| /* |
| * Copyright © 2016 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <drm/drm_print.h> |
| |
| #include "gem/i915_gem_context.h" |
| |
| #include "i915_drv.h" |
| |
| #include "intel_breadcrumbs.h" |
| #include "intel_context.h" |
| #include "intel_engine.h" |
| #include "intel_engine_pm.h" |
| #include "intel_engine_user.h" |
| #include "intel_gt.h" |
| #include "intel_gt_requests.h" |
| #include "intel_gt_pm.h" |
| #include "intel_lrc.h" |
| #include "intel_reset.h" |
| #include "intel_ring.h" |
| |
| /* Haswell does have the CXT_SIZE register however it does not appear to be |
| * valid. Now, docs explain in dwords what is in the context object. The full |
| * size is 70720 bytes, however, the power context and execlist context will |
| * never be saved (power context is stored elsewhere, and execlists don't work |
| * on HSW) - so the final size, including the extra state required for the |
| * Resource Streamer, is 66944 bytes, which rounds to 17 pages. |
| */ |
| #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) |
| |
| #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) |
| #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) |
| #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) |
| #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE) |
| #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) |
| |
| #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) |
| |
| #define MAX_MMIO_BASES 3 |
| struct engine_info { |
| unsigned int hw_id; |
| u8 class; |
| u8 instance; |
| /* mmio bases table *must* be sorted in reverse gen order */ |
| struct engine_mmio_base { |
| u32 gen : 8; |
| u32 base : 24; |
| } mmio_bases[MAX_MMIO_BASES]; |
| }; |
| |
| static const struct engine_info intel_engines[] = { |
| [RCS0] = { |
| .hw_id = RCS0_HW, |
| .class = RENDER_CLASS, |
| .instance = 0, |
| .mmio_bases = { |
| { .gen = 1, .base = RENDER_RING_BASE } |
| }, |
| }, |
| [BCS0] = { |
| .hw_id = BCS0_HW, |
| .class = COPY_ENGINE_CLASS, |
| .instance = 0, |
| .mmio_bases = { |
| { .gen = 6, .base = BLT_RING_BASE } |
| }, |
| }, |
| [VCS0] = { |
| .hw_id = VCS0_HW, |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 0, |
| .mmio_bases = { |
| { .gen = 11, .base = GEN11_BSD_RING_BASE }, |
| { .gen = 6, .base = GEN6_BSD_RING_BASE }, |
| { .gen = 4, .base = BSD_RING_BASE } |
| }, |
| }, |
| [VCS1] = { |
| .hw_id = VCS1_HW, |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 1, |
| .mmio_bases = { |
| { .gen = 11, .base = GEN11_BSD2_RING_BASE }, |
| { .gen = 8, .base = GEN8_BSD2_RING_BASE } |
| }, |
| }, |
| [VCS2] = { |
| .hw_id = VCS2_HW, |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 2, |
| .mmio_bases = { |
| { .gen = 11, .base = GEN11_BSD3_RING_BASE } |
| }, |
| }, |
| [VCS3] = { |
| .hw_id = VCS3_HW, |
| .class = VIDEO_DECODE_CLASS, |
| .instance = 3, |
| .mmio_bases = { |
| { .gen = 11, .base = GEN11_BSD4_RING_BASE } |
| }, |
| }, |
| [VECS0] = { |
| .hw_id = VECS0_HW, |
| .class = VIDEO_ENHANCEMENT_CLASS, |
| .instance = 0, |
| .mmio_bases = { |
| { .gen = 11, .base = GEN11_VEBOX_RING_BASE }, |
| { .gen = 7, .base = VEBOX_RING_BASE } |
| }, |
| }, |
| [VECS1] = { |
| .hw_id = VECS1_HW, |
| .class = VIDEO_ENHANCEMENT_CLASS, |
| .instance = 1, |
| .mmio_bases = { |
| { .gen = 11, .base = GEN11_VEBOX2_RING_BASE } |
| }, |
| }, |
| }; |
| |
| /** |
| * intel_engine_context_size() - return the size of the context for an engine |
| * @gt: the gt |
| * @class: engine class |
| * |
| * Each engine class may require a different amount of space for a context |
| * image. |
| * |
| * Return: size (in bytes) of an engine class specific context image |
| * |
| * Note: this size includes the HWSP, which is part of the context image |
| * in LRC mode, but does not include the "shared data page" used with |
| * GuC submission. The caller should account for this if using the GuC. |
| */ |
| u32 intel_engine_context_size(struct intel_gt *gt, u8 class) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| u32 cxt_size; |
| |
| BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); |
| |
| switch (class) { |
| case RENDER_CLASS: |
| switch (INTEL_GEN(gt->i915)) { |
| default: |
| MISSING_CASE(INTEL_GEN(gt->i915)); |
| return DEFAULT_LR_CONTEXT_RENDER_SIZE; |
| case 12: |
| case 11: |
| return GEN11_LR_CONTEXT_RENDER_SIZE; |
| case 10: |
| return GEN10_LR_CONTEXT_RENDER_SIZE; |
| case 9: |
| return GEN9_LR_CONTEXT_RENDER_SIZE; |
| case 8: |
| return GEN8_LR_CONTEXT_RENDER_SIZE; |
| case 7: |
| if (IS_HASWELL(gt->i915)) |
| return HSW_CXT_TOTAL_SIZE; |
| |
| cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); |
| return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, |
| PAGE_SIZE); |
| case 6: |
| cxt_size = intel_uncore_read(uncore, CXT_SIZE); |
| return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, |
| PAGE_SIZE); |
| case 5: |
| case 4: |
| /* |
| * There is a discrepancy here between the size reported |
| * by the register and the size of the context layout |
| * in the docs. Both are described as authorative! |
| * |
| * The discrepancy is on the order of a few cachelines, |
| * but the total is under one page (4k), which is our |
| * minimum allocation anyway so it should all come |
| * out in the wash. |
| */ |
| cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; |
| drm_dbg(>->i915->drm, |
| "gen%d CXT_SIZE = %d bytes [0x%08x]\n", |
| INTEL_GEN(gt->i915), cxt_size * 64, |
| cxt_size - 1); |
| return round_up(cxt_size * 64, PAGE_SIZE); |
| case 3: |
| case 2: |
| /* For the special day when i810 gets merged. */ |
| case 1: |
| return 0; |
| } |
| break; |
| default: |
| MISSING_CASE(class); |
| fallthrough; |
| case VIDEO_DECODE_CLASS: |
| case VIDEO_ENHANCEMENT_CLASS: |
| case COPY_ENGINE_CLASS: |
| if (INTEL_GEN(gt->i915) < 8) |
| return 0; |
| return GEN8_LR_CONTEXT_OTHER_SIZE; |
| } |
| } |
| |
| static u32 __engine_mmio_base(struct drm_i915_private *i915, |
| const struct engine_mmio_base *bases) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_MMIO_BASES; i++) |
| if (INTEL_GEN(i915) >= bases[i].gen) |
| break; |
| |
| GEM_BUG_ON(i == MAX_MMIO_BASES); |
| GEM_BUG_ON(!bases[i].base); |
| |
| return bases[i].base; |
| } |
| |
| static void __sprint_engine_name(struct intel_engine_cs *engine) |
| { |
| /* |
| * Before we know what the uABI name for this engine will be, |
| * we still would like to keep track of this engine in the debug logs. |
