_EN);
if (ret)
return ret;
val = intel_de_read_fw(dev_priv, GMBUS3);
do {
if (extra_byte_added && len == 1)
break;
*buf++ = val & 0xff;
val >>= 8;
} while (--len && ++loop < 4);
if (burst_read && len == size - 4)
/* Reset the override bit */
intel_de_write_fw(dev_priv, GMBUS0, gmbus0_reg);
}
return 0;
}
/*
* HW spec says that 512Bytes in Burst read need special treatment.
* But it doesn't talk about other multiple of 256Bytes. And couldn't locate
* an I2C slave, which supports such a lengthy burst read too for experiments.
*
* So until things get clarified on HW support, to avoid the burst read length
* in fold of 256Bytes except 512, max burst read length is fixed at 767Bytes.
*/
#define INTEL_GMBUS_BURST_READ_MAX_LEN 767U
static int
gmbus_xfer_read(struct drm_i915_private *dev_priv, struct i2c_msg *msg,
u32 gmbus0_reg, u32 gmbus1_index)
{
u8 *buf = msg->buf;
unsigned int rx_size = msg->len;
unsigned int len;
int ret;
do {
if (HAS_GMBUS_BURST_READ(dev_priv))
len = min(rx_size, INTEL_GMBUS_BURST_READ_MAX_LEN);
else
len = min(rx_size, gmbus_max_xfer_size(dev_priv));
ret = gmbus_xfer_read_chunk(dev_priv, msg->addr, buf, len,
gmbus0_reg, gmbus1_index);
if (ret)
return ret;
rx_size -= len;
buf += len;
} while (rx_size != 0);
return 0;
}
static int
gmbus_xfer_write_chunk(struct drm_i915_private *dev_priv,
unsigned short addr, u8 *buf, unsigned int len,
u32 gmbus1_index)
{
unsigned int chunk_size = len;
u32 val, loop;
val = loop = 0;
while (len && loop < 4) {
val |= *buf++ << (8 * loop++);
len -= 1;
}
intel_de_write_fw(dev_priv, GMBUS3, val);
intel_de_write_fw(dev_priv, GMBUS1,
gmbus1_index | GMBUS_CYCLE_WAIT | (chunk_size << GMBUS_BYTE_COUNT_SHIFT) | (addr << GMBUS_SLAVE_ADDR_SHIFT) | GMBUS_SLAVE_WRITE | GMBUS_SW_RDY);
while (len) {
int ret;
val = loop = 0;
do {
val |= *buf++ << (8 * loop);
} while (--len && ++loop < 4);
intel_de_write_fw(dev_priv, GMBUS3, val);
ret = gmbus_wait(dev_priv, GMBUS_HW_RDY, GMBUS_HW_RDY_EN);
if (ret)
return ret;
}
return 0;
}
static int
gmbus_xfer_write(struct drm_i915_private *dev_priv, struct i2c_msg *msg,
u32 gmbus1_index)
{
u8 *buf = msg->buf;
unsigned int tx_size = msg->len;
unsigned int len;
int ret;
do {
len = min(tx_size, gmbus_max_xfer_size(dev_priv));
ret = gmbus_xfer_write_chunk(dev_priv, msg->addr, buf, len,
gmbus1_index);
if (ret)
return ret;
buf += len;
tx_size -= len;
} while (tx_size != 0);
return 0;
}
/*
* The gmbus controller can combine a 1 or 2 byte write with another read/write
* that immediately follows it by using an "INDEX" cycle.
