blob: 0d73a49166af3f12c6491d2982a81689716077da [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include <linux/firmware.h>
#include <linux/pci.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_internal.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "smu_v11_0.h"
#include "smu11_driver_if_navi10.h"
#include "soc15_common.h"
#include "atom.h"
#include "navi10_ppt.h"
#include "smu_v11_0_pptable.h"
#include "smu_v11_0_ppsmc.h"
#include "nbio/nbio_7_4_sh_mask.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
#define FEATURE_MASK(feature) (1ULL << feature)
#define SMC_DPM_FEATURE ( \
FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | \
FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_GFX_PACE_BIT) | \
FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_LINK_BIT) | \
FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT))
#define MSG_MAP(msg, index) \
[SMU_MSG_##msg] = {1, (index)}
static struct smu_11_0_cmn2aisc_mapping navi10_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion),
MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow),
MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh),
MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures),
MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures),
MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow),
MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh),
MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow),
MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh),
MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetEnabledSmuFeaturesLow),
MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetEnabledSmuFeaturesHigh),
MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask),
MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow),
MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh),
MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu),
MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable),
MSG_MAP(UseBackupPPTable, PPSMC_MSG_UseBackupPPTable),
MSG_MAP(RunBtc, PPSMC_MSG_RunBtc),
MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco),
MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq),
MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq),
MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq),
MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq),
MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq),
MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq),
MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex),
MSG_MAP(SetMemoryChannelConfig, PPSMC_MSG_SetMemoryChannelConfig),
MSG_MAP(SetGeminiMode, PPSMC_MSG_SetGeminiMode),
MSG_MAP(SetGeminiApertureHigh, PPSMC_MSG_SetGeminiApertureHigh),
MSG_MAP(SetGeminiApertureLow, PPSMC_MSG_SetGeminiApertureLow),
MSG_MAP(OverridePcieParameters, PPSMC_MSG_OverridePcieParameters),
MSG_MAP(SetMinDeepSleepDcefclk, PPSMC_MSG_SetMinDeepSleepDcefclk),
MSG_MAP(ReenableAcDcInterrupt, PPSMC_MSG_ReenableAcDcInterrupt),
MSG_MAP(NotifyPowerSource, PPSMC_MSG_NotifyPowerSource),
MSG_MAP(SetUclkFastSwitch, PPSMC_MSG_SetUclkFastSwitch),
MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps),
MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload),
MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh),
MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow),
MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize),
MSG_MAP(ConfigureGfxDidt, PPSMC_MSG_ConfigureGfxDidt),
MSG_MAP(NumOfDisplays, PPSMC_MSG_NumOfDisplays),
MSG_MAP(SetSystemVirtualDramAddrHigh, PPSMC_MSG_SetSystemVirtualDramAddrHigh),
MSG_MAP(SetSystemVirtualDramAddrLow, PPSMC_MSG_SetSystemVirtualDramAddrLow),
MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff),
MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff),
MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit),
MSG_MAP(GetDcModeMaxDpmFreq, PPSMC_MSG_GetDcModeMaxDpmFreq),
MSG_MAP(GetDebugData, PPSMC_MSG_GetDebugData),
MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco),
MSG_MAP(PrepareMp1ForReset, PPSMC_MSG_PrepareMp1ForReset),
MSG_MAP(PrepareMp1ForShutdown, PPSMC_MSG_PrepareMp1ForShutdown),
MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn),
MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn),
MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg),
MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg),
MSG_MAP(BacoAudioD3PME, PPSMC_MSG_BacoAudioD3PME),
MSG_MAP(ArmD3, PPSMC_MSG_ArmD3),
MSG_MAP(DAL_DISABLE_DUMMY_PSTATE_CHANGE,PPSMC_MSG_DALDisableDummyPstateChange),
MSG_MAP(DAL_ENABLE_DUMMY_PSTATE_CHANGE, PPSMC_MSG_DALEnableDummyPstateChange),
MSG_MAP(GetVoltageByDpm, PPSMC_MSG_GetVoltageByDpm),
MSG_MAP(GetVoltageByDpmOverdrive, PPSMC_MSG_GetVoltageByDpmOverdrive),
};
static struct smu_11_0_cmn2aisc_mapping navi10_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, PPCLK_GFXCLK),
CLK_MAP(SCLK, PPCLK_GFXCLK),
CLK_MAP(SOCCLK, PPCLK_SOCCLK),
CLK_MAP(FCLK, PPCLK_SOCCLK),
CLK_MAP(UCLK, PPCLK_UCLK),
CLK_MAP(MCLK, PPCLK_UCLK),
CLK_MAP(DCLK, PPCLK_DCLK),
CLK_MAP(VCLK, PPCLK_VCLK),
CLK_MAP(DCEFCLK, PPCLK_DCEFCLK),
CLK_MAP(DISPCLK, PPCLK_DISPCLK),
CLK_MAP(PIXCLK, PPCLK_PIXCLK),
CLK_MAP(PHYCLK, PPCLK_PHYCLK),
};
static struct smu_11_0_cmn2aisc_mapping navi10_feature_mask_map[SMU_FEATURE_COUNT] = {
FEA_MAP(DPM_PREFETCHER),
FEA_MAP(DPM_GFXCLK),
FEA_MAP(DPM_GFX_PACE),
FEA_MAP(DPM_UCLK),
FEA_MAP(DPM_SOCCLK),
FEA_MAP(DPM_MP0CLK),
FEA_MAP(DPM_LINK),
FEA_MAP(DPM_DCEFCLK),
FEA_MAP(MEM_VDDCI_SCALING),
FEA_MAP(MEM_MVDD_SCALING),
FEA_MAP(DS_GFXCLK),
FEA_MAP(DS_SOCCLK),
FEA_MAP(DS_LCLK),
FEA_MAP(DS_DCEFCLK),
FEA_MAP(DS_UCLK),
FEA_MAP(GFX_ULV),
FEA_MAP(FW_DSTATE),
FEA_MAP(GFXOFF),
FEA_MAP(BACO),
FEA_MAP(VCN_PG),
FEA_MAP(JPEG_PG),
FEA_MAP(USB_PG),
FEA_MAP(RSMU_SMN_CG),
FEA_MAP(PPT),
FEA_MAP(TDC),
FEA_MAP(GFX_EDC),
FEA_MAP(APCC_PLUS),
FEA_MAP(GTHR),
FEA_MAP(ACDC),
FEA_MAP(VR0HOT),
FEA_MAP(VR1HOT),
FEA_MAP(FW_CTF),
FEA_MAP(FAN_CONTROL),
FEA_MAP(THERMAL),
FEA_MAP(GFX_DCS),
FEA_MAP(RM),
FEA_MAP(LED_DISPLAY),
FEA_MAP(GFX_SS),
FEA_MAP(OUT_OF_BAND_MONITOR),
FEA_MAP(TEMP_DEPENDENT_VMIN),
FEA_MAP(MMHUB_PG),
FEA_MAP(ATHUB_PG),
FEA_MAP(APCC_DFLL),
};
static struct smu_11_0_cmn2aisc_mapping navi10_table_map[SMU_TABLE_COUNT] = {
TAB_MAP(PPTABLE),
TAB_MAP(WATERMARKS),
TAB_MAP(AVFS),
TAB_MAP(AVFS_PSM_DEBUG),
TAB_MAP(AVFS_FUSE_OVERRIDE),
TAB_MAP(PMSTATUSLOG),
TAB_MAP(SMU_METRICS),
TAB_MAP(DRIVER_SMU_CONFIG),
TAB_MAP(ACTIVITY_MONITOR_COEFF),
TAB_MAP(OVERDRIVE),
TAB_MAP(I2C_COMMANDS),
TAB_MAP(PACE),
};
static struct smu_11_0_cmn2aisc_mapping navi10_pwr_src_map[SMU_POWER_SOURCE_COUNT] = {
PWR_MAP(AC),
PWR_MAP(DC),
};
static struct smu_11_0_cmn2aisc_mapping navi10_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT),
};
static int navi10_get_smu_msg_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_MSG_MAX_COUNT)
return -EINVAL;
mapping = navi10_message_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int navi10_get_smu_clk_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_CLK_COUNT)
return -EINVAL;
mapping = navi10_clk_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int navi10_get_smu_feature_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_FEATURE_COUNT)
return -EINVAL;
mapping = navi10_feature_mask_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int navi10_get_smu_table_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_TABLE_COUNT)
return -EINVAL;
mapping = navi10_table_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int navi10_get_pwr_src_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_POWER_SOURCE_COUNT)
return -EINVAL;
mapping = navi10_pwr_src_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int navi10_get_workload_type(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (profile > PP_SMC_POWER_PROFILE_CUSTOM)
return -EINVAL;
mapping = navi10_workload_map[profile];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static bool is_asic_secure(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
bool is_secure = true;
uint32_t mp0_fw_intf;
mp0_fw_intf = RREG32_PCIE(MP0_Public |
