blob: a0504316b06fbcba6a7985e37fb0cf911e5ca23e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Parts came from builtin-{top,stat,record}.c, see those files for further
* copyright notes.
*/
#include <api/fs/fs.h>
#include <errno.h>
#include <inttypes.h>
#include <poll.h>
#include "cpumap.h"
#include "util/mmap.h"
#include "thread_map.h"
#include "target.h"
#include "evlist.h"
#include "evsel.h"
#include "record.h"
#include "debug.h"
#include "units.h"
#include "bpf_counter.h"
#include <internal/lib.h> // page_size
#include "affinity.h"
#include "../perf.h"
#include "asm/bug.h"
#include "bpf-event.h"
#include "util/event.h"
#include "util/string2.h"
#include "util/perf_api_probe.h"
#include "util/evsel_fprintf.h"
#include "util/evlist-hybrid.h"
#include "util/pmu.h"
#include "util/sample.h"
#include "util/bpf-filter.h"
#include "util/util.h"
#include <signal.h>
#include <unistd.h>
#include <sched.h>
#include <stdlib.h>
#include "parse-events.h"
#include <subcmd/parse-options.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/timerfd.h>
#include <linux/bitops.h>
#include <linux/hash.h>
#include <linux/log2.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/time64.h>
#include <linux/zalloc.h>
#include <perf/evlist.h>
#include <perf/evsel.h>
#include <perf/cpumap.h>
#include <perf/mmap.h>
#include <internal/xyarray.h>
#ifdef LACKS_SIGQUEUE_PROTOTYPE
int sigqueue(pid_t pid, int sig, const union sigval value);
#endif
#define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
#define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y)
void evlist__init(struct evlist *evlist, struct perf_cpu_map *cpus,
struct perf_thread_map *threads)
{
perf_evlist__init(&evlist->core);
perf_evlist__set_maps(&evlist->core, cpus, threads);
evlist->workload.pid = -1;
evlist->bkw_mmap_state = BKW_MMAP_NOTREADY;
evlist->ctl_fd.fd = -1;
evlist->ctl_fd.ack = -1;
evlist->ctl_fd.pos = -1;
}
struct evlist *evlist__new(void)
{
struct evlist *evlist = zalloc(sizeof(*evlist));
if (evlist != NULL)
evlist__init(evlist, NULL, NULL);
return evlist;
}
struct evlist *evlist__new_default(void)
{
struct evlist *evlist = evlist__new();
if (evlist && evlist__add_default(evlist)) {
evlist__delete(evlist);
evlist = NULL;
}
return evlist;
}
struct evlist *evlist__new_dummy(void)
{
struct evlist *evlist = evlist__new();
if (evlist && evlist__add_dummy(evlist)) {
evlist__delete(evlist);
evlist = NULL;
}
return evlist;
}
/**
* evlist__set_id_pos - set the positions of event ids.
* @evlist: selected event list
*
* Events with compatible sample types all have the same id_pos
* and is_pos. For convenience, put a copy on evlist.
*/
void evlist__set_id_pos(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist);
evlist->id_pos = first->id_pos;
evlist->is_pos = first->is_pos;
}
static void evlist__update_id_pos(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__calc_id_pos(evsel);
evlist__set_id_pos(evlist);
}
static void evlist__purge(struct evlist *evlist)
{
struct evsel *pos, *n;
evlist__for_each_entry_safe(evlist, n, pos) {
list_del_init(&pos->core.node);
pos->evlist = NULL;
evsel__delete(pos);
}
evlist->core.nr_entries = 0;
}
void evlist__exit(struct evlist *evlist)
{
event_enable_timer__exit(&evlist->eet);
zfree(&evlist->mmap);
zfree(&evlist->overwrite_mmap);
perf_evlist__exit(&evlist->core);
}
void evlist__delete(struct evlist *evlist)
{
if (evlist == NULL)
return;
evlist__munmap(evlist);
evlist__close(evlist);
evlist__purge(evlist);
evlist__exit(evlist);
free(evlist);
}
void evlist__add(struct evlist *evlist, struct evsel *entry)
{
perf_evlist__add(&evlist->core, &entry->core);
entry->evlist = evlist;
entry->tracking = !entry->core.idx;
if (evlist->core.nr_entries == 1)
evlist__set_id_pos(evlist);
}
void evlist__remove(struct evlist *evlist, struct evsel *evsel)
{
evsel->evlist = NULL;
perf_evlist__remove(&evlist->core, &evsel->core);
}
void evlist__splice_list_tail(struct evlist *evlist, struct list_head *list)
{
while (!list_empty(list)) {
struct evsel *evsel, *temp, *leader = NULL;
__evlist__for_each_entry_safe(list, temp, evsel) {
list_del_init(&evsel->core.node);
evlist__add(evlist, evsel);
leader = evsel;
break;
}
__evlist__for_each_entry_safe(list, temp, evsel) {
if (evsel__has_leader(evsel, leader)) {
list_del_init(&evsel->core.node);
evlist__add(evlist, evsel);
}
}
}
}
int __evlist__set_tracepoints_handlers(struct evlist *evlist,
const struct evsel_str_handler *assocs, size_t nr_assocs)
{
size_t i;
int err;
for (i = 0; i < nr_assocs; i++) {
// Adding a handler for an event not in this evlist, just ignore it.