*/
static bool
gmbus_is_index_xfer(struct i2c_msg *msgs, int i, int num)
{
return (i + 1 < num &&
msgs[i].addr == msgs[i + 1].addr &&
!(msgs[i].flags & I2C_M_RD) &&
(msgs[i].len == 1 || msgs[i].len == 2) &&
msgs[i + 1].len > 0);
}
static int
gmbus_index_xfer(struct drm_i915_private *dev_priv, struct i2c_msg *msgs,
u32 gmbus0_reg)
{
u32 gmbus1_index = 0;
u32 gmbus5 = 0;
int ret;
if (msgs[0].len == 2)
gmbus5 = GMBUS_2BYTE_INDEX_EN |
msgs[0].buf[1] | (msgs[0].buf[0] << 8);
if (msgs[0].len == 1)
gmbus1_index = GMBUS_CYCLE_INDEX |
(msgs[0].buf[0] << GMBUS_SLAVE_INDEX_SHIFT);
/* GMBUS5 holds 16-bit index */
if (gmbus5)
intel_de_write_fw(dev_priv, GMBUS5, gmbus5);
if (msgs[1].flags & I2C_M_RD)
ret = gmbus_xfer_read(dev_priv, &msgs[1], gmbus0_reg,
gmbus1_index);
else
ret = gmbus_xfer_write(dev_priv, &msgs[1], gmbus1_index);
/* Clear GMBUS5 after each index transfer */
if (gmbus5)
intel_de_write_fw(dev_priv, GMBUS5, 0);
return ret;
}
static int
do_gmbus_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num,
u32 gmbus0_source)
{
struct intel_gmbus *bus = container_of(adapter,
struct intel_gmbus,
adapter);
struct drm_i915_private *dev_priv = bus->dev_priv;
int i = 0, inc, try = 0;
int ret = 0;
/* Display WA #0868: skl,bxt,kbl,cfl,glk,cnl */
if (IS_GEN9_LP(dev_priv))
bxt_gmbus_clock_gating(dev_priv, false);
else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_CNP(dev_priv))
pch_gmbus_clock_gating(dev_priv, false);
retry:
intel_de_write_fw(dev_priv, GMBUS0, gmbus0_source | bus->reg0);
for (; i < num; i += inc) {
inc = 1;
if (gmbus_is_index_xfer(msgs, i, num)) {
ret = gmbus_index_xfer(dev_priv, &msgs[i],
gmbus0_source | bus->reg0);
inc = 2; /* an index transmission is two msgs */
} else if (msgs[i].flags & I2C_M_RD) {
ret = gmbus_xfer_read(dev_priv, &msgs[i],
gmbus0_source | bus->reg0, 0);
} else {
ret = gmbus_xfer_write(dev_priv, &msgs[i], 0);
}
if (!ret)
ret = gmbus_wait(dev_priv,
GMBUS_HW_WAIT_PHASE, GMBUS_HW_WAIT_EN);
if (ret == -ETIMEDOUT)
goto timeout;
else if (ret)
goto clear_err;
}
/* Generate a STOP condition on the bus. Note that gmbus can't generata
* a STOP on the very first cycle. To simplify the code we
* unconditionally generate the STOP condition with an additional gmbus
* cycle. */
intel_de_write_fw(dev_priv, GMBUS1, GMBUS_CYCLE_STOP | GMBUS_SW_RDY);
/* Mark the GMBUS interface as disabled after waiting for idle.
* We will re-enable it at the start of the next xfer,
* till then let it sleep.
*/
if (gmbus_wait_idle(dev_priv)) {
drm_dbg_kms(&dev_priv->drm,
"GMBUS [%s] timed out waiting for idle\n",
adapter->name);
ret = -ETIMEDOUT;
}
intel_de_write_fw(dev_priv, GMBUS0, 0);
ret = ret ?: i;
goto out;
clear_err:
/*
* Wait for bus to IDLE before clearing NAK.
* If we clear the NAK while bus is still active, then it will stay
* active and the next transaction may fail.
*
* If no ACK is received during the address phase of a transaction, the
* adapter must report -ENXIO. It is not clear what to return if no ACK
* is received at other times. But we have to be careful to not return
* spurious -ENXIO because that will prevent i2c and drm edid functions
* from retrying. So return -ENXIO only when gmbus properly quiescents -
* timing out seems to happen when there _is_ a ddc chip present, but
* it's slow responding and only answers on the 2nd retry.
*/
ret = -ENXIO;
if (gmbus_wait_idle(dev_priv)) {
drm_dbg_kms(&dev_priv->drm,
"GMBUS [%s] timed out after NAK\n",
adapter->name);
ret = -ETIMEDOUT;
}
/* Toggle the Software Clear Interrupt bit. This has the effect
* of resetting the GMBUS controller and so clearing the
* BUS_ERROR raised by the slave's NAK.
*/
intel_de_write_fw(dev_priv, GMBUS1, GMBUS_SW_CLR_INT);
intel_de_write_fw(dev_priv, GMBUS1, 0);
intel_de_write_fw(dev_priv, GMBUS0, 0);
drm_dbg_kms(&dev_priv->drm, "GMBUS [%s] NAK for addr: %04x %c(%d)\n",
adapter->name, msgs[i].addr,
(msgs[i].flags & I2C_M_RD) ? 'r' : 'w', msgs[i].len);
/*
* Passive adapters sometimes NAK the first probe. Retry the first
* message once on -ENXIO for GMBUS transfers; the bit banging algorithm
* has retries internally. See also the retry loop in
* drm_do_probe_ddc_edid, which bails out on the first -ENXIO.