(smnMP0_FW_INTF & 0xffffffff));
if (!(mp0_fw_intf & (1 << 19)))
is_secure = false;
return is_secure;
}
static int
navi10_get_allowed_feature_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
struct amdgpu_device *adev = smu->adev;
if (num > 2)
return -EINVAL;
memset(feature_mask, 0, sizeof(uint32_t) * num);
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT)
| FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT)
| FEATURE_MASK(FEATURE_RSMU_SMN_CG_BIT)
| FEATURE_MASK(FEATURE_DS_SOCCLK_BIT)
| FEATURE_MASK(FEATURE_PPT_BIT)
| FEATURE_MASK(FEATURE_TDC_BIT)
| FEATURE_MASK(FEATURE_GFX_EDC_BIT)
| FEATURE_MASK(FEATURE_APCC_PLUS_BIT)
| FEATURE_MASK(FEATURE_VR0HOT_BIT)
| FEATURE_MASK(FEATURE_FAN_CONTROL_BIT)
| FEATURE_MASK(FEATURE_THERMAL_BIT)
| FEATURE_MASK(FEATURE_LED_DISPLAY_BIT)
| FEATURE_MASK(FEATURE_DS_LCLK_BIT)
| FEATURE_MASK(FEATURE_DS_DCEFCLK_BIT)
| FEATURE_MASK(FEATURE_FW_DSTATE_BIT)
| FEATURE_MASK(FEATURE_BACO_BIT)
| FEATURE_MASK(FEATURE_ACDC_BIT)
| FEATURE_MASK(FEATURE_GFX_SS_BIT)
| FEATURE_MASK(FEATURE_APCC_DFLL_BIT)
| FEATURE_MASK(FEATURE_FW_CTF_BIT)
| FEATURE_MASK(FEATURE_OUT_OF_BAND_MONITOR_BIT);
if (adev->pm.pp_feature & PP_SOCCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT);
if (adev->pm.pp_feature & PP_SCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT);
if (adev->pm.pp_feature & PP_PCIE_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_LINK_BIT);
if (adev->pm.pp_feature & PP_DCEFCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT);
if (adev->pm.pp_feature & PP_MCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_UCLK_BIT)
| FEATURE_MASK(FEATURE_MEM_VDDCI_SCALING_BIT)
| FEATURE_MASK(FEATURE_MEM_MVDD_SCALING_BIT);
if (adev->pm.pp_feature & PP_ULV_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFX_ULV_BIT);
if (adev->pm.pp_feature & PP_SCLK_DEEP_SLEEP_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DS_GFXCLK_BIT);
if (adev->pm.pp_feature & PP_GFXOFF_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFXOFF_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_MMHUB)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MMHUB_PG_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_ATHUB)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ATHUB_PG_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_VCN)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_VCN_PG_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_JPEG)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_JPEG_PG_BIT);
/* disable DPM UCLK and DS SOCCLK on navi10 A0 secure board */
if (is_asic_secure(smu)) {
/* only for navi10 A0 */
if ((adev->asic_type == CHIP_NAVI10) &&
(adev->rev_id == 0)) {
*(uint64_t *)feature_mask &=
~(FEATURE_MASK(FEATURE_DPM_UCLK_BIT)
| FEATURE_MASK(FEATURE_MEM_VDDCI_SCALING_BIT)
| FEATURE_MASK(FEATURE_MEM_MVDD_SCALING_BIT));
*(uint64_t *)feature_mask &=
~FEATURE_MASK(FEATURE_DS_SOCCLK_BIT);
}
}
return 0;
}
static int navi10_check_powerplay_table(struct smu_context *smu)
{
return 0;
}
static int navi10_append_powerplay_table(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *smc_pptable = table_context->driver_pptable;
struct atom_smc_dpm_info_v4_5 *smc_dpm_table;
int index, ret;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smc_dpm_info);
ret = smu_get_atom_data_table(smu, index, NULL, NULL, NULL,
(uint8_t **)&smc_dpm_table);
if (ret)
return ret;
memcpy(smc_pptable->I2cControllers, smc_dpm_table->I2cControllers,
sizeof(I2cControllerConfig_t) * NUM_I2C_CONTROLLERS);
/* SVI2 Board Parameters */
smc_pptable->MaxVoltageStepGfx = smc_dpm_table->MaxVoltageStepGfx;
smc_pptable->MaxVoltageStepSoc = smc_dpm_table->MaxVoltageStepSoc;
smc_pptable->VddGfxVrMapping = smc_dpm_table->VddGfxVrMapping;
smc_pptable->VddSocVrMapping = smc_dpm_table->VddSocVrMapping;
smc_pptable->VddMem0VrMapping = smc_dpm_table->VddMem0VrMapping;
smc_pptable->VddMem1VrMapping = smc_dpm_table->VddMem1VrMapping;
smc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table->GfxUlvPhaseSheddingMask;
smc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table->SocUlvPhaseSheddingMask;
smc_pptable->ExternalSensorPresent = smc_dpm_table->ExternalSensorPresent;
smc_pptable->Padding8_V = smc_dpm_table->Padding8_V;
/* Telemetry Settings */
smc_pptable->GfxMaxCurrent = smc_dpm_table->GfxMaxCurrent;
smc_pptable->GfxOffset = smc_dpm_table->GfxOffset;
smc_pptable->Padding_TelemetryGfx = smc_dpm_table->Padding_TelemetryGfx;
smc_pptable->SocMaxCurrent = smc_dpm_table->SocMaxCurrent;
smc_pptable->SocOffset = smc_dpm_table->SocOffset;
smc_pptable->Padding_TelemetrySoc = smc_dpm_table->Padding_TelemetrySoc;
smc_pptable->Mem0MaxCurrent = smc_dpm_table->Mem0MaxCurrent;
smc_pptable->Mem0Offset = smc_dpm_table->Mem0Offset;
smc_pptable->Padding_TelemetryMem0 = smc_dpm_table->Padding_TelemetryMem0;
smc_pptable->Mem1MaxCurrent = smc_dpm_table->Mem1MaxCurrent;
smc_pptable->Mem1Offset = smc_dpm_table->Mem1Offset;
smc_pptable->Padding_TelemetryMem1 = smc_dpm_table->Padding_TelemetryMem1;
/* GPIO Settings */
smc_pptable->AcDcGpio = smc_dpm_table->AcDcGpio;
smc_pptable->AcDcPolarity = smc_dpm_table->AcDcPolarity;
smc_pptable->VR0HotGpio = smc_dpm_table->VR0HotGpio;
smc_pptable->VR0HotPolarity = smc_dpm_table->VR0HotPolarity;
smc_pptable->VR1HotGpio = smc_dpm_table->VR1HotGpio;
smc_pptable->VR1HotPolarity = smc_dpm_table->VR1HotPolarity;
smc_pptable->GthrGpio = smc_dpm_table->GthrGpio;
smc_pptable->GthrPolarity = smc_dpm_table->GthrPolarity;
/* LED Display Settings */
smc_pptable->LedPin0 = smc_dpm_table->LedPin0;
smc_pptable->LedPin1 = smc_dpm_table->LedPin1;
smc_pptable->LedPin2 = smc_dpm_table->LedPin2;
smc_pptable->padding8_4 = smc_dpm_table->padding8_4;
/* GFXCLK PLL Spread Spectrum */
smc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table->PllGfxclkSpreadEnabled;
smc_pptable->PllGfxclkSpreadPercent = smc_dpm_table->PllGfxclkSpreadPercent;
smc_pptable->PllGfxclkSpreadFreq = smc_dpm_table->PllGfxclkSpreadFreq;
/* GFXCLK DFLL Spread Spectrum */
smc_pptable->DfllGfxclkSpreadEnabled = smc_dpm_table->DfllGfxclkSpreadEnabled;
smc_pptable->DfllGfxclkSpreadPercent = smc_dpm_table->DfllGfxclkSpreadPercent;
smc_pptable->DfllGfxclkSpreadFreq = smc_dpm_table->DfllGfxclkSpreadFreq;
/* UCLK Spread Spectrum */
smc_pptable->UclkSpreadEnabled = smc_dpm_table->UclkSpreadEnabled;
smc_pptable->UclkSpreadPercent = smc_dpm_table->UclkSpreadPercent;
smc_pptable->UclkSpreadFreq = smc_dpm_table->UclkSpreadFreq;
/* SOCCLK Spread Spectrum */
smc_pptable->SoclkSpreadEnabled = smc_dpm_table->SoclkSpreadEnabled;
smc_pptable->SocclkSpreadPercent = smc_dpm_table->SocclkSpreadPercent;
smc_pptable->SocclkSpreadFreq = smc_dpm_table->SocclkSpreadFreq;
/* Total board power */
smc_pptable->TotalBoardPower = smc_dpm_table->TotalBoardPower;
smc_pptable->BoardPadding = smc_dpm_table->BoardPadding;
/* Mvdd Svi2 Div Ratio Setting */
smc_pptable->MvddRatio = smc_dpm_table->MvddRatio;
if (adev->pm.pp_feature & PP_GFXOFF_MASK) {
/* TODO: remove it once SMU fw fix it */
smc_pptable->DebugOverrides |= DPM_OVERRIDE_DISABLE_DFLL_PLL_SHUTDOWN;
}
return 0;
}
static int navi10_store_powerplay_table(struct smu_context *smu)
{
struct smu_11_0_powerplay_table *powerplay_table = NULL;
struct smu_table_context *table_context = &smu->smu_table;
struct smu_baco_context *smu_baco = &smu->smu_baco;
if (!table_context->power_play_table)
return -EINVAL;
powerplay_table = table_context->power_play_table;
memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable,
sizeof(PPTable_t));
table_context->thermal_controller_type = powerplay_table->thermal_controller_type;
mutex_lock(&smu_baco->mutex);
if (powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_BACO ||
powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_MACO)
smu_baco->platform_support = true;
mutex_unlock(&smu_baco->mutex);
return 0;
}
static int navi10_tables_init(struct smu_context *smu, struct smu_table *tables)
{
struct smu_table_context *smu_table = &smu->smu_table;
SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF,
sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
return -ENOMEM;
smu_table->metrics_time = 0;
smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
if (!smu_table->watermarks_table)
return -ENOMEM;
return 0;
}
static int navi10_get_metrics_table(struct smu_context *smu,
SmuMetrics_t *metrics_table)
{
struct smu_table_context *smu_table= &smu->smu_table;
int ret = 0;
mutex_lock(&smu->metrics_lock);
if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(100))) {
ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
(void *)smu_table->metrics_table, false);
if (ret) {
pr_info("Failed to export SMU metrics table!\n");
mutex_unlock(&smu->metrics_lock);
return ret;
}
smu_table->metrics_time = jiffies;
}
memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t));
mutex_unlock(&smu->metrics_lock);
return ret;
}
static int navi10_allocate_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
if (smu_dpm->dpm_context)
return -EINVAL;
smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
GFP_KERNEL);
if (!smu_dpm->dpm_context)
return -ENOMEM;
smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context);
return 0;
}
static int navi10_set_default_dpm_table(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context;
PPTable_t *driver_ppt = NULL;
int i;
driver_ppt = table_context->driver_pptable;
dpm_context->dpm_tables.soc_table.min = driver_ppt->FreqTableSocclk[0];
dpm_context->dpm_tables.soc_table.max = driver_ppt->FreqTableSocclk[NUM_SOCCLK_DPM_LEVELS - 1];
dpm_context->dpm_tables.gfx_table.min = driver_ppt->FreqTableGfx[0];
dpm_context->dpm_tables.gfx_table.max = driver_ppt->FreqTableGfx[NUM_GFXCLK_DPM_LEVELS - 1];
dpm_context->dpm_tables.uclk_table.min = driver_ppt->FreqTableUclk[0];
dpm_context->dpm_tables.uclk_table.max = driver_ppt->FreqTableUclk[NUM_UCLK_DPM_LEVELS - 1];
dpm_context->dpm_tables.vclk_table.min = driver_ppt->FreqTableVclk[0];
dpm_context->dpm_tables.vclk_table.max = driver_ppt->FreqTableVclk[NUM_VCLK_DPM_LEVELS - 1];
dpm_context->dpm_tables.dclk_table.min = driver_ppt->FreqTableDclk[0];
dpm_context->dpm_tables.dclk_table.max = driver_ppt->FreqTableDclk[NUM_DCLK_DPM_LEVELS - 1];
dpm_context->dpm_tables.dcef_table.min = driver_ppt->FreqTableDcefclk[0];
dpm_context->dpm_tables.dcef_table.max = driver_ppt->FreqTableDcefclk[NUM_DCEFCLK_DPM_LEVELS - 1];
dpm_context->dpm_tables.pixel_table.min = driver_ppt->FreqTablePixclk[0];
dpm_context->dpm_tables.pixel_table.max = driver_ppt->FreqTablePixclk[NUM_PIXCLK_DPM_LEVELS - 1];
dpm_context->dpm_tables.display_table.min = driver_ppt->FreqTableDispclk[0];
dpm_context->dpm_tables.display_table.max = driver_ppt->FreqTableDispclk[NUM_DISPCLK_DPM_LEVELS - 1];
dpm_context->dpm_tables.phy_table.min = driver_ppt->FreqTablePhyclk[0];
dpm_context->dpm_tables.phy_table.max = driver_ppt->FreqTablePhyclk[NUM_PHYCLK_DPM_LEVELS - 1];
for (i = 0; i < MAX_PCIE_CONF; i++) {
dpm_context->dpm_tables.pcie_table.pcie_gen[i] = driver_ppt->PcieGenSpeed[i];
dpm_context->dpm_tables.pcie_table.pcie_lane[i] = driver_ppt->PcieLaneCount[i];
}
return 0;
}
static int navi10_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (enable) {
/* vcn dpm on is a prerequisite for vcn power gate messages */
if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 1);
if (ret)
return ret;
}
power_gate->vcn_gated = false;
} else {
if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_send_smc_msg(smu, SMU_MSG_PowerDownVcn);
if (ret)
return ret;
}
power_gate->vcn_gated = true;
}
return ret;
}
static int navi10_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (enable) {
if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_send_smc_msg(smu, SMU_MSG_PowerUpJpeg);
if (ret)
return ret;
}
power_gate->jpeg_gated = false;
} else {
if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_send_smc_msg(smu, SMU_MSG_PowerDownJpeg);
if (ret)
return ret;
}
power_gate->jpeg_gated = true;
}
return ret;
}
static int navi10_get_current_clk_freq_by_table(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
int ret = 0, clk_id = 0;
SmuMetrics_t metrics;
ret = navi10_get_metrics_table(smu, &metrics);
if (ret)
return ret;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return clk_id;
*value = metrics.CurrClock[clk_id];
return ret;
}
static bool navi10_is_support_fine_grained_dpm(struct smu_context *smu, enum smu_clk_type clk_type)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
DpmDescriptor_t *dpm_desc = NULL;
uint32_t clk_index = 0;
clk_index = smu_clk_get_index(smu, clk_type);
dpm_desc = &pptable->DpmDescriptor[clk_index];
/* 0 - Fine grained DPM, 1 - Discrete DPM */
return dpm_desc->SnapToDiscrete == 0 ? true : false;
}
static inline bool navi10_od_feature_is_supported(struct smu_11_0_overdrive_table *od_table, enum SMU_11_0_ODFEATURE_CAP cap)
{
return od_table->cap[cap];
}
static void navi10_od_setting_get_range(struct smu_11_0_overdrive_table *od_table,
enum SMU_11_0_ODSETTING_ID setting,
uint32_t *min, uint32_t *max)
{
if (min)
*min = od_table->min[setting];
if (max)
*max = od_table->max[setting];
}
static int navi10_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
uint16_t *curve_settings;
int i, size = 0, ret = 0;
uint32_t cur_value = 0, value = 0, count = 0;
uint32_t freq_values[3] = {0};
uint32_t mark_index = 0;
struct smu_table_context *table_context = &smu->smu_table;
uint32_t gen_speed, lane_width;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context;
struct amdgpu_device *adev = smu->adev;
PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable;
OverDriveTable_t *od_table =
(OverDriveTable_t *)table_context->overdrive_table;
struct smu_11_0_overdrive_table *od_settings = smu->od_settings;
uint32_t min_value, max_value;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
case SMU_SOCCLK:
case SMU_MCLK:
case SMU_UCLK:
case SMU_FCLK:
case SMU_DCEFCLK:
ret = smu_get_current_clk_freq(smu, clk_type, &cur_value);
if (ret)
return size;
/* 10KHz -> MHz */
cur_value = cur_value / 100;
ret = smu_get_dpm_level_count(smu, clk_type, &count);
if (ret)
return size;
if (!navi10_is_support_fine_grained_dpm(smu, clk_type)) {
for (i = 0; i < count; i++) {
ret = smu_get_dpm_freq_by_index(smu, clk_type, i, &value);
if (ret)
return size;
size += sprintf(buf + size, "%d: %uMhz %s\n", i, value,
cur_value == value ? "*" : "");
}
} else {
ret = smu_get_dpm_freq_by_index(smu, clk_type, 0, &freq_values[0]);
if (ret)
return size;
ret = smu_get_dpm_freq_by_index(smu, clk_type, count - 1, &freq_values[2]);
if (ret)
return size;
freq_values[1] = cur_value;
mark_index = cur_value == freq_values[0] ? 0 :
cur_value == freq_values[2] ? 2 : 1;
if (mark_index != 1)
freq_values[1] = (freq_values[0] + freq_values[2]) / 2;
for (i = 0; i < 3; i++) {
size += sprintf(buf + size, "%d: %uMhz %s\n", i, freq_values[i],
i == mark_index ? "*" : "");
}
}
break;
case SMU_PCIE:
gen_speed = (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
>> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
lane_width = (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
>> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
for (i = 0; i < NUM_LINK_LEVELS; i++)
size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i,
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 0) ? "2.5GT/s," :
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 1) ? "5.0GT/s," :
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 2) ? "8.0GT/s," :
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 3) ? "16.0GT/s," : "",
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 1) ? "x1" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 2) ? "x2" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 3) ? "x4" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 4) ? "x8" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 5) ? "x12" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 6) ? "x16" : "",
pptable->LclkFreq[i],
(gen_speed == dpm_context->dpm_tables.pcie_table.pcie_gen[i]) &&
(lane_width == dpm_context->dpm_tables.pcie_table.pcie_lane[i]) ?