struct evsel *evsel = evlist__find_tracepoint_by_name(evlist, assocs[i].name);
if (evsel == NULL)
continue;
err = -EEXIST;
if (evsel->handler != NULL)
goto out;
evsel->handler = assocs[i].handler;
}
err = 0;
out:
return err;
}
static void evlist__set_leader(struct evlist *evlist)
{
perf_evlist__set_leader(&evlist->core);
}
int __evlist__add_default(struct evlist *evlist, bool precise)
{
struct evsel *evsel;
evsel = evsel__new_cycles(precise, PERF_TYPE_HARDWARE,
PERF_COUNT_HW_CPU_CYCLES);
if (evsel == NULL)
return -ENOMEM;
evlist__add(evlist, evsel);
return 0;
}
static struct evsel *evlist__dummy_event(struct evlist *evlist)
{
struct perf_event_attr attr = {
.type = PERF_TYPE_SOFTWARE,
.config = PERF_COUNT_SW_DUMMY,
.size = sizeof(attr), /* to capture ABI version */
};
return evsel__new_idx(&attr, evlist->core.nr_entries);
}
int evlist__add_dummy(struct evlist *evlist)
{
struct evsel *evsel = evlist__dummy_event(evlist);
if (evsel == NULL)
return -ENOMEM;
evlist__add(evlist, evsel);
return 0;
}
struct evsel *evlist__add_aux_dummy(struct evlist *evlist, bool system_wide)
{
struct evsel *evsel = evlist__dummy_event(evlist);
if (!evsel)
return NULL;
evsel->core.attr.exclude_kernel = 1;
evsel->core.attr.exclude_guest = 1;
evsel->core.attr.exclude_hv = 1;
evsel->core.attr.freq = 0;
evsel->core.attr.sample_period = 1;
evsel->core.system_wide = system_wide;
evsel->no_aux_samples = true;
evsel->name = strdup("dummy:u");
evlist__add(evlist, evsel);
return evsel;
}
#ifdef HAVE_LIBTRACEEVENT
struct evsel *evlist__add_sched_switch(struct evlist *evlist, bool system_wide)
{
struct evsel *evsel = evsel__newtp_idx("sched", "sched_switch", 0);
if (IS_ERR(evsel))
return evsel;
evsel__set_sample_bit(evsel, CPU);
evsel__set_sample_bit(evsel, TIME);
evsel->core.system_wide = system_wide;
evsel->no_aux_samples = true;
evlist__add(evlist, evsel);
return evsel;
}
#endif
int evlist__add_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs)
{
struct evsel *evsel, *n;
LIST_HEAD(head);
size_t i;
for (i = 0; i < nr_attrs; i++) {
evsel = evsel__new_idx(attrs + i, evlist->core.nr_entries + i);
if (evsel == NULL)
goto out_delete_partial_list;
list_add_tail(&evsel->core.node, &head);
}
evlist__splice_list_tail(evlist, &head);
return 0;
out_delete_partial_list:
__evlist__for_each_entry_safe(&head, n, evsel)
evsel__delete(evsel);
return -1;
}
int __evlist__add_default_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs)
{
size_t i;
for (i = 0; i < nr_attrs; i++)
event_attr_init(attrs + i);
return evlist__add_attrs(evlist, attrs, nr_attrs);
}
__weak int arch_evlist__add_default_attrs(struct evlist *evlist,
struct perf_event_attr *attrs,
size_t nr_attrs)
{
if (!nr_attrs)
return 0;
return __evlist__add_default_attrs(evlist, attrs, nr_attrs);
}
struct evsel *evlist__find_tracepoint_by_id(struct evlist *evlist, int id)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT &&
(int)evsel->core.attr.config == id)
return evsel;
}
return NULL;
}
struct evsel *evlist__find_tracepoint_by_name(struct evlist *evlist, const char *name)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if ((evsel->core.attr.type == PERF_TYPE_TRACEPOINT) &&
(strcmp(evsel->name, name) == 0))
return evsel;
}
return NULL;
}
#ifdef HAVE_LIBTRACEEVENT
int evlist__add_newtp(struct evlist *evlist, const char *sys, const char *name, void *handler)
{
struct evsel *evsel = evsel__newtp(sys, name);
if (IS_ERR(evsel))
return -1;
evsel->handler = handler;
evlist__add(evlist, evsel);
return 0;
}
#endif
struct evlist_cpu_iterator evlist__cpu_begin(struct evlist *evlist, struct affinity *affinity)
{
struct evlist_cpu_iterator itr = {