| * We throw in a ' here as a reminder that this isn't its final name. |
| */ |
| GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", |
| intel_engine_class_repr(engine->class), |
| engine->instance) >= sizeof(engine->name)); |
| } |
| |
| void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) |
| { |
| /* |
| * Though they added more rings on g4x/ilk, they did not add |
| * per-engine HWSTAM until gen6. |
| */ |
| if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS) |
| return; |
| |
| if (INTEL_GEN(engine->i915) >= 3) |
| ENGINE_WRITE(engine, RING_HWSTAM, mask); |
| else |
| ENGINE_WRITE16(engine, RING_HWSTAM, mask); |
| } |
| |
| static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) |
| { |
| /* Mask off all writes into the unknown HWSP */ |
| intel_engine_set_hwsp_writemask(engine, ~0u); |
| } |
| |
| static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id) |
| { |
| const struct engine_info *info = &intel_engines[id]; |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_engine_cs *engine; |
| |
| BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); |
| BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); |
| |
| if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) |
| return -EINVAL; |
| |
| if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) |
| return -EINVAL; |
| |
| if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) |
| return -EINVAL; |
| |
| if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) |
| return -EINVAL; |
| |
| engine = kzalloc(sizeof(*engine), GFP_KERNEL); |
| if (!engine) |
| return -ENOMEM; |
| |
| BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); |
| |
| engine->id = id; |
| engine->legacy_idx = INVALID_ENGINE; |
| engine->mask = BIT(id); |
| engine->i915 = i915; |
| engine->gt = gt; |
| engine->uncore = gt->uncore; |
| engine->hw_id = engine->guc_id = info->hw_id; |
| engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); |
| |
| engine->class = info->class; |
| engine->instance = info->instance; |
| __sprint_engine_name(engine); |
| |
| engine->props.heartbeat_interval_ms = |
| CONFIG_DRM_I915_HEARTBEAT_INTERVAL; |
| engine->props.max_busywait_duration_ns = |
| CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; |
| engine->props.preempt_timeout_ms = |
| CONFIG_DRM_I915_PREEMPT_TIMEOUT; |
| engine->props.stop_timeout_ms = |
| CONFIG_DRM_I915_STOP_TIMEOUT; |
| engine->props.timeslice_duration_ms = |
| CONFIG_DRM_I915_TIMESLICE_DURATION; |
| |
| /* Override to uninterruptible for OpenCL workloads. */ |
| if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS) |
| engine->props.preempt_timeout_ms = 0; |
| |
| engine->defaults = engine->props; /* never to change again */ |
| |
| engine->context_size = intel_engine_context_size(gt, engine->class); |
| if (WARN_ON(engine->context_size > BIT(20))) |
| engine->context_size = 0; |
| if (engine->context_size) |
| DRIVER_CAPS(i915)->has_logical_contexts = true; |
| |
| /* Nothing to do here, execute in order of dependencies */ |
| engine->schedule = NULL; |
| |
| ewma__engine_latency_init(&engine->latency); |
| seqlock_init(&engine->stats.lock); |
| |
| ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); |
| |
| /* Scrub mmio state on takeover */ |
| intel_engine_sanitize_mmio(engine); |
| |
| gt->engine_class[info->class][info->instance] = engine; |
| gt->engine[id] = engine; |
| |
| return 0; |
| } |
| |
| static void __setup_engine_capabilities(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| |
| if (engine->class == VIDEO_DECODE_CLASS) { |
| /* |
| * HEVC support is present on first engine instance |
| * before Gen11 and on all instances afterwards. |
| */ |
| if (INTEL_GEN(i915) >= 11 || |
| (INTEL_GEN(i915) >= 9 && engine->instance == 0)) |
| engine->uabi_capabilities |= |
| I915_VIDEO_CLASS_CAPABILITY_HEVC; |
| |
| /* |
| * SFC block is present only on even logical engine |
| * instances. |
| */ |
| if ((INTEL_GEN(i915) >= 11 && |
| engine->gt->info.vdbox_sfc_access & engine->mask) || |
| (INTEL_GEN(i915) >= 9 && engine->instance == 0)) |
| engine->uabi_capabilities |= |
| I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; |
| } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { |
| if (INTEL_GEN(i915) >= 9) |
| engine->uabi_capabilities |= |
| I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; |
| } |
| } |
| |
| static void intel_setup_engine_capabilities(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, gt, id) |
| __setup_engine_capabilities(engine); |
| } |
| |
| /** |
| * intel_engines_release() - free the resources allocated for Command Streamers |
| * @gt: pointer to struct intel_gt |
| */ |
| void intel_engines_release(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* |
| * Before we release the resources held by engine, we must be certain |
| * that the HW is no longer accessing them -- having the GPU scribble |
| * to or read from a page being used for something else causes no end |
| * of fun. |
| * |
| * The GPU should be reset by this point, but assume the worst just |
| * in case we aborted before completely initialising the engines. |
| */ |
| GEM_BUG_ON(intel_gt_pm_is_awake(gt)); |
| if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) |
| __intel_gt_reset(gt, ALL_ENGINES); |
| |
| /* Decouple the backend; but keep the layout for late GPU resets */ |
| for_each_engine(engine, gt, id) { |
| if (!engine->release) |
| continue; |
| |
| intel_wakeref_wait_for_idle(&engine->wakeref); |
| GEM_BUG_ON(intel_engine_pm_is_awake(engine)); |
| |
| engine->release(engine); |
| engine->release = NULL; |
| |
| memset(&engine->reset, 0, sizeof(engine->reset)); |
| } |
| } |
| |
| void intel_engine_free_request_pool(struct intel_engine_cs *engine) |
| { |
| if (!engine->request_pool) |
| return; |
| |
| kmem_cache_free(i915_request_slab_cache(), engine->request_pool); |
| } |
| |
| void intel_engines_free(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* Free the requests! dma-resv keeps fences around for an eternity */ |
| rcu_barrier(); |
| |
| for_each_engine(engine, gt, id) { |
| intel_engine_free_request_pool(engine); |
| kfree(engine); |
| gt->engine[id] = NULL; |
| } |
| } |
| |
| /* |
| * Determine which engines are fused off in our particular hardware. |
| * Note that we have a catch-22 situation where we need to be able to access |