*/
if (ret == -ENXIO && i == 0 && try++ == 0) {
drm_dbg_kms(&dev_priv->drm,
"GMBUS [%s] NAK on first message, retry\n",
adapter->name);
goto retry;
}
goto out;
timeout:
drm_dbg_kms(&dev_priv->drm,
"GMBUS [%s] timed out, falling back to bit banging on pin %d\n",
bus->adapter.name, bus->reg0 & 0xff);
intel_de_write_fw(dev_priv, GMBUS0, 0);
/*
* Hardware may not support GMBUS over these pins? Try GPIO bitbanging
* instead. Use EAGAIN to have i2c core retry.
*/
ret = -EAGAIN;
out:
/* Display WA #0868: skl,bxt,kbl,cfl,glk,cnl */
if (IS_GEN9_LP(dev_priv))
bxt_gmbus_clock_gating(dev_priv, true);
else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_CNP(dev_priv))
pch_gmbus_clock_gating(dev_priv, true);
return ret;
}
static int
gmbus_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num)
{
struct intel_gmbus *bus =
container_of(adapter, struct intel_gmbus, adapter);
struct drm_i915_private *dev_priv = bus->dev_priv;
intel_wakeref_t wakeref;
int ret;
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
if (bus->force_bit) {
ret = i2c_bit_algo.master_xfer(adapter, msgs, num);
if (ret < 0)
bus->force_bit &= ~GMBUS_FORCE_BIT_RETRY;
} else {
ret = do_gmbus_xfer(adapter, msgs, num, 0);
if (ret == -EAGAIN)
bus->force_bit |= GMBUS_FORCE_BIT_RETRY;
}
intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
return ret;
}
int intel_gmbus_output_aksv(struct i2c_adapter *adapter)
{
struct intel_gmbus *bus =
container_of(adapter, struct intel_gmbus, adapter);
struct drm_i915_private *dev_priv = bus->dev_priv;
u8 cmd = DRM_HDCP_DDC_AKSV;
u8 buf[DRM_HDCP_KSV_LEN] = { 0 };
struct i2c_msg msgs[] = {
{
.addr = DRM_HDCP_DDC_ADDR,
.flags = 0,
.len = sizeof(cmd),
.buf = &cmd,
},
{
.addr = DRM_HDCP_DDC_ADDR,
.flags = 0,
.len = sizeof(buf),
.buf = buf,
}
};
intel_wakeref_t wakeref;
int ret;
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
mutex_lock(&dev_priv->gmbus_mutex);
/*
* In order to output Aksv to the receiver, use an indexed write to
* pass the i2c command, and tell GMBUS to use the HW-provided value
* instead of sourcing GMBUS3 for the data.
*/
ret = do_gmbus_xfer(adapter, msgs, ARRAY_SIZE(msgs), GMBUS_AKSV_SELECT);
mutex_unlock(&dev_priv->gmbus_mutex);
intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
return ret;
}
static u32 gmbus_func(struct i2c_adapter *adapter)
{
return i2c_bit_algo.functionality(adapter) &
(I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
/* I2C_FUNC_10BIT_ADDR | */
I2C_FUNC_SMBUS_READ_BLOCK_DATA |
I2C_FUNC_SMBUS_BLOCK_PROC_CALL);
}
static const struct i2c_algorithm gmbus_algorithm = {
.master_xfer = gmbus_xfer,
.functionality = gmbus_func
};
static void gmbus_lock_bus(struct i2c_adapter *adapter,
unsigned int flags)
{
struct intel_gmbus *bus = to_intel_gmbus(adapter);
struct drm_i915_private *dev_priv = bus->dev_priv;
mutex_lock(&dev_priv->gmbus_mutex);
}
static int gmbus_trylock_bus(struct i2c_adapter *adapter,
unsigned int flags)
{
struct intel_gmbus *bus = to_intel_gmbus(adapter);
struct drm_i915_private *dev_priv = bus->dev_priv;
return mutex_trylock(&dev_priv->gmbus_mutex);
}
static void gmbus_unlock_bus(struct i2c_adapter *adapter,
unsigned int flags)
{
struct intel_gmbus *bus = to_intel_gmbus(adapter);
struct drm_i915_private *dev_priv = bus->dev_priv;
mutex_unlock(&dev_priv->gmbus_mutex);
}
static const struct i2c_lock_operations gmbus_lock_ops = {
.lock_bus = gmbus_lock_bus,
.trylock_bus = gmbus_trylock_bus,
.unlock_bus = gmbus_unlock_bus,
};
/**
* intel_gmbus_setup - instantiate all Intel i2c GMBuses
* @dev_priv: i915 device private
*/
int intel_gmbus_setup(struct drm_i915_private *dev_priv)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
struct intel_gmbus *bus;
unsigned int pin;
int ret;
if (!HAS_DISPLAY(dev_priv))
return 0;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
dev_priv->gpio_mmio_base = VLV_DISPLAY_BASE;
else if (!HAS_GMCH(dev_priv))
/*
* Broxton uses the same PCH offsets for South Display Engine,
* even though it doesn't have a PCH.