.container = evlist,
.evsel = NULL,
.cpu_map_idx = 0,
.evlist_cpu_map_idx = 0,
.evlist_cpu_map_nr = perf_cpu_map__nr(evlist->core.all_cpus),
.cpu = (struct perf_cpu){ .cpu = -1},
.affinity = affinity,
};
if (evlist__empty(evlist)) {
/* Ensure the empty list doesn't iterate. */
itr.evlist_cpu_map_idx = itr.evlist_cpu_map_nr;
} else {
itr.evsel = evlist__first(evlist);
if (itr.affinity) {
itr.cpu = perf_cpu_map__cpu(evlist->core.all_cpus, 0);
affinity__set(itr.affinity, itr.cpu.cpu);
itr.cpu_map_idx = perf_cpu_map__idx(itr.evsel->core.cpus, itr.cpu);
/*
* If this CPU isn't in the evsel's cpu map then advance
* through the list.
*/
if (itr.cpu_map_idx == -1)
evlist_cpu_iterator__next(&itr);
}
}
return itr;
}
void evlist_cpu_iterator__next(struct evlist_cpu_iterator *evlist_cpu_itr)
{
while (evlist_cpu_itr->evsel != evlist__last(evlist_cpu_itr->container)) {
evlist_cpu_itr->evsel = evsel__next(evlist_cpu_itr->evsel);
evlist_cpu_itr->cpu_map_idx =
perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
evlist_cpu_itr->cpu);
if (evlist_cpu_itr->cpu_map_idx != -1)
return;
}
evlist_cpu_itr->evlist_cpu_map_idx++;
if (evlist_cpu_itr->evlist_cpu_map_idx < evlist_cpu_itr->evlist_cpu_map_nr) {
evlist_cpu_itr->evsel = evlist__first(evlist_cpu_itr->container);
evlist_cpu_itr->cpu =
perf_cpu_map__cpu(evlist_cpu_itr->container->core.all_cpus,
evlist_cpu_itr->evlist_cpu_map_idx);
if (evlist_cpu_itr->affinity)
affinity__set(evlist_cpu_itr->affinity, evlist_cpu_itr->cpu.cpu);
evlist_cpu_itr->cpu_map_idx =
perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
evlist_cpu_itr->cpu);
/*
* If this CPU isn't in the evsel's cpu map then advance through
* the list.
*/
if (evlist_cpu_itr->cpu_map_idx == -1)
evlist_cpu_iterator__next(evlist_cpu_itr);
}
}
bool evlist_cpu_iterator__end(const struct evlist_cpu_iterator *evlist_cpu_itr)
{
return evlist_cpu_itr->evlist_cpu_map_idx >= evlist_cpu_itr->evlist_cpu_map_nr;
}
static int evsel__strcmp(struct evsel *pos, char *evsel_name)
{
if (!evsel_name)
return 0;
if (evsel__is_dummy_event(pos))
return 1;
return !evsel__name_is(pos, evsel_name);
}
static int evlist__is_enabled(struct evlist *evlist)
{
struct evsel *pos;
evlist__for_each_entry(evlist, pos) {
if (!evsel__is_group_leader(pos) || !pos->core.fd)
continue;
/* If at least one event is enabled, evlist is enabled. */
if (!pos->disabled)
return true;
}
return false;
}
static void __evlist__disable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
{
struct evsel *pos;
struct evlist_cpu_iterator evlist_cpu_itr;
struct affinity saved_affinity, *affinity = NULL;
bool has_imm = false;
// See explanation in evlist__close()
if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
if (affinity__setup(&saved_affinity) < 0)
return;
affinity = &saved_affinity;
}
/* Disable 'immediate' events last */
for (int imm = 0; imm <= 1; imm++) {
evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
pos = evlist_cpu_itr.evsel;
if (evsel__strcmp(pos, evsel_name))
continue;
if (pos->disabled || !evsel__is_group_leader(pos) || !pos->core.fd)
continue;
if (excl_dummy && evsel__is_dummy_event(pos))
continue;
if (pos->immediate)
has_imm = true;
if (pos->immediate != imm)
continue;
evsel__disable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
}
if (!has_imm)
break;
}
affinity__cleanup(affinity);
evlist__for_each_entry(evlist, pos) {
if (evsel__strcmp(pos, evsel_name))
continue;
if (!evsel__is_group_leader(pos) || !pos->core.fd)
continue;
if (excl_dummy && evsel__is_dummy_event(pos))
continue;
pos->disabled = true;
}
/*
* If we disabled only single event, we need to check
* the enabled state of the evlist manually.