| * the blitter forcewake domain to read the engine fuses, but at the same time |
| * we need to know which engines are available on the system to know which |
| * forcewake domains are present. We solve this by intializing the forcewake |
| * domains based on the full engine mask in the platform capabilities before |
| * calling this function and pruning the domains for fused-off engines |
| * afterwards. |
| */ |
| static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_gt_info *info = >->info; |
| struct intel_uncore *uncore = gt->uncore; |
| unsigned int logical_vdbox = 0; |
| unsigned int i; |
| u32 media_fuse; |
| u16 vdbox_mask; |
| u16 vebox_mask; |
| |
| info->engine_mask = INTEL_INFO(i915)->platform_engine_mask; |
| |
| if (INTEL_GEN(i915) < 11) |
| return info->engine_mask; |
| |
| media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); |
| |
| vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; |
| vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> |
| GEN11_GT_VEBOX_DISABLE_SHIFT; |
| |
| for (i = 0; i < I915_MAX_VCS; i++) { |
| if (!HAS_ENGINE(gt, _VCS(i))) { |
| vdbox_mask &= ~BIT(i); |
| continue; |
| } |
| |
| if (!(BIT(i) & vdbox_mask)) { |
| info->engine_mask &= ~BIT(_VCS(i)); |
| drm_dbg(&i915->drm, "vcs%u fused off\n", i); |
| continue; |
| } |
| |
| /* |
| * In Gen11, only even numbered logical VDBOXes are |
| * hooked up to an SFC (Scaler & Format Converter) unit. |
| * In TGL each VDBOX has access to an SFC. |
| */ |
| if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0) |
| gt->info.vdbox_sfc_access |= BIT(i); |
| } |
| drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n", |
| vdbox_mask, VDBOX_MASK(gt)); |
| GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); |
| |
| for (i = 0; i < I915_MAX_VECS; i++) { |
| if (!HAS_ENGINE(gt, _VECS(i))) { |
| vebox_mask &= ~BIT(i); |
| continue; |
| } |
| |
| if (!(BIT(i) & vebox_mask)) { |
| info->engine_mask &= ~BIT(_VECS(i)); |
| drm_dbg(&i915->drm, "vecs%u fused off\n", i); |
| } |
| } |
| drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n", |
| vebox_mask, VEBOX_MASK(gt)); |
| GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); |
| |
| return info->engine_mask; |
| } |
| |
| /** |
| * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers |
| * @gt: pointer to struct intel_gt |
| * |
| * Return: non-zero if the initialization failed. |
| */ |
| int intel_engines_init_mmio(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| const unsigned int engine_mask = init_engine_mask(gt); |
| unsigned int mask = 0; |
| unsigned int i; |
| int err; |
| |
| drm_WARN_ON(&i915->drm, engine_mask == 0); |
| drm_WARN_ON(&i915->drm, engine_mask & |
| GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); |
| |
| if (i915_inject_probe_failure(i915)) |
| return -ENODEV; |
| |
| for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { |
| if (!HAS_ENGINE(gt, i)) |
| continue; |
| |
| err = intel_engine_setup(gt, i); |
| if (err) |
| goto cleanup; |
| |
| mask |= BIT(i); |
| } |
| |
| /* |
| * Catch failures to update intel_engines table when the new engines |
| * are added to the driver by a warning and disabling the forgotten |
| * engines. |
| */ |
| if (drm_WARN_ON(&i915->drm, mask != engine_mask)) |
| gt->info.engine_mask = mask; |
| |
| gt->info.num_engines = hweight32(mask); |
| |
| intel_gt_check_and_clear_faults(gt); |
| |
| intel_setup_engine_capabilities(gt); |
| |
| intel_uncore_prune_engine_fw_domains(gt->uncore, gt); |
| |
| return 0; |
| |
| cleanup: |
| intel_engines_free(gt); |
| return err; |
| } |
| |
| void intel_engine_init_execlists(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| |
| execlists->port_mask = 1; |
| GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); |
| GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); |
| |
| memset(execlists->pending, 0, sizeof(execlists->pending)); |
| execlists->active = |
| memset(execlists->inflight, 0, sizeof(execlists->inflight)); |
| |
| execlists->queue_priority_hint = INT_MIN; |
| execlists->queue = RB_ROOT_CACHED; |
| } |
| |
| static void cleanup_status_page(struct intel_engine_cs *engine) |
| { |
| struct i915_vma *vma; |
| |
| /* Prevent writes into HWSP after returning the page to the system */ |
| intel_engine_set_hwsp_writemask(engine, ~0u); |
| |
| vma = fetch_and_zero(&engine->status_page.vma); |
| if (!vma) |
| return; |
| |
| if (!HWS_NEEDS_PHYSICAL(engine->i915)) |
| i915_vma_unpin(vma); |
| |
| i915_gem_object_unpin_map(vma->obj); |
| i915_gem_object_put(vma->obj); |
| } |
| |
| static int pin_ggtt_status_page(struct intel_engine_cs *engine, |
| struct i915_vma *vma) |
| { |
| unsigned int flags; |
| |
| if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) |
| /* |
| * On g33, we cannot place HWS above 256MiB, so |
| * restrict its pinning to the low mappable arena. |
| * Though this restriction is not documented for |
| * gen4, gen5, or byt, they also behave similarly |
| * and hang if the HWS is placed at the top of the |
| * GTT. To generalise, it appears that all !llc |
| * platforms have issues with us placing the HWS |
| * above the mappable region (even though we never |
| * actually map it). |
| */ |
| flags = PIN_MAPPABLE; |
| else |
| flags = PIN_HIGH; |
| |
| return i915_ggtt_pin(vma, NULL, 0, flags); |
| } |
| |
| static int init_status_page(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| void *vaddr; |
| int ret; |
| |
| /* |
| * Though the HWS register does support 36bit addresses, historically |
| * we have had hangs and corruption reported due to wild writes if |
| * the HWS is placed above 4G. We only allow objects to be allocated |
| * in GFP_DMA32 for i965, and no earlier physical address users had |
| * access to more than 4G. |
| */ |
| obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); |
| if (IS_ERR(obj)) { |
| drm_err(&engine->i915->drm, |
| "Failed to allocate status page\n"); |
| return PTR_ERR(obj); |
| } |
| |
| i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); |
| |
| vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto err; |
| } |
| |
| vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); |
| if (IS_ERR(vaddr)) { |
| ret = PTR_ERR(vaddr); |
| goto err; |
| } |
| |
| engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); |
| engine->status_page.vma = vma; |
| |
| if (!HWS_NEEDS_PHYSICAL(engine->i915)) { |
| ret = pin_ggtt_status_page(engine, vma); |
| if (ret) |