"*" : "");
break;
case SMU_OD_SCLK:
if (!smu->od_enabled || !od_table || !od_settings)
break;
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS))
break;
size += sprintf(buf + size, "OD_SCLK:\n");
size += sprintf(buf + size, "0: %uMhz\n1: %uMhz\n", od_table->GfxclkFmin, od_table->GfxclkFmax);
break;
case SMU_OD_MCLK:
if (!smu->od_enabled || !od_table || !od_settings)
break;
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX))
break;
size += sprintf(buf + size, "OD_MCLK:\n");
size += sprintf(buf + size, "1: %uMHz\n", od_table->UclkFmax);
break;
case SMU_OD_VDDC_CURVE:
if (!smu->od_enabled || !od_table || !od_settings)
break;
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE))
break;
size += sprintf(buf + size, "OD_VDDC_CURVE:\n");
for (i = 0; i < 3; i++) {
switch (i) {
case 0:
curve_settings = &od_table->GfxclkFreq1;
break;
case 1:
curve_settings = &od_table->GfxclkFreq2;
break;
case 2:
curve_settings = &od_table->GfxclkFreq3;
break;
default:
break;
}
size += sprintf(buf + size, "%d: %uMHz @ %umV\n", i, curve_settings[0], curve_settings[1] / NAVI10_VOLTAGE_SCALE);
}
break;
case SMU_OD_RANGE:
if (!smu->od_enabled || !od_table || !od_settings)
break;
size = sprintf(buf, "%s:\n", "OD_RANGE");
if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS)) {
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_GFXCLKFMIN,
&min_value, NULL);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_GFXCLKFMAX,
NULL, &max_value);
size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n",
min_value, max_value);
}
if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX)) {
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_UCLKFMAX,
&min_value, &max_value);
size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n",
min_value, max_value);
}
if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE)) {
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P1,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P1,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P2,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P2,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P3,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P3,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n",
min_value, max_value);
}
break;
default:
break;
}
return size;
}
static int navi10_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, uint32_t mask)
{
int ret = 0, size = 0;
uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
case SMU_SOCCLK:
case SMU_MCLK:
case SMU_UCLK:
case SMU_DCEFCLK:
case SMU_FCLK:
/* There is only 2 levels for fine grained DPM */
if (navi10_is_support_fine_grained_dpm(smu, clk_type)) {
soft_max_level = (soft_max_level >= 1 ? 1 : 0);
soft_min_level = (soft_min_level >= 1 ? 1 : 0);
}
ret = smu_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq);
if (ret)
return size;
ret = smu_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq);
if (ret)
return size;
ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq);
if (ret)
return size;
break;
default:
break;
}
return size;
}
static int navi10_populate_umd_state_clk(struct smu_context *smu)
{
int ret = 0;
uint32_t min_sclk_freq = 0, min_mclk_freq = 0;
ret = smu_get_dpm_freq_range(smu, SMU_SCLK, &min_sclk_freq, NULL, false);
if (ret)
return ret;
smu->pstate_sclk = min_sclk_freq * 100;
ret = smu_get_dpm_freq_range(smu, SMU_MCLK, &min_mclk_freq, NULL, false);
if (ret)
return ret;
smu->pstate_mclk = min_mclk_freq * 100;
return ret;
}
static int navi10_get_clock_by_type_with_latency(struct smu_context *smu,
enum smu_clk_type clk_type,
struct pp_clock_levels_with_latency *clocks)
{
int ret = 0, i = 0;
uint32_t level_count = 0, freq = 0;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_DCEFCLK:
case SMU_SOCCLK:
case SMU_MCLK:
case SMU_UCLK:
ret = smu_get_dpm_level_count(smu, clk_type, &level_count);
if (ret)
return ret;
level_count = min(level_count, (uint32_t)MAX_NUM_CLOCKS);
clocks->num_levels = level_count;
for (i = 0; i < level_count; i++) {
ret = smu_get_dpm_freq_by_index(smu, clk_type, i, &freq);
if (ret)
return ret;
clocks->data[i].clocks_in_khz = freq * 1000;
clocks->data[i].latency_in_us = 0;
}
break;
default:
break;
}
return ret;
}
static int navi10_pre_display_config_changed(struct smu_context *smu)
{
int ret = 0;
uint32_t max_freq = 0;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
if (ret)
return ret;
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_get_dpm_freq_range(smu, SMU_UCLK, NULL, &max_freq, false);
if (ret)
return ret;
ret = smu_set_hard_freq_range(smu, SMU_UCLK, 0, max_freq);
if (ret)
return ret;
}
return ret;
}
static int navi10_display_config_changed(struct smu_context *smu)
{
int ret = 0;
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
ret = smu_write_watermarks_table(smu);
if (ret)
return ret;
smu->watermarks_bitmap |= WATERMARKS_LOADED;
}
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
smu_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays,
smu->display_config->num_display);
if (ret)
return ret;
}
return ret;
}
static int navi10_force_dpm_limit_value(struct smu_context *smu, bool highest)
{
int ret = 0, i = 0;
uint32_t min_freq, max_freq, force_freq;
enum smu_clk_type clk_type;
enum smu_clk_type clks[] = {
SMU_GFXCLK,
SMU_MCLK,
SMU_SOCCLK,
};
for (i = 0; i < ARRAY_SIZE(clks); i++) {
clk_type = clks[i];
ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
if (ret)
return ret;
force_freq = highest ? max_freq : min_freq;
ret = smu_set_soft_freq_range(smu, clk_type, force_freq, force_freq);
if (ret)
return ret;
}
return ret;
}
static int navi10_unforce_dpm_levels(struct smu_context *smu)
{
int ret = 0, i = 0;
uint32_t min_freq, max_freq;
enum smu_clk_type clk_type;
enum smu_clk_type clks[] = {
SMU_GFXCLK,
SMU_MCLK,
SMU_SOCCLK,
};
for (i = 0; i < ARRAY_SIZE(clks); i++) {
clk_type = clks[i];
ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq);
if (ret)
return ret;
}
return ret;
}
static int navi10_get_gpu_power(struct smu_context *smu, uint32_t *value)
{
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = navi10_get_metrics_table(smu, &metrics);
if (ret)
return ret;
*value = metrics.AverageSocketPower << 8;
return 0;
}
static int navi10_get_current_activity_percent(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = navi10_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
*value = metrics.AverageGfxActivity;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
*value = metrics.AverageUclkActivity;
break;
default:
pr_err("Invalid sensor for retrieving clock activity\n");
return -EINVAL;
}
return 0;
}
static bool navi10_is_dpm_running(struct smu_context *smu)
{
int ret = 0;
uint32_t feature_mask[2];
unsigned long feature_enabled;
ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
feature_enabled = (unsigned long)((uint64_t)feature_mask[0] |
((uint64_t)feature_mask[1] << 32));
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static int navi10_get_fan_speed_rpm(struct smu_context *smu,
uint32_t *speed)
{
SmuMetrics_t metrics;
int ret = 0;
if (!speed)
return -EINVAL;
ret = navi10_get_metrics_table(smu, &metrics);
if (ret)
return ret;
*speed = metrics.CurrFanSpeed;
return ret;
}
static int navi10_get_fan_speed_percent(struct smu_context *smu,
uint32_t *speed)
{
int ret = 0;
uint32_t percent = 0;
uint32_t current_rpm;
PPTable_t *pptable = smu->smu_table.driver_pptable;
ret = navi10_get_fan_speed_rpm(smu, &current_rpm);
if (ret)
return ret;
percent = current_rpm * 100 / pptable->FanMaximumRpm;
*speed = percent > 100 ? 100 : percent;
return ret;
}
static int navi10_get_power_profile_mode(struct smu_context *smu, char *buf)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
uint32_t i, size = 0;
int16_t workload_type = 0;
static const char *profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