*/
if (evsel_name)
evlist->enabled = evlist__is_enabled(evlist);
else
evlist->enabled = false;
}
void evlist__disable(struct evlist *evlist)
{
__evlist__disable(evlist, NULL, false);
}
void evlist__disable_non_dummy(struct evlist *evlist)
{
__evlist__disable(evlist, NULL, true);
}
void evlist__disable_evsel(struct evlist *evlist, char *evsel_name)
{
__evlist__disable(evlist, evsel_name, false);
}
static void __evlist__enable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
{
struct evsel *pos;
struct evlist_cpu_iterator evlist_cpu_itr;
struct affinity saved_affinity, *affinity = NULL;
// See explanation in evlist__close()
if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
if (affinity__setup(&saved_affinity) < 0)
return;
affinity = &saved_affinity;
}
evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
pos = evlist_cpu_itr.evsel;
if (evsel__strcmp(pos, evsel_name))
continue;
if (!evsel__is_group_leader(pos) || !pos->core.fd)
continue;
if (excl_dummy && evsel__is_dummy_event(pos))
continue;
evsel__enable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
}
affinity__cleanup(affinity);
evlist__for_each_entry(evlist, pos) {
if (evsel__strcmp(pos, evsel_name))
continue;
if (!evsel__is_group_leader(pos) || !pos->core.fd)
continue;
if (excl_dummy && evsel__is_dummy_event(pos))
continue;
pos->disabled = false;
}
/*
* Even single event sets the 'enabled' for evlist,
* so the toggle can work properly and toggle to
* 'disabled' state.
*/
evlist->enabled = true;
}
void evlist__enable(struct evlist *evlist)
{
__evlist__enable(evlist, NULL, false);
}
void evlist__enable_non_dummy(struct evlist *evlist)
{
__evlist__enable(evlist, NULL, true);
}
void evlist__enable_evsel(struct evlist *evlist, char *evsel_name)
{
__evlist__enable(evlist, evsel_name, false);
}
void evlist__toggle_enable(struct evlist *evlist)
{
(evlist->enabled ? evlist__disable : evlist__enable)(evlist);
}
int evlist__add_pollfd(struct evlist *evlist, int fd)
{
return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__default);
}
int evlist__filter_pollfd(struct evlist *evlist, short revents_and_mask)
{
return perf_evlist__filter_pollfd(&evlist->core, revents_and_mask);
}
#ifdef HAVE_EVENTFD_SUPPORT
int evlist__add_wakeup_eventfd(struct evlist *evlist, int fd)
{
return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
fdarray_flag__nonfilterable |
fdarray_flag__non_perf_event);
}
#endif
int evlist__poll(struct evlist *evlist, int timeout)
{
return perf_evlist__poll(&evlist->core, timeout);
}
struct perf_sample_id *evlist__id2sid(struct evlist *evlist, u64 id)
{
struct hlist_head *head;
struct perf_sample_id *sid;
int hash;
hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
head = &evlist->core.heads[hash];
hlist_for_each_entry(sid, head, node)
if (sid->id == id)
return sid;
return NULL;
}
struct evsel *evlist__id2evsel(struct evlist *evlist, u64 id)
{
struct perf_sample_id *sid;
if (evlist->core.nr_entries == 1 || !id)
return evlist__first(evlist);
sid = evlist__id2sid(evlist, id);
if (sid)
return container_of(sid->evsel, struct evsel, core);
if (!evlist__sample_id_all(evlist))
return evlist__first(evlist);
return NULL;
}
struct evsel *evlist__id2evsel_strict(struct evlist *evlist, u64 id)
{
struct perf_sample_id *sid;
if (!id)
return NULL;
sid = evlist__id2sid(evlist, id);
if (sid)
return container_of(sid->evsel, struct evsel, core);
return NULL;
}
static int evlist__event2id(struct evlist *evlist, union perf_event *event, u64 *id)
{
const __u64 *array = event->sample.array;
ssize_t n;
n = (event->header.size - sizeof(event->header)) >> 3;
if (event->header.type == PERF_RECORD_SAMPLE) {
if (evlist->id_pos >= n)