| goto err_unpin; |
| } |
| |
| return 0; |
| |
| err_unpin: |
| i915_gem_object_unpin_map(obj); |
| err: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static int engine_setup_common(struct intel_engine_cs *engine) |
| { |
| int err; |
| |
| init_llist_head(&engine->barrier_tasks); |
| |
| err = init_status_page(engine); |
| if (err) |
| return err; |
| |
| engine->breadcrumbs = intel_breadcrumbs_create(engine); |
| if (!engine->breadcrumbs) { |
| err = -ENOMEM; |
| goto err_status; |
| } |
| |
| intel_engine_init_active(engine, ENGINE_PHYSICAL); |
| intel_engine_init_execlists(engine); |
| intel_engine_init_cmd_parser(engine); |
| intel_engine_init__pm(engine); |
| intel_engine_init_retire(engine); |
| |
| /* Use the whole device by default */ |
| engine->sseu = |
| intel_sseu_from_device_info(&engine->gt->info.sseu); |
| |
| intel_engine_init_workarounds(engine); |
| intel_engine_init_whitelist(engine); |
| intel_engine_init_ctx_wa(engine); |
| |
| return 0; |
| |
| err_status: |
| cleanup_status_page(engine); |
| return err; |
| } |
| |
| struct measure_breadcrumb { |
| struct i915_request rq; |
| struct intel_ring ring; |
| u32 cs[2048]; |
| }; |
| |
| static int measure_breadcrumb_dw(struct intel_context *ce) |
| { |
| struct intel_engine_cs *engine = ce->engine; |
| struct measure_breadcrumb *frame; |
| int dw; |
| |
| GEM_BUG_ON(!engine->gt->scratch); |
| |
| frame = kzalloc(sizeof(*frame), GFP_KERNEL); |
| if (!frame) |
| return -ENOMEM; |
| |
| frame->rq.engine = engine; |
| frame->rq.context = ce; |
| rcu_assign_pointer(frame->rq.timeline, ce->timeline); |
| |
| frame->ring.vaddr = frame->cs; |
| frame->ring.size = sizeof(frame->cs); |
| frame->ring.wrap = |
| BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); |
| frame->ring.effective_size = frame->ring.size; |
| intel_ring_update_space(&frame->ring); |
| frame->rq.ring = &frame->ring; |
| |
| mutex_lock(&ce->timeline->mutex); |
| spin_lock_irq(&engine->active.lock); |
| |
| dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; |
| |
| spin_unlock_irq(&engine->active.lock); |
| mutex_unlock(&ce->timeline->mutex); |
| |
| GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ |
| |
| kfree(frame); |
| return dw; |
| } |
| |
| void |
| intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass) |
| { |
| INIT_LIST_HEAD(&engine->active.requests); |
| INIT_LIST_HEAD(&engine->active.hold); |
| |
| spin_lock_init(&engine->active.lock); |
| lockdep_set_subclass(&engine->active.lock, subclass); |
| |
| /* |
| * Due to an interesting quirk in lockdep's internal debug tracking, |
| * after setting a subclass we must ensure the lock is used. Otherwise, |
| * nr_unused_locks is incremented once too often. |
| */ |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| local_irq_disable(); |
| lock_map_acquire(&engine->active.lock.dep_map); |
| lock_map_release(&engine->active.lock.dep_map); |
| local_irq_enable(); |
| #endif |
| } |
| |
| static struct intel_context * |
| create_pinned_context(struct intel_engine_cs *engine, |
| unsigned int hwsp, |
| struct lock_class_key *key, |
| const char *name) |
| { |
| struct intel_context *ce; |
| int err; |
| |
| ce = intel_context_create(engine); |
| if (IS_ERR(ce)) |
| return ce; |
| |
| __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); |
| ce->timeline = page_pack_bits(NULL, hwsp); |
| |
| err = intel_context_pin(ce); /* perma-pin so it is always available */ |
| if (err) { |
| intel_context_put(ce); |
| return ERR_PTR(err); |
| } |
| |
| /* |
| * Give our perma-pinned kernel timelines a separate lockdep class, |
| * so that we can use them from within the normal user timelines |
| * should we need to inject GPU operations during their request |
| * construction. |
| */ |
| lockdep_set_class_and_name(&ce->timeline->mutex, key, name); |
| |
| return ce; |
| } |
| |
| static struct intel_context * |
| create_kernel_context(struct intel_engine_cs *engine) |
| { |
| static struct lock_class_key kernel; |
| |
| return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR, |
| &kernel, "kernel_context"); |
| } |
| |
| /** |
| * intel_engines_init_common - initialize cengine state which might require hw access |
| * @engine: Engine to initialize. |
| * |
| * Initializes @engine@ structure members shared between legacy and execlists |
| * submission modes which do require hardware access. |
| * |
| * Typcally done at later stages of submission mode specific engine setup. |
| * |
| * Returns zero on success or an error code on failure. |
| */ |
| static int engine_init_common(struct intel_engine_cs *engine) |
| { |
| struct intel_context *ce; |
| int ret; |
| |
| engine->set_default_submission(engine); |
| |
| /* |
| * We may need to do things with the shrinker which |
| * require us to immediately switch back to the default |
| * context. This can cause a problem as pinning the |
| * default context also requires GTT space which may not |
| * be available. To avoid this we always pin the default |
| * context. |
| */ |
| ce = create_kernel_context(engine); |
| if (IS_ERR(ce)) |
| return PTR_ERR(ce); |
| |
| ret = measure_breadcrumb_dw(ce); |
| if (ret < 0) |
| goto err_context; |
| |
| engine->emit_fini_breadcrumb_dw = ret; |
| engine->kernel_context = ce; |
| |
| return 0; |
| |
| err_context: |
| intel_context_put(ce); |
| return ret; |
| } |
| |
| int intel_engines_init(struct intel_gt *gt) |
| { |
| int (*setup)(struct intel_engine_cs *engine); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int err; |
| |
| if (HAS_EXECLISTS(gt->i915)) |
| setup = intel_execlists_submission_setup; |
| else |
| setup = intel_ring_submission_setup; |
| |
| for_each_engine(engine, gt, id) { |
| err = engine_setup_common(engine); |
| if (err) |
| return err; |
| |
| err = setup(engine); |
| if (err) |
| return err; |
| |
| err = engine_init_common(engine); |
| if (err) |
| return err; |
| |
| intel_engine_add_user(engine); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * intel_engines_cleanup_common - cleans up the engine state created by |
| * the common initiailizers. |
| * @engine: Engine to cleanup. |
| * |
| * This cleans up everything created by the common helpers. |
| */ |
| void intel_engine_cleanup_common(struct intel_engine_cs *engine) |
| { |
| GEM_BUG_ON(!list_empty(&engine->active.requests)); |
| tasklet_kill(&engine->execlists.tasklet); /* flush the callback */ |
| |