static const char *title[] = {
"PROFILE_INDEX(NAME)",
"CLOCK_TYPE(NAME)",
"FPS",
"MinFreqType",
"MinActiveFreqType",
"MinActiveFreq",
"BoosterFreqType",
"BoosterFreq",
"PD_Data_limit_c",
"PD_Data_error_coeff",
"PD_Data_error_rate_coeff"};
int result = 0;
if (!buf)
return -EINVAL;
size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
title[0], title[1], title[2], title[3], title[4], title[5],
title[6], title[7], title[8], title[9], title[10]);
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_workload_get_type(smu, i);
if (workload_type < 0)
return -EINVAL;
result = smu_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type,
(void *)(&activity_monitor), false);
if (result) {
pr_err("[%s] Failed to get activity monitor!", __func__);
return result;
}
size += sprintf(buf + size, "%2d %14s%s:\n",
i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
0,
"GFXCLK",
activity_monitor.Gfx_FPS,
activity_monitor.Gfx_MinFreqStep,
activity_monitor.Gfx_MinActiveFreqType,
activity_monitor.Gfx_MinActiveFreq,
activity_monitor.Gfx_BoosterFreqType,
activity_monitor.Gfx_BoosterFreq,
activity_monitor.Gfx_PD_Data_limit_c,
activity_monitor.Gfx_PD_Data_error_coeff,
activity_monitor.Gfx_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
1,
"SOCCLK",
activity_monitor.Soc_FPS,
activity_monitor.Soc_MinFreqStep,
activity_monitor.Soc_MinActiveFreqType,
activity_monitor.Soc_MinActiveFreq,
activity_monitor.Soc_BoosterFreqType,
activity_monitor.Soc_BoosterFreq,
activity_monitor.Soc_PD_Data_limit_c,
activity_monitor.Soc_PD_Data_error_coeff,
activity_monitor.Soc_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
2,
"MEMLK",
activity_monitor.Mem_FPS,
activity_monitor.Mem_MinFreqStep,
activity_monitor.Mem_MinActiveFreqType,
activity_monitor.Mem_MinActiveFreq,
activity_monitor.Mem_BoosterFreqType,
activity_monitor.Mem_BoosterFreq,
activity_monitor.Mem_PD_Data_limit_c,
activity_monitor.Mem_PD_Data_error_coeff,
activity_monitor.Mem_PD_Data_error_rate_coeff);
}
return size;
}
static int navi10_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
int workload_type, ret = 0;
smu->power_profile_mode = input[size];
if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
return -EINVAL;
}
if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
if (size < 0)
return -EINVAL;
ret = smu_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor), false);
if (ret) {
pr_err("[%s] Failed to get activity monitor!", __func__);
return ret;
}
switch (input[0]) {
case 0: /* Gfxclk */
activity_monitor.Gfx_FPS = input[1];
activity_monitor.Gfx_MinFreqStep = input[2];
activity_monitor.Gfx_MinActiveFreqType = input[3];
activity_monitor.Gfx_MinActiveFreq = input[4];
activity_monitor.Gfx_BoosterFreqType = input[5];
activity_monitor.Gfx_BoosterFreq = input[6];
activity_monitor.Gfx_PD_Data_limit_c = input[7];
activity_monitor.Gfx_PD_Data_error_coeff = input[8];
activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
break;
case 1: /* Socclk */
activity_monitor.Soc_FPS = input[1];
activity_monitor.Soc_MinFreqStep = input[2];
activity_monitor.Soc_MinActiveFreqType = input[3];
activity_monitor.Soc_MinActiveFreq = input[4];
activity_monitor.Soc_BoosterFreqType = input[5];
activity_monitor.Soc_BoosterFreq = input[6];
activity_monitor.Soc_PD_Data_limit_c = input[7];
activity_monitor.Soc_PD_Data_error_coeff = input[8];
activity_monitor.Soc_PD_Data_error_rate_coeff = input[9];
break;
case 2: /* Memlk */
activity_monitor.Mem_FPS = input[1];
activity_monitor.Mem_MinFreqStep = input[2];
activity_monitor.Mem_MinActiveFreqType = input[3];
activity_monitor.Mem_MinActiveFreq = input[4];
activity_monitor.Mem_BoosterFreqType = input[5];
activity_monitor.Mem_BoosterFreq = input[6];
activity_monitor.Mem_PD_Data_limit_c = input[7];
activity_monitor.Mem_PD_Data_error_coeff = input[8];
activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
break;
}
ret = smu_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor), true);
if (ret) {
pr_err("[%s] Failed to set activity monitor!", __func__);
return ret;
}
}
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_workload_get_type(smu, smu->power_profile_mode);
if (workload_type < 0)
return -EINVAL;
smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
1 << workload_type);
return ret;
}
static int navi10_get_profiling_clk_mask(struct smu_context *smu,
enum amd_dpm_forced_level level,
uint32_t *sclk_mask,
uint32_t *mclk_mask,
uint32_t *soc_mask)
{
int ret = 0;
uint32_t level_count = 0;
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
if (sclk_mask)
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
if (mclk_mask)
*mclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
if(sclk_mask) {
ret = smu_get_dpm_level_count(smu, SMU_SCLK, &level_count);
if (ret)
return ret;
*sclk_mask = level_count - 1;
}
if(mclk_mask) {
ret = smu_get_dpm_level_count(smu, SMU_MCLK, &level_count);
if (ret)
return ret;
*mclk_mask = level_count - 1;
}
if(soc_mask) {
ret = smu_get_dpm_level_count(smu, SMU_SOCCLK, &level_count);
if (ret)
return ret;
*soc_mask = level_count - 1;
}
}
return ret;
}
static int navi10_notify_smc_display_config(struct smu_context *smu)
{
struct smu_clocks min_clocks = {0};
struct pp_display_clock_request clock_req;
int ret = 0;
min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk;
min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk;
min_clocks.memory_clock = smu->display_config->min_mem_set_clock;
if (smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
clock_req.clock_type = amd_pp_dcef_clock;
clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10;
ret = smu_v11_0_display_clock_voltage_request(smu, &clock_req);
if (!ret) {
if (smu_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) {
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetMinDeepSleepDcefclk,
min_clocks.dcef_clock_in_sr/100);
if (ret) {
pr_err("Attempt to set divider for DCEFCLK Failed!");
return ret;
}
}
} else {
pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_set_hard_freq_range(smu, SMU_UCLK, min_clocks.memory_clock/100, 0);
if (ret) {
pr_err("[%s] Set hard min uclk failed!", __func__);
return ret;
}
}
return 0;
}
static int navi10_set_watermarks_table(struct smu_context *smu,
void *watermarks, struct
dm_pp_wm_sets_with_clock_ranges_soc15
*clock_ranges)
{
int i;
Watermarks_t *table = watermarks;
if (!table || !clock_ranges)
return -EINVAL;
if (clock_ranges->num_wm_dmif_sets > 4 ||
clock_ranges->num_wm_mcif_sets > 4)
return -EINVAL;
for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
table->WatermarkRow[1][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
1000));
table->WatermarkRow[1][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
1000));
table->WatermarkRow[1][i].MinUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
1000));
table->WatermarkRow[1][i].MaxUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
1000));
table->WatermarkRow[1][i].WmSetting = (uint8_t)
clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
}
for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
table->WatermarkRow[0][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
1000));
table->WatermarkRow[0][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
1000));
table->WatermarkRow[0][i].MinUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
1000));
table->WatermarkRow[0][i].MaxUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
1000));
table->WatermarkRow[0][i].WmSetting = (uint8_t)
clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
}
return 0;
}
static int navi10_thermal_get_temperature(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
SmuMetrics_t metrics;
int ret = 0;
if (!value)
return -EINVAL;
ret = navi10_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (sensor) {