*/
dev_priv->gpio_mmio_base = PCH_DISPLAY_BASE;
mutex_init(&dev_priv->gmbus_mutex);
init_waitqueue_head(&dev_priv->gmbus_wait_queue);
for (pin = 0; pin < ARRAY_SIZE(dev_priv->gmbus); pin++) {
if (!intel_gmbus_is_valid_pin(dev_priv, pin))
continue;
bus = &dev_priv->gmbus[pin];
bus->adapter.owner = THIS_MODULE;
bus->adapter.class = I2C_CLASS_DDC;
snprintf(bus->adapter.name,
sizeof(bus->adapter.name),
"i915 gmbus %s",
get_gmbus_pin(dev_priv, pin)->name);
bus->adapter.dev.parent = &pdev->dev;
bus->dev_priv = dev_priv;
bus->adapter.algo = &gmbus_algorithm;
bus->adapter.lock_ops = &gmbus_lock_ops;
/*
* We wish to retry with bit banging
* after a timed out GMBUS attempt.
*/
bus->adapter.retries = 1;
/* By default use a conservative clock rate */
bus->reg0 = pin | GMBUS_RATE_100KHZ;
/* gmbus seems to be broken on i830 */
if (IS_I830(dev_priv))
bus->force_bit = 1;
intel_gpio_setup(bus, pin);
ret = i2c_add_adapter(&bus->adapter);
if (ret)
goto err;
}
intel_gmbus_reset(dev_priv);
return 0;
err:
while (pin--) {
if (!intel_gmbus_is_valid_pin(dev_priv, pin))
continue;
bus = &dev_priv->gmbus[pin];
i2c_del_adapter(&bus->adapter);
}
return ret;
}
struct i2c_adapter *intel_gmbus_get_adapter(struct drm_i915_private *dev_priv,
unsigned int pin)
{
if (drm_WARN_ON(&dev_priv->drm,
!intel_gmbus_is_valid_pin(dev_priv, pin)))
return NULL;
return &dev_priv->gmbus[pin].adapter;
}
void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed)
{
struct intel_gmbus *bus = to_intel_gmbus(adapter);
bus->reg0 = (bus->reg0 & ~(0x3 << 8)) | speed;
}
void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit)
{
struct intel_gmbus *bus = to_intel_gmbus(adapter);
struct drm_i915_private *dev_priv = bus->dev_priv;
mutex_lock(&dev_priv->gmbus_mutex);
bus->force_bit += force_bit ? 1 : -1;
drm_dbg_kms(&dev_priv->drm,
"%sabling bit-banging on %s. force bit now %d\n",
force_bit ? "en" : "dis", adapter->name,
bus->force_bit);
mutex_unlock(&dev_priv->gmbus_mutex);
}
bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
{
struct intel_gmbus *bus = to_intel_gmbus(adapter);
return bus->force_bit;
}
void intel_gmbus_teardown(struct drm_i915_private *dev_priv)
{
struct intel_gmbus *bus;
unsigned int pin;
for (pin = 0; pin < ARRAY_SIZE(dev_priv->gmbus); pin++) {
if (!intel_gmbus_is_valid_pin(dev_priv, pin))
continue;
bus = &dev_priv->gmbus[pin];
i2c_del_adapter(&bus->adapter);
}
}