| cleanup_status_page(engine); |
| intel_breadcrumbs_free(engine->breadcrumbs); |
| |
| intel_engine_fini_retire(engine); |
| intel_engine_cleanup_cmd_parser(engine); |
| |
| if (engine->default_state) |
| fput(engine->default_state); |
| |
| if (engine->kernel_context) { |
| intel_context_unpin(engine->kernel_context); |
| intel_context_put(engine->kernel_context); |
| } |
| GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); |
| |
| intel_wa_list_free(&engine->ctx_wa_list); |
| intel_wa_list_free(&engine->wa_list); |
| intel_wa_list_free(&engine->whitelist); |
| } |
| |
| /** |
| * intel_engine_resume - re-initializes the HW state of the engine |
| * @engine: Engine to resume. |
| * |
| * Returns zero on success or an error code on failure. |
| */ |
| int intel_engine_resume(struct intel_engine_cs *engine) |
| { |
| intel_engine_apply_workarounds(engine); |
| intel_engine_apply_whitelist(engine); |
| |
| return engine->resume(engine); |
| } |
| |
| u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| |
| u64 acthd; |
| |
| if (INTEL_GEN(i915) >= 8) |
| acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); |
| else if (INTEL_GEN(i915) >= 4) |
| acthd = ENGINE_READ(engine, RING_ACTHD); |
| else |
| acthd = ENGINE_READ(engine, ACTHD); |
| |
| return acthd; |
| } |
| |
| u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) |
| { |
| u64 bbaddr; |
| |
| if (INTEL_GEN(engine->i915) >= 8) |
| bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); |
| else |
| bbaddr = ENGINE_READ(engine, RING_BBADDR); |
| |
| return bbaddr; |
| } |
| |
| static unsigned long stop_timeout(const struct intel_engine_cs *engine) |
| { |
| if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ |
| return 0; |
| |
| /* |
| * If we are doing a normal GPU reset, we can take our time and allow |
| * the engine to quiesce. We've stopped submission to the engine, and |
| * if we wait long enough an innocent context should complete and |
| * leave the engine idle. So they should not be caught unaware by |
| * the forthcoming GPU reset (which usually follows the stop_cs)! |
| */ |
| return READ_ONCE(engine->props.stop_timeout_ms); |
| } |
| |
| int intel_engine_stop_cs(struct intel_engine_cs *engine) |
| { |
| struct intel_uncore *uncore = engine->uncore; |
| const u32 base = engine->mmio_base; |
| const i915_reg_t mode = RING_MI_MODE(base); |
| int err; |
| |
| if (INTEL_GEN(engine->i915) < 3) |
| return -ENODEV; |
| |
| ENGINE_TRACE(engine, "\n"); |
| |
| intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); |
| |
| err = 0; |
| if (__intel_wait_for_register_fw(uncore, |
| mode, MODE_IDLE, MODE_IDLE, |
| 1000, stop_timeout(engine), |
| NULL)) { |
| ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n"); |
| err = -ETIMEDOUT; |
| } |
| |
| /* A final mmio read to let GPU writes be hopefully flushed to memory */ |
| intel_uncore_posting_read_fw(uncore, mode); |
| |
| return err; |
| } |
| |
| void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) |
| { |
| ENGINE_TRACE(engine, "\n"); |
| |
| ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); |
| } |
| |
| const char *i915_cache_level_str(struct drm_i915_private *i915, int type) |
| { |
| switch (type) { |
| case I915_CACHE_NONE: return " uncached"; |
| case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; |
| case I915_CACHE_L3_LLC: return " L3+LLC"; |
| case I915_CACHE_WT: return " WT"; |
| default: return ""; |
| } |
| } |
| |
| static u32 |
| read_subslice_reg(const struct intel_engine_cs *engine, |
| int slice, int subslice, i915_reg_t reg) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| struct intel_uncore *uncore = engine->uncore; |
| u32 mcr_mask, mcr_ss, mcr, old_mcr, val; |
| enum forcewake_domains fw_domains; |
| |
| if (INTEL_GEN(i915) >= 11) { |
| mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; |
| mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); |
| } else { |
| mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; |
| mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); |
| } |
| |
| fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, |
| FW_REG_READ); |
| fw_domains |= intel_uncore_forcewake_for_reg(uncore, |
| GEN8_MCR_SELECTOR, |
| FW_REG_READ | FW_REG_WRITE); |
| |
| spin_lock_irq(&uncore->lock); |
| intel_uncore_forcewake_get__locked(uncore, fw_domains); |
| |
| old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); |
| |
| mcr &= ~mcr_mask; |
| mcr |= mcr_ss; |
| intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); |
| |
| val = intel_uncore_read_fw(uncore, reg); |
| |
| mcr &= ~mcr_mask; |
| mcr |= old_mcr & mcr_mask; |
| |
| intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); |
| |
| intel_uncore_forcewake_put__locked(uncore, fw_domains); |
| spin_unlock_irq(&uncore->lock); |
| |
| return val; |
| } |
| |
| /* NB: please notice the memset */ |
| void intel_engine_get_instdone(const struct intel_engine_cs *engine, |
| struct intel_instdone *instdone) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| const struct sseu_dev_info *sseu = &engine->gt->info.sseu; |
| struct intel_uncore *uncore = engine->uncore; |
| u32 mmio_base = engine->mmio_base; |
| int slice; |
| int subslice; |
| |
| memset(instdone, 0, sizeof(*instdone)); |
| |
| switch (INTEL_GEN(i915)) { |
| default: |
| instdone->instdone = |
| intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); |
| |
| if (engine->id != RCS0) |
| break; |
| |
| instdone->slice_common = |
| intel_uncore_read(uncore, GEN7_SC_INSTDONE); |
| if (INTEL_GEN(i915) >= 12) { |
| instdone->slice_common_extra[0] = |
| intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); |
| instdone->slice_common_extra[1] = |
| intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); |
| } |
| for_each_instdone_slice_subslice(i915, sseu, slice, subslice) { |
| instdone->sampler[slice][subslice] = |
| read_subslice_reg(engine, slice, subslice, |
| GEN7_SAMPLER_INSTDONE); |
| instdone->row[slice][subslice] = |
| read_subslice_reg(engine, slice, subslice, |
| GEN7_ROW_INSTDONE); |
| } |
| break; |
| case 7: |
| instdone->instdone = |
| intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); |
| |
| if (engine->id != RCS0) |
| break; |
| |
| instdone->slice_common = |
| intel_uncore_read(uncore, GEN7_SC_INSTDONE); |
| instdone->sampler[0][0] = |
| intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); |
| instdone->row[0][0] = |