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
*value = metrics.TemperatureHotspot *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
*value = metrics.TemperatureEdge *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
*value = metrics.TemperatureMem *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
default:
pr_err("Invalid sensor for retrieving temp\n");
return -EINVAL;
}
return 0;
}
static int navi10_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
if(!data || !size)
return -EINVAL;
mutex_lock(&smu->sensor_lock);
switch (sensor) {
case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
*(uint32_t *)data = pptable->FanMaximumRpm;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = navi10_get_current_activity_percent(smu, sensor, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = navi10_get_gpu_power(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
case AMDGPU_PP_SENSOR_EDGE_TEMP:
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = navi10_thermal_get_temperature(smu, sensor, (uint32_t *)data);
*size = 4;
break;
default:
ret = smu_v11_0_read_sensor(smu, sensor, data, size);
}
mutex_unlock(&smu->sensor_lock);
return ret;
}
static int navi10_get_uclk_dpm_states(struct smu_context *smu, uint32_t *clocks_in_khz, uint32_t *num_states)
{
uint32_t num_discrete_levels = 0;
uint16_t *dpm_levels = NULL;
uint16_t i = 0;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *driver_ppt = NULL;
if (!clocks_in_khz || !num_states || !table_context->driver_pptable)
return -EINVAL;
driver_ppt = table_context->driver_pptable;
num_discrete_levels = driver_ppt->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels;
dpm_levels = driver_ppt->FreqTableUclk;
if (num_discrete_levels == 0 || dpm_levels == NULL)
return -EINVAL;
*num_states = num_discrete_levels;
for (i = 0; i < num_discrete_levels; i++) {
/* convert to khz */
*clocks_in_khz = (*dpm_levels) * 1000;
clocks_in_khz++;
dpm_levels++;
}
return 0;
}
static int navi10_set_performance_level(struct smu_context *smu,
enum amd_dpm_forced_level level);
static int navi10_set_standard_performance_level(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
uint32_t sclk_freq = 0, uclk_freq = 0;
switch (adev->asic_type) {
case CHIP_NAVI10:
sclk_freq = NAVI10_UMD_PSTATE_PROFILING_GFXCLK;
uclk_freq = NAVI10_UMD_PSTATE_PROFILING_MEMCLK;
break;
case CHIP_NAVI14:
sclk_freq = NAVI14_UMD_PSTATE_PROFILING_GFXCLK;
uclk_freq = NAVI14_UMD_PSTATE_PROFILING_MEMCLK;
break;
default:
/* by default, this is same as auto performance level */
return navi10_set_performance_level(smu, AMD_DPM_FORCED_LEVEL_AUTO);
}
ret = smu_set_soft_freq_range(smu, SMU_SCLK, sclk_freq, sclk_freq);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, SMU_UCLK, uclk_freq, uclk_freq);
if (ret)
return ret;
return ret;
}
static int navi10_set_peak_performance_level(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
uint32_t sclk_freq = 0, uclk_freq = 0;
switch (adev->asic_type) {
case CHIP_NAVI10:
switch (adev->pdev->revision) {
case 0xf0: /* XTX */
case 0xc0:
sclk_freq = NAVI10_PEAK_SCLK_XTX;
break;
case 0xf1: /* XT */
case 0xc1:
sclk_freq = NAVI10_PEAK_SCLK_XT;
break;
default: /* XL */
sclk_freq = NAVI10_PEAK_SCLK_XL;
break;
}
break;
case CHIP_NAVI14:
switch (adev->pdev->revision) {
case 0xc7: /* XT */
case 0xf4:
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XT_GFXCLK;
break;
case 0xc1: /* XTM */
case 0xf2:
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XTM_GFXCLK;
break;
case 0xc3: /* XLM */
case 0xf3:
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XLM_GFXCLK;
break;
case 0xc5: /* XTX */
case 0xf6:
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XLM_GFXCLK;
break;
default: /* XL */
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XL_GFXCLK;
break;
}
break;
case CHIP_NAVI12:
sclk_freq = NAVI12_UMD_PSTATE_PEAK_GFXCLK;
break;
default:
ret = smu_get_dpm_level_range(smu, SMU_SCLK, NULL, &sclk_freq);
if (ret)
return ret;
}
ret = smu_get_dpm_level_range(smu, SMU_UCLK, NULL, &uclk_freq);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, SMU_SCLK, sclk_freq, sclk_freq);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, SMU_UCLK, uclk_freq, uclk_freq);
if (ret)
return ret;
return ret;
}
static int navi10_set_performance_level(struct smu_context *smu,
enum amd_dpm_forced_level level)
{
int ret = 0;
uint32_t sclk_mask, mclk_mask, soc_mask;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = smu_force_dpm_limit_value(smu, true);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = smu_force_dpm_limit_value(smu, false);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
ret = smu_unforce_dpm_levels(smu);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
ret = navi10_set_standard_performance_level(smu);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
ret = smu_get_profiling_clk_mask(smu, level,
&sclk_mask,
&mclk_mask,
&soc_mask);
if (ret)
return ret;
smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = navi10_set_peak_performance_level(smu);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
return ret;
}
static int navi10_get_thermal_temperature_range(struct smu_context *smu,
struct smu_temperature_range *range)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table;
if (!range || !powerplay_table)
return -EINVAL;
range->max = powerplay_table->software_shutdown_temp *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static int navi10_display_disable_memory_clock_switch(struct smu_context *smu,
bool disable_memory_clock_switch)
{
int ret = 0;
struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks =
(struct smu_11_0_max_sustainable_clocks *)
smu->smu_table.max_sustainable_clocks;
uint32_t min_memory_clock = smu->hard_min_uclk_req_from_dal;
uint32_t max_memory_clock = max_sustainable_clocks->uclock;
if(smu->disable_uclk_switch == disable_memory_clock_switch)
return 0;
if(disable_memory_clock_switch)
ret = smu_set_hard_freq_range(smu, SMU_UCLK, max_memory_clock, 0);
else
ret = smu_set_hard_freq_range(smu, SMU_UCLK, min_memory_clock, 0);
if(!ret)
smu->disable_uclk_switch = disable_memory_clock_switch;
return ret;
}
static uint32_t navi10_get_pptable_power_limit(struct smu_context *smu)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
return pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0];
}
static int navi10_get_power_limit(struct smu_context *smu,
uint32_t *limit,
bool cap)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t asic_default_power_limit = 0;
int ret = 0;
int power_src;
if (!smu->power_limit) {
if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
power_src = smu_power_get_index(smu, SMU_POWER_SOURCE_AC);
if (power_src < 0)
return -EINVAL;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
power_src << 16);
if (ret) {
pr_err("[%s] get PPT limit failed!", __func__);
return ret;
}
smu_read_smc_arg(smu, &asic_default_power_limit);
} else {
/* the last hope to figure out the ppt limit */
if (!pptable) {
pr_err("Cannot get PPT limit due to pptable missing!");
return -EINVAL;
}
asic_default_power_limit =
pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0];
}
smu->power_limit = asic_default_power_limit;
}
if (cap)
*limit = smu_v11_0_get_max_power_limit(smu);
else
*limit = smu->power_limit;
return 0;
}
static int navi10_update_pcie_parameters(struct smu_context *smu,
uint32_t pcie_gen_cap,
uint32_t pcie_width_cap)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
int ret, i;
uint32_t smu_pcie_arg;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context;
for (i = 0; i < NUM_LINK_LEVELS; i++) {
smu_pcie_arg = (i << 16) |
((pptable->PcieGenSpeed[i] <= pcie_gen_cap) ? (pptable->PcieGenSpeed[i] << 8) :
(pcie_gen_cap << 8)) | ((pptable->PcieLaneCount[i] <= pcie_width_cap) ?