| intel_uncore_read(uncore, GEN7_ROW_INSTDONE); |
| |
| break; |
| case 6: |
| case 5: |
| case 4: |
| instdone->instdone = |
| intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); |
| if (engine->id == RCS0) |
| /* HACK: Using the wrong struct member */ |
| instdone->slice_common = |
| intel_uncore_read(uncore, GEN4_INSTDONE1); |
| break; |
| case 3: |
| case 2: |
| instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); |
| break; |
| } |
| } |
| |
| static bool ring_is_idle(struct intel_engine_cs *engine) |
| { |
| bool idle = true; |
| |
| if (I915_SELFTEST_ONLY(!engine->mmio_base)) |
| return true; |
| |
| if (!intel_engine_pm_get_if_awake(engine)) |
| return true; |
| |
| /* First check that no commands are left in the ring */ |
| if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != |
| (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) |
| idle = false; |
| |
| /* No bit for gen2, so assume the CS parser is idle */ |
| if (INTEL_GEN(engine->i915) > 2 && |
| !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) |
| idle = false; |
| |
| intel_engine_pm_put(engine); |
| |
| return idle; |
| } |
| |
| void intel_engine_flush_submission(struct intel_engine_cs *engine) |
| { |
| struct tasklet_struct *t = &engine->execlists.tasklet; |
| |
| if (!t->func) |
| return; |
| |
| /* Synchronise and wait for the tasklet on another CPU */ |
| tasklet_kill(t); |
| |
| /* Having cancelled the tasklet, ensure that is run */ |
| local_bh_disable(); |
| if (tasklet_trylock(t)) { |
| /* Must wait for any GPU reset in progress. */ |
| if (__tasklet_is_enabled(t)) |
| t->func(t->data); |
| tasklet_unlock(t); |
| } |
| local_bh_enable(); |
| } |
| |
| /** |
| * intel_engine_is_idle() - Report if the engine has finished process all work |
| * @engine: the intel_engine_cs |
| * |
| * Return true if there are no requests pending, nothing left to be submitted |
| * to hardware, and that the engine is idle. |
| */ |
| bool intel_engine_is_idle(struct intel_engine_cs *engine) |
| { |
| /* More white lies, if wedged, hw state is inconsistent */ |
| if (intel_gt_is_wedged(engine->gt)) |
| return true; |
| |
| if (!intel_engine_pm_is_awake(engine)) |
| return true; |
| |
| /* Waiting to drain ELSP? */ |
| if (execlists_active(&engine->execlists)) { |
| synchronize_hardirq(engine->i915->drm.pdev->irq); |
| |
| intel_engine_flush_submission(engine); |
| |
| if (execlists_active(&engine->execlists)) |
| return false; |
| } |
| |
| /* ELSP is empty, but there are ready requests? E.g. after reset */ |
| if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) |
| return false; |
| |
| /* Ring stopped? */ |
| return ring_is_idle(engine); |
| } |
| |
| bool intel_engines_are_idle(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* |
| * If the driver is wedged, HW state may be very inconsistent and |
| * report that it is still busy, even though we have stopped using it. |
| */ |
| if (intel_gt_is_wedged(gt)) |
| return true; |
| |
| /* Already parked (and passed an idleness test); must still be idle */ |
| if (!READ_ONCE(gt->awake)) |
| return true; |
| |
| for_each_engine(engine, gt, id) { |
| if (!intel_engine_is_idle(engine)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void intel_engines_reset_default_submission(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, gt, id) |
| engine->set_default_submission(engine); |
| } |
| |
| bool intel_engine_can_store_dword(struct intel_engine_cs *engine) |
| { |
| switch (INTEL_GEN(engine->i915)) { |
| case 2: |
| return false; /* uses physical not virtual addresses */ |
| case 3: |
| /* maybe only uses physical not virtual addresses */ |
| return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); |
| case 4: |
| return !IS_I965G(engine->i915); /* who knows! */ |
| case 6: |
| return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ |
| default: |
| return true; |
| } |
| } |
| |
| static int print_sched_attr(const struct i915_sched_attr *attr, |
| char *buf, int x, int len) |
| { |
| if (attr->priority == I915_PRIORITY_INVALID) |
| return x; |
| |
| x += snprintf(buf + x, len - x, |
| " prio=%d", attr->priority); |
| |
| return x; |
| } |
| |
| static void print_request(struct drm_printer *m, |
| struct i915_request *rq, |
| const char *prefix) |
| { |
| const char *name = rq->fence.ops->get_timeline_name(&rq->fence); |
| char buf[80] = ""; |
| int x = 0; |
| |
| x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); |
| |
| drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n", |
| prefix, |
| rq->fence.context, rq->fence.seqno, |
| i915_request_completed(rq) ? "!" : |
| i915_request_started(rq) ? "*" : |
| "", |
| test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, |
| &rq->fence.flags) ? "+" : |
| test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, |
| &rq->fence.flags) ? "-" : |
| "", |
| buf, |
| jiffies_to_msecs(jiffies - rq->emitted_jiffies), |
| name); |
| } |
| |
| static struct intel_timeline *get_timeline(struct i915_request *rq) |
| { |
| struct intel_timeline *tl; |
| |
| /* |
| * Even though we are holding the engine->active.lock here, there |
| * is no control over the submission queue per-se and we are |
| * inspecting the active state at a random point in time, with an |
| * unknown queue. Play safe and make sure the timeline remains valid. |
| * (Only being used for pretty printing, one extra kref shouldn't |
| * cause a camel stampede!) |
| */ |
| rcu_read_lock(); |
| tl = rcu_dereference(rq->timeline); |
| if (!kref_get_unless_zero(&tl->kref)) |
| tl = NULL; |
| rcu_read_unlock(); |
| |
| return tl; |
| } |
| |
| static int print_ring(char *buf, int sz, struct i915_request *rq) |
| { |
| int len = 0; |
| |
| if (!i915_request_signaled(rq)) { |
| struct intel_timeline *tl = get_timeline(rq); |
| |
| len = scnprintf(buf, sz, |
| "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", |
| i915_ggtt_offset(rq->ring->vma), |
| tl ? tl->hwsp_offset : 0, |
| hwsp_seqno(rq), |
| DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), |
| 1000 * 1000)); |
| |
| if (tl) |
| intel_timeline_put(tl); |
| } |
| |
| return len; |
| } |
| |
| static void hexdump(struct drm_printer *m, const void *buf, size_t len) |
| { |
| const size_t rowsize = 8 * sizeof(u32); |
| const void *prev = NULL; |
| bool skip = false; |
| size_t pos; |
| |
| for (pos = 0; pos < len; pos += rowsize) { |
| char line[128]; |
| |