pptable->PcieLaneCount[i] : pcie_width_cap);
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_OverridePcieParameters,
smu_pcie_arg);
if (ret)
return ret;
if (pptable->PcieGenSpeed[i] > pcie_gen_cap)
dpm_context->dpm_tables.pcie_table.pcie_gen[i] = pcie_gen_cap;
if (pptable->PcieLaneCount[i] > pcie_width_cap)
dpm_context->dpm_tables.pcie_table.pcie_lane[i] = pcie_width_cap;
}
return 0;
}
static inline void navi10_dump_od_table(OverDriveTable_t *od_table) {
pr_debug("OD: Gfxclk: (%d, %d)\n", od_table->GfxclkFmin, od_table->GfxclkFmax);
pr_debug("OD: Gfx1: (%d, %d)\n", od_table->GfxclkFreq1, od_table->GfxclkVolt1);
pr_debug("OD: Gfx2: (%d, %d)\n", od_table->GfxclkFreq2, od_table->GfxclkVolt2);
pr_debug("OD: Gfx3: (%d, %d)\n", od_table->GfxclkFreq3, od_table->GfxclkVolt3);
pr_debug("OD: UclkFmax: %d\n", od_table->UclkFmax);
pr_debug("OD: OverDrivePct: %d\n", od_table->OverDrivePct);
}
static int navi10_od_setting_check_range(struct smu_11_0_overdrive_table *od_table, enum SMU_11_0_ODSETTING_ID setting, uint32_t value)
{
if (value < od_table->min[setting]) {
pr_warn("OD setting (%d, %d) is less than the minimum allowed (%d)\n", setting, value, od_table->min[setting]);
return -EINVAL;
}
if (value > od_table->max[setting]) {
pr_warn("OD setting (%d, %d) is greater than the maximum allowed (%d)\n", setting, value, od_table->max[setting]);
return -EINVAL;
}
return 0;
}
static int navi10_overdrive_get_gfx_clk_base_voltage(struct smu_context *smu,
uint16_t *voltage,
uint32_t freq)
{
uint32_t param = (freq & 0xFFFF) | (PPCLK_GFXCLK << 16);
uint32_t value = 0;
int ret;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_GetVoltageByDpm,
param);
if (ret) {
pr_err("[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!");
return ret;
}
smu_read_smc_arg(smu, &value);
*voltage = (uint16_t)value;
return 0;
}
static int navi10_setup_od_limits(struct smu_context *smu) {
struct smu_11_0_overdrive_table *overdrive_table = NULL;
struct smu_11_0_powerplay_table *powerplay_table = NULL;
if (!smu->smu_table.power_play_table) {
pr_err("powerplay table uninitialized!\n");
return -ENOENT;
}
powerplay_table = (struct smu_11_0_powerplay_table *)smu->smu_table.power_play_table;
overdrive_table = &powerplay_table->overdrive_table;
if (!smu->od_settings) {
smu->od_settings = kmemdup(overdrive_table, sizeof(struct smu_11_0_overdrive_table), GFP_KERNEL);
} else {
memcpy(smu->od_settings, overdrive_table, sizeof(struct smu_11_0_overdrive_table));
}
return 0;
}
static int navi10_set_default_od_settings(struct smu_context *smu, bool initialize) {
OverDriveTable_t *od_table, *boot_od_table;
int ret = 0;
ret = smu_v11_0_set_default_od_settings(smu, initialize, sizeof(OverDriveTable_t));
if (ret)
return ret;
od_table = (OverDriveTable_t *)smu->smu_table.overdrive_table;
boot_od_table = (OverDriveTable_t *)smu->smu_table.boot_overdrive_table;
if (initialize) {
ret = navi10_setup_od_limits(smu);
if (ret) {
pr_err("Failed to retrieve board OD limits\n");
return ret;
}
if (od_table) {
if (!od_table->GfxclkVolt1) {
ret = navi10_overdrive_get_gfx_clk_base_voltage(smu,
&od_table->GfxclkVolt1,
od_table->GfxclkFreq1);
if (ret)
od_table->GfxclkVolt1 = 0;
if (boot_od_table)
boot_od_table->GfxclkVolt1 = od_table->GfxclkVolt1;
}
if (!od_table->GfxclkVolt2) {
ret = navi10_overdrive_get_gfx_clk_base_voltage(smu,
&od_table->GfxclkVolt2,
od_table->GfxclkFreq2);
if (ret)
od_table->GfxclkVolt2 = 0;
if (boot_od_table)
boot_od_table->GfxclkVolt2 = od_table->GfxclkVolt2;
}
if (!od_table->GfxclkVolt3) {
ret = navi10_overdrive_get_gfx_clk_base_voltage(smu,
&od_table->GfxclkVolt3,
od_table->GfxclkFreq3);
if (ret)
od_table->GfxclkVolt3 = 0;
if (boot_od_table)
boot_od_table->GfxclkVolt3 = od_table->GfxclkVolt3;
}
}
}
if (od_table) {
navi10_dump_od_table(od_table);
}
return ret;
}
static int navi10_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) {
int i;
int ret = 0;
struct smu_table_context *table_context = &smu->smu_table;
OverDriveTable_t *od_table;
struct smu_11_0_overdrive_table *od_settings;
enum SMU_11_0_ODSETTING_ID freq_setting, voltage_setting;
uint16_t *freq_ptr, *voltage_ptr;
od_table = (OverDriveTable_t *)table_context->overdrive_table;
if (!smu->od_enabled) {
pr_warn("OverDrive is not enabled!\n");
return -EINVAL;
}
if (!smu->od_settings) {
pr_err("OD board limits are not set!\n");
return -ENOENT;
}
od_settings = smu->od_settings;
switch (type) {
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS)) {
pr_warn("GFXCLK_LIMITS not supported!\n");
return -ENOTSUPP;
}
if (!table_context->overdrive_table) {
pr_err("Overdrive is not initialized\n");
return -EINVAL;
}
for (i = 0; i < size; i += 2) {
if (i + 2 > size) {
pr_info("invalid number of input parameters %d\n", size);
return -EINVAL;
}
switch (input[i]) {
case 0:
freq_setting = SMU_11_0_ODSETTING_GFXCLKFMIN;
freq_ptr = &od_table->GfxclkFmin;
if (input[i + 1] > od_table->GfxclkFmax) {
pr_info("GfxclkFmin (%ld) must be <= GfxclkFmax (%u)!\n",
input[i + 1],
od_table->GfxclkFmin);
return -EINVAL;
}
break;
case 1:
freq_setting = SMU_11_0_ODSETTING_GFXCLKFMAX;
freq_ptr = &od_table->GfxclkFmax;
if (input[i + 1] < od_table->GfxclkFmin) {
pr_info("GfxclkFmax (%ld) must be >= GfxclkFmin (%u)!\n",
input[i + 1],
od_table->GfxclkFmax);
return -EINVAL;
}
break;
default:
pr_info("Invalid SCLK_VDDC_TABLE index: %ld\n", input[i]);
pr_info("Supported indices: [0:min,1:max]\n");
return -EINVAL;
}
ret = navi10_od_setting_check_range(od_settings, freq_setting, input[i + 1]);
if (ret)
return ret;
*freq_ptr = input[i + 1];
}
break;
case PP_OD_EDIT_MCLK_VDDC_TABLE:
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX)) {
pr_warn("UCLK_MAX not supported!\n");
return -ENOTSUPP;
}
if (size < 2) {
pr_info("invalid number of parameters: %d\n", size);
return -EINVAL;
}
if (input[0] != 1) {
pr_info("Invalid MCLK_VDDC_TABLE index: %ld\n", input[0]);
pr_info("Supported indices: [1:max]\n");
return -EINVAL;
}
ret = navi10_od_setting_check_range(od_settings, SMU_11_0_ODSETTING_UCLKFMAX, input[1]);
if (ret)
return ret;
od_table->UclkFmax = input[1];
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
if (!(table_context->overdrive_table && table_context->boot_overdrive_table)) {
pr_err("Overdrive table was not initialized!\n");
return -EINVAL;
}
memcpy(table_context->overdrive_table, table_context->boot_overdrive_table, sizeof(OverDriveTable_t));
break;
case PP_OD_COMMIT_DPM_TABLE:
navi10_dump_od_table(od_table);
ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, (void *)od_table, true);
if (ret) {
pr_err("Failed to import overdrive table!\n");
return ret;
}
// no lock needed because smu_od_edit_dpm_table has it
ret = smu_handle_task(smu, smu->smu_dpm.dpm_level,
AMD_PP_TASK_READJUST_POWER_STATE,
false);
if (ret) {
return ret;
}
break;
case PP_OD_EDIT_VDDC_CURVE:
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE)) {
pr_warn("GFXCLK_CURVE not supported!\n");
return -ENOTSUPP;
}
if (size < 3) {
pr_info("invalid number of parameters: %d\n", size);
return -EINVAL;
}
if (!od_table) {
pr_info("Overdrive is not initialized\n");
return -EINVAL;
}
switch (input[0]) {
case 0:
freq_setting = SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P1;
voltage_setting = SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P1;
freq_ptr = &od_table->GfxclkFreq1;