| if (prev && !memcmp(prev, buf + pos, rowsize)) { |
| if (!skip) { |
| drm_printf(m, "*\n"); |
| skip = true; |
| } |
| continue; |
| } |
| |
| WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, |
| rowsize, sizeof(u32), |
| line, sizeof(line), |
| false) >= sizeof(line)); |
| drm_printf(m, "[%04zx] %s\n", pos, line); |
| |
| prev = buf + pos; |
| skip = false; |
| } |
| } |
| |
| static const char *repr_timer(const struct timer_list *t) |
| { |
| if (!READ_ONCE(t->expires)) |
| return "inactive"; |
| |
| if (timer_pending(t)) |
| return "active"; |
| |
| return "expired"; |
| } |
| |
| static void intel_engine_print_registers(struct intel_engine_cs *engine, |
| struct drm_printer *m) |
| { |
| struct drm_i915_private *dev_priv = engine->i915; |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| u64 addr; |
| |
| if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7)) |
| drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); |
| if (HAS_EXECLISTS(dev_priv)) { |
| drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", |
| ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); |
| drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", |
| ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); |
| } |
| drm_printf(m, "\tRING_START: 0x%08x\n", |
| ENGINE_READ(engine, RING_START)); |
| drm_printf(m, "\tRING_HEAD: 0x%08x\n", |
| ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); |
| drm_printf(m, "\tRING_TAIL: 0x%08x\n", |
| ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); |
| drm_printf(m, "\tRING_CTL: 0x%08x%s\n", |
| ENGINE_READ(engine, RING_CTL), |
| ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); |
| if (INTEL_GEN(engine->i915) > 2) { |
| drm_printf(m, "\tRING_MODE: 0x%08x%s\n", |
| ENGINE_READ(engine, RING_MI_MODE), |
| ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); |
| } |
| |
| if (INTEL_GEN(dev_priv) >= 6) { |
| drm_printf(m, "\tRING_IMR: 0x%08x\n", |
| ENGINE_READ(engine, RING_IMR)); |
| drm_printf(m, "\tRING_ESR: 0x%08x\n", |
| ENGINE_READ(engine, RING_ESR)); |
| drm_printf(m, "\tRING_EMR: 0x%08x\n", |
| ENGINE_READ(engine, RING_EMR)); |
| drm_printf(m, "\tRING_EIR: 0x%08x\n", |
| ENGINE_READ(engine, RING_EIR)); |
| } |
| |
| addr = intel_engine_get_active_head(engine); |
| drm_printf(m, "\tACTHD: 0x%08x_%08x\n", |
| upper_32_bits(addr), lower_32_bits(addr)); |
| addr = intel_engine_get_last_batch_head(engine); |
| drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", |
| upper_32_bits(addr), lower_32_bits(addr)); |
| if (INTEL_GEN(dev_priv) >= 8) |
| addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); |
| else if (INTEL_GEN(dev_priv) >= 4) |
| addr = ENGINE_READ(engine, RING_DMA_FADD); |
| else |
| addr = ENGINE_READ(engine, DMA_FADD_I8XX); |
| drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", |
| upper_32_bits(addr), lower_32_bits(addr)); |
| if (INTEL_GEN(dev_priv) >= 4) { |
| drm_printf(m, "\tIPEIR: 0x%08x\n", |
| ENGINE_READ(engine, RING_IPEIR)); |
| drm_printf(m, "\tIPEHR: 0x%08x\n", |
| ENGINE_READ(engine, RING_IPEHR)); |
| } else { |
| drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); |
| drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); |
| } |
| |
| if (HAS_EXECLISTS(dev_priv)) { |
| struct i915_request * const *port, *rq; |
| const u32 *hws = |
| &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; |
| const u8 num_entries = execlists->csb_size; |
| unsigned int idx; |
| u8 read, write; |
| |
| drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", |
| yesno(test_bit(TASKLET_STATE_SCHED, |
| &engine->execlists.tasklet.state)), |
| enableddisabled(!atomic_read(&engine->execlists.tasklet.count)), |
| repr_timer(&engine->execlists.preempt), |
| repr_timer(&engine->execlists.timer)); |
| |
| read = execlists->csb_head; |
| write = READ_ONCE(*execlists->csb_write); |
| |
| drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", |
| ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), |
| ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), |
| read, write, num_entries); |
| |
| if (read >= num_entries) |
| read = 0; |
| if (write >= num_entries) |
| write = 0; |
| if (read > write) |
| write += num_entries; |
| while (read < write) { |
| idx = ++read % num_entries; |
| drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", |
| idx, hws[idx * 2], hws[idx * 2 + 1]); |
| } |
| |
| execlists_active_lock_bh(execlists); |
| rcu_read_lock(); |
| for (port = execlists->active; (rq = *port); port++) { |
| char hdr[160]; |
| int len; |
| |
| len = scnprintf(hdr, sizeof(hdr), |
| "\t\tActive[%d]: ccid:%08x%s%s, ", |
| (int)(port - execlists->active), |
| rq->context->lrc.ccid, |
| intel_context_is_closed(rq->context) ? "!" : "", |
| intel_context_is_banned(rq->context) ? "*" : ""); |
| len += print_ring(hdr + len, sizeof(hdr) - len, rq); |
| scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); |
| print_request(m, rq, hdr); |
| } |
| for (port = execlists->pending; (rq = *port); port++) { |
| char hdr[160]; |
| int len; |
| |
| len = scnprintf(hdr, sizeof(hdr), |
| "\t\tPending[%d]: ccid:%08x%s%s, ", |
| (int)(port - execlists->pending), |
| rq->context->lrc.ccid, |
| intel_context_is_closed(rq->context) ? "!" : "", |
| intel_context_is_banned(rq->context) ? "*" : ""); |
| len += print_ring(hdr + len, sizeof(hdr) - len, rq); |
| scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); |
| print_request(m, rq, hdr); |
| } |
| rcu_read_unlock(); |
| execlists_active_unlock_bh(execlists); |
| } else if (INTEL_GEN(dev_priv) > 6) { |
| drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", |
| ENGINE_READ(engine, RING_PP_DIR_BASE)); |
| drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", |
| ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); |
| drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", |
| ENGINE_READ(engine, RING_PP_DIR_DCLV)); |
| } |
| } |
| |
| static void print_request_ring(struct drm_printer *m, struct i915_request *rq) |
| { |
| void *ring; |
| int size; |
| |
| drm_printf(m, |
| "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", |
| rq->head, rq->postfix, rq->tail, |
| rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, |
| rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); |
| |
| size = rq->tail - rq->head; |
| if (rq->tail < rq->head) |
| size += rq->ring->size; |
| |
| ring = kmalloc(size, GFP_ATOMIC); |
| if (ring) { |