voltage_ptr = &od_table->GfxclkVolt1;
break;
case 1:
freq_setting = SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P2;
voltage_setting = SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P2;
freq_ptr = &od_table->GfxclkFreq2;
voltage_ptr = &od_table->GfxclkVolt2;
break;
case 2:
freq_setting = SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P3;
voltage_setting = SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P3;
freq_ptr = &od_table->GfxclkFreq3;
voltage_ptr = &od_table->GfxclkVolt3;
break;
default:
pr_info("Invalid VDDC_CURVE index: %ld\n", input[0]);
pr_info("Supported indices: [0, 1, 2]\n");
return -EINVAL;
}
ret = navi10_od_setting_check_range(od_settings, freq_setting, input[1]);
if (ret)
return ret;
// Allow setting zero to disable the OverDrive VDDC curve
if (input[2] != 0) {
ret = navi10_od_setting_check_range(od_settings, voltage_setting, input[2]);
if (ret)
return ret;
*freq_ptr = input[1];
*voltage_ptr = ((uint16_t)input[2]) * NAVI10_VOLTAGE_SCALE;
pr_debug("OD: set curve %ld: (%d, %d)\n", input[0], *freq_ptr, *voltage_ptr);
} else {
// If setting 0, disable all voltage curve settings
od_table->GfxclkVolt1 = 0;
od_table->GfxclkVolt2 = 0;
od_table->GfxclkVolt3 = 0;
}
navi10_dump_od_table(od_table);
break;
default:
return -ENOSYS;
}
return ret;
}
static int navi10_run_btc(struct smu_context *smu)
{
int ret = 0;
ret = smu_send_smc_msg(smu, SMU_MSG_RunBtc);
if (ret)
pr_err("RunBtc failed!\n");
return ret;
}
static int navi10_dummy_pstate_control(struct smu_context *smu, bool enable)
{
int result = 0;
if (!enable)
result = smu_send_smc_msg(smu, SMU_MSG_DAL_DISABLE_DUMMY_PSTATE_CHANGE);
else
result = smu_send_smc_msg(smu, SMU_MSG_DAL_ENABLE_DUMMY_PSTATE_CHANGE);
return result;
}
static int navi10_disable_umc_cdr_12gbps_workaround(struct smu_context *smu)
{
uint32_t uclk_count, uclk_min, uclk_max;
uint32_t smu_version;
int ret = 0;
ret = smu_get_smc_version(smu, NULL, &smu_version);
if (ret)
return ret;
/* This workaround is available only for 42.50 or later SMC firmwares */
if (smu_version < 0x2A3200)
return 0;
ret = smu_get_dpm_level_count(smu, SMU_UCLK, &uclk_count);
if (ret)
return ret;
ret = smu_get_dpm_freq_by_index(smu, SMU_UCLK, (uint16_t)0, &uclk_min);
if (ret)
return ret;
ret = smu_get_dpm_freq_by_index(smu, SMU_UCLK, (uint16_t)(uclk_count - 1), &uclk_max);
if (ret)
return ret;
/* Force UCLK out of the highest DPM */
ret = smu_set_hard_freq_range(smu, SMU_UCLK, 0, uclk_min);
if (ret)
return ret;
/* Revert the UCLK Hardmax */
ret = smu_set_hard_freq_range(smu, SMU_UCLK, 0, uclk_max);
if (ret)
return ret;
/*
* In this case, SMU already disabled dummy pstate during enablement
* of UCLK DPM, we have to re-enabled it.
* */
return navi10_dummy_pstate_control(smu, true);
}
static const struct pptable_funcs navi10_ppt_funcs = {
.tables_init = navi10_tables_init,
.alloc_dpm_context = navi10_allocate_dpm_context,
.store_powerplay_table = navi10_store_powerplay_table,
.check_powerplay_table = navi10_check_powerplay_table,
.append_powerplay_table = navi10_append_powerplay_table,
.get_smu_msg_index = navi10_get_smu_msg_index,
.get_smu_clk_index = navi10_get_smu_clk_index,
.get_smu_feature_index = navi10_get_smu_feature_index,
.get_smu_table_index = navi10_get_smu_table_index,
.get_smu_power_index = navi10_get_pwr_src_index,
.get_workload_type = navi10_get_workload_type,
.get_allowed_feature_mask = navi10_get_allowed_feature_mask,
.set_default_dpm_table = navi10_set_default_dpm_table,
.dpm_set_uvd_enable = navi10_dpm_set_uvd_enable,
.dpm_set_jpeg_enable = navi10_dpm_set_jpeg_enable,
.get_current_clk_freq_by_table = navi10_get_current_clk_freq_by_table,
.print_clk_levels = navi10_print_clk_levels,
.force_clk_levels = navi10_force_clk_levels,
.populate_umd_state_clk = navi10_populate_umd_state_clk,
.get_clock_by_type_with_latency = navi10_get_clock_by_type_with_latency,
.pre_display_config_changed = navi10_pre_display_config_changed,
.display_config_changed = navi10_display_config_changed,
.notify_smc_display_config = navi10_notify_smc_display_config,
.force_dpm_limit_value = navi10_force_dpm_limit_value,
.unforce_dpm_levels = navi10_unforce_dpm_levels,
.is_dpm_running = navi10_is_dpm_running,
.get_fan_speed_percent = navi10_get_fan_speed_percent,
.get_fan_speed_rpm = navi10_get_fan_speed_rpm,
.get_power_profile_mode = navi10_get_power_profile_mode,
.set_power_profile_mode = navi10_set_power_profile_mode,
.get_profiling_clk_mask = navi10_get_profiling_clk_mask,
.set_watermarks_table = navi10_set_watermarks_table,
.read_sensor = navi10_read_sensor,
.get_uclk_dpm_states = navi10_get_uclk_dpm_states,
.set_performance_level = navi10_set_performance_level,
.get_thermal_temperature_range = navi10_get_thermal_temperature_range,
.display_disable_memory_clock_switch = navi10_display_disable_memory_clock_switch,
.get_power_limit = navi10_get_power_limit,
.update_pcie_parameters = navi10_update_pcie_parameters,
.init_microcode = smu_v11_0_init_microcode,
.load_microcode = smu_v11_0_load_microcode,
.init_smc_tables = smu_v11_0_init_smc_tables,
.fini_smc_tables = smu_v11_0_fini_smc_tables,
.init_power = smu_v11_0_init_power,
.fini_power = smu_v11_0_fini_power,
.check_fw_status = smu_v11_0_check_fw_status,
.setup_pptable = smu_v11_0_setup_pptable,
.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
.check_pptable = smu_v11_0_check_pptable,
.parse_pptable = smu_v11_0_parse_pptable,
.populate_smc_tables = smu_v11_0_populate_smc_pptable,
.check_fw_version = smu_v11_0_check_fw_version,
.write_pptable = smu_v11_0_write_pptable,
.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
.set_driver_table_location = smu_v11_0_set_driver_table_location,
.set_tool_table_location = smu_v11_0_set_tool_table_location,
.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
.system_features_control = smu_v11_0_system_features_control,
.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
.read_smc_arg = smu_v11_0_read_arg,
.init_display_count = smu_v11_0_init_display_count,
.set_allowed_mask = smu_v11_0_set_allowed_mask,
.get_enabled_mask = smu_v11_0_get_enabled_mask,
.notify_display_change = smu_v11_0_notify_display_change,
.set_power_limit = smu_v11_0_set_power_limit,
.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
.start_thermal_control = smu_v11_0_start_thermal_control,
.stop_thermal_control = smu_v11_0_stop_thermal_control,
.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
.gfx_off_control = smu_v11_0_gfx_off_control,
.register_irq_handler = smu_v11_0_register_irq_handler,
.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
.baco_is_support= smu_v11_0_baco_is_support,
.baco_get_state = smu_v11_0_baco_get_state,
.baco_set_state = smu_v11_0_baco_set_state,
.baco_enter = smu_v11_0_baco_enter,
.baco_exit = smu_v11_0_baco_exit,
.get_dpm_ultimate_freq = smu_v11_0_get_dpm_ultimate_freq,
.set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range,
.override_pcie_parameters = smu_v11_0_override_pcie_parameters,
.set_default_od_settings = navi10_set_default_od_settings,
.od_edit_dpm_table = navi10_od_edit_dpm_table,
.get_pptable_power_limit = navi10_get_pptable_power_limit,
.run_btc = navi10_run_btc,
.disable_umc_cdr_12gbps_workaround = navi10_disable_umc_cdr_12gbps_workaround,
};
void navi10_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &navi10_ppt_funcs;
}