| const void *vaddr = rq->ring->vaddr; |
| unsigned int head = rq->head; |
| unsigned int len = 0; |
| |
| if (rq->tail < head) { |
| len = rq->ring->size - head; |
| memcpy(ring, vaddr + head, len); |
| head = 0; |
| } |
| memcpy(ring + len, vaddr + head, size - len); |
| |
| hexdump(m, ring, size); |
| kfree(ring); |
| } |
| } |
| |
| static unsigned long list_count(struct list_head *list) |
| { |
| struct list_head *pos; |
| unsigned long count = 0; |
| |
| list_for_each(pos, list) |
| count++; |
| |
| return count; |
| } |
| |
| void intel_engine_dump(struct intel_engine_cs *engine, |
| struct drm_printer *m, |
| const char *header, ...) |
| { |
| struct i915_gpu_error * const error = &engine->i915->gpu_error; |
| struct i915_request *rq; |
| intel_wakeref_t wakeref; |
| unsigned long flags; |
| ktime_t dummy; |
| |
| if (header) { |
| va_list ap; |
| |
| va_start(ap, header); |
| drm_vprintf(m, header, &ap); |
| va_end(ap); |
| } |
| |
| if (intel_gt_is_wedged(engine->gt)) |
| drm_printf(m, "*** WEDGED ***\n"); |
| |
| drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); |
| drm_printf(m, "\tBarriers?: %s\n", |
| yesno(!llist_empty(&engine->barrier_tasks))); |
| drm_printf(m, "\tLatency: %luus\n", |
| ewma__engine_latency_read(&engine->latency)); |
| if (intel_engine_supports_stats(engine)) |
| drm_printf(m, "\tRuntime: %llums\n", |
| ktime_to_ms(intel_engine_get_busy_time(engine, |
| &dummy))); |
| drm_printf(m, "\tForcewake: %x domains, %d active\n", |
| engine->fw_domain, atomic_read(&engine->fw_active)); |
| |
| rcu_read_lock(); |
| rq = READ_ONCE(engine->heartbeat.systole); |
| if (rq) |
| drm_printf(m, "\tHeartbeat: %d ms ago\n", |
| jiffies_to_msecs(jiffies - rq->emitted_jiffies)); |
| rcu_read_unlock(); |
| drm_printf(m, "\tReset count: %d (global %d)\n", |
| i915_reset_engine_count(error, engine), |
| i915_reset_count(error)); |
| |
| drm_printf(m, "\tRequests:\n"); |
| |
| spin_lock_irqsave(&engine->active.lock, flags); |
| rq = intel_engine_find_active_request(engine); |
| if (rq) { |
| struct intel_timeline *tl = get_timeline(rq); |
| |
| print_request(m, rq, "\t\tactive "); |
| |
| drm_printf(m, "\t\tring->start: 0x%08x\n", |
| i915_ggtt_offset(rq->ring->vma)); |
| drm_printf(m, "\t\tring->head: 0x%08x\n", |
| rq->ring->head); |
| drm_printf(m, "\t\tring->tail: 0x%08x\n", |
| rq->ring->tail); |
| drm_printf(m, "\t\tring->emit: 0x%08x\n", |
| rq->ring->emit); |
| drm_printf(m, "\t\tring->space: 0x%08x\n", |
| rq->ring->space); |
| |
| if (tl) { |
| drm_printf(m, "\t\tring->hwsp: 0x%08x\n", |
| tl->hwsp_offset); |
| intel_timeline_put(tl); |
| } |
| |
| print_request_ring(m, rq); |
| |
| if (rq->context->lrc_reg_state) { |
| drm_printf(m, "Logical Ring Context:\n"); |
| hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); |
| } |
| } |
| drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold)); |
| spin_unlock_irqrestore(&engine->active.lock, flags); |
| |
| drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); |
| wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); |
| if (wakeref) { |
| intel_engine_print_registers(engine, m); |
| intel_runtime_pm_put(engine->uncore->rpm, wakeref); |
| } else { |
| drm_printf(m, "\tDevice is asleep; skipping register dump\n"); |
| } |
| |
| intel_execlists_show_requests(engine, m, print_request, 8); |
| |
| drm_printf(m, "HWSP:\n"); |
| hexdump(m, engine->status_page.addr, PAGE_SIZE); |
| |
| drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); |
| |
| intel_engine_print_breadcrumbs(engine, m); |
| } |
| |
| static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine, |
| ktime_t *now) |
| { |
| ktime_t total = engine->stats.total; |
| |
| /* |
| * If the engine is executing something at the moment |
| * add it to the total. |
| */ |
| *now = ktime_get(); |
| if (atomic_read(&engine->stats.active)) |
| total = ktime_add(total, ktime_sub(*now, engine->stats.start)); |
| |
| return total; |
| } |
| |
| /** |
| * intel_engine_get_busy_time() - Return current accumulated engine busyness |
| * @engine: engine to report on |
| * @now: monotonic timestamp of sampling |
| * |
| * Returns accumulated time @engine was busy since engine stats were enabled. |
| */ |
| ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) |
| { |
| unsigned int seq; |
| ktime_t total; |
| |
| do { |
| seq = read_seqbegin(&engine->stats.lock); |
| total = __intel_engine_get_busy_time(engine, now); |
| } while (read_seqretry(&engine->stats.lock, seq)); |
| |
| return total; |
| } |
| |
| static bool match_ring(struct i915_request *rq) |
| { |
| u32 ring = ENGINE_READ(rq->engine, RING_START); |
| |
| return ring == i915_ggtt_offset(rq->ring->vma); |
| } |
| |
| struct i915_request * |
| intel_engine_find_active_request(struct intel_engine_cs *engine) |
| { |
| struct i915_request *request, *active = NULL; |
| |
| /* |
| * We are called by the error capture, reset and to dump engine |
| * state at random points in time. In particular, note that neither is |
| * crucially ordered with an interrupt. After a hang, the GPU is dead |
| * and we assume that no more writes can happen (we waited long enough |
| * for all writes that were in transaction to be flushed) - adding an |
| * extra delay for a recent interrupt is pointless. Hence, we do |
| * not need an engine->irq_seqno_barrier() before the seqno reads. |
| * At all other times, we must assume the GPU is still running, but |
| * we only care about the snapshot of this moment. |
| */ |
| lockdep_assert_held(&engine->active.lock); |
| |
| rcu_read_lock(); |
| request = execlists_active(&engine->execlists); |
| if (request) { |
| struct intel_timeline *tl = request->context->timeline; |
| |
| list_for_each_entry_from_reverse(request, &tl->requests, link) { |
| if (i915_request_completed(request)) |
| break; |
| |
| active = request; |
| } |
| } |
| rcu_read_unlock(); |
| if (active) |
| return active; |
| |
| list_for_each_entry(request, &engine->active.requests, sched.link) { |
| if (i915_request_completed(request)) |
| continue; |
| |
| if (!i915_request_started(request)) |
| continue; |
| |
| /* More than one preemptible request may match! */ |
| if (!match_ring(request)) |
| continue; |
| |
| active = request; |
| break; |
| } |
| |
| return active; |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "mock_engine.c" |
| #include "selftest_engine.c" |
| #include "selftest_engine_cs.c" |
| #endif |