return -1;
*id = array[evlist->id_pos];
} else {
if (evlist->is_pos > n)
return -1;
n -= evlist->is_pos;
*id = array[n];
}
return 0;
}
struct evsel *evlist__event2evsel(struct evlist *evlist, union perf_event *event)
{
struct evsel *first = evlist__first(evlist);
struct hlist_head *head;
struct perf_sample_id *sid;
int hash;
u64 id;
if (evlist->core.nr_entries == 1)
return first;
if (!first->core.attr.sample_id_all &&
event->header.type != PERF_RECORD_SAMPLE)
return first;
if (evlist__event2id(evlist, event, &id))
return NULL;
/* Synthesized events have an id of zero */
if (!id)
return first;
hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
head = &evlist->core.heads[hash];
hlist_for_each_entry(sid, head, node) {
if (sid->id == id)
return container_of(sid->evsel, struct evsel, core);
}
return NULL;
}
static int evlist__set_paused(struct evlist *evlist, bool value)
{
int i;
if (!evlist->overwrite_mmap)
return 0;
for (i = 0; i < evlist->core.nr_mmaps; i++) {
int fd = evlist->overwrite_mmap[i].core.fd;
int err;
if (fd < 0)
continue;
err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0);
if (err)
return err;
}
return 0;
}
static int evlist__pause(struct evlist *evlist)
{
return evlist__set_paused(evlist, true);
}
static int evlist__resume(struct evlist *evlist)
{
return evlist__set_paused(evlist, false);
}
static void evlist__munmap_nofree(struct evlist *evlist)
{
int i;
if (evlist->mmap)
for (i = 0; i < evlist->core.nr_mmaps; i++)
perf_mmap__munmap(&evlist->mmap[i].core);
if (evlist->overwrite_mmap)
for (i = 0; i < evlist->core.nr_mmaps; i++)
perf_mmap__munmap(&evlist->overwrite_mmap[i].core);
}
void evlist__munmap(struct evlist *evlist)
{
evlist__munmap_nofree(evlist);
zfree(&evlist->mmap);
zfree(&evlist->overwrite_mmap);
}
static void perf_mmap__unmap_cb(struct perf_mmap *map)
{
struct mmap *m = container_of(map, struct mmap, core);
mmap__munmap(m);
}
static struct mmap *evlist__alloc_mmap(struct evlist *evlist,
bool overwrite)
{
int i;
struct mmap *map;
map = zalloc(evlist->core.nr_mmaps * sizeof(struct mmap));
if (!map)
return NULL;
for (i = 0; i < evlist->core.nr_mmaps; i++) {
struct perf_mmap *prev = i ? &map[i - 1].core : NULL;
/*
* When the perf_mmap() call is made we grab one refcount, plus
* one extra to let perf_mmap__consume() get the last
* events after all real references (perf_mmap__get()) are
* dropped.
*
* Each PERF_EVENT_IOC_SET_OUTPUT points to this mmap and
* thus does perf_mmap__get() on it.
*/
perf_mmap__init(&map[i].core, prev, overwrite, perf_mmap__unmap_cb);
}
return map;
}
static void
perf_evlist__mmap_cb_idx(struct perf_evlist *_evlist,
struct perf_evsel *_evsel,
struct perf_mmap_param *_mp,
int idx)
{
struct evlist *evlist = container_of(_evlist, struct evlist, core);
struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
struct evsel *evsel = container_of(_evsel, struct evsel, core);
auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, evsel, idx);
}
static struct perf_mmap*
perf_evlist__mmap_cb_get(struct perf_evlist *_evlist, bool overwrite, int idx)
{
struct evlist *evlist = container_of(_evlist, struct evlist, core);
struct mmap *maps;
maps = overwrite ? evlist->overwrite_mmap : evlist->mmap;
if (!maps) {
maps = evlist__alloc_mmap(evlist, overwrite);
if (!maps)
return NULL;
if (overwrite) {
evlist->overwrite_mmap = maps;
if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY)
evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING);
} else {
evlist->mmap = maps;
}
}
return &maps[idx].core;
}
static int
perf_evlist__mmap_cb_mmap(struct perf_mmap *_map, struct perf_mmap_param *_mp,
int output, struct perf_cpu cpu)
{
struct mmap *map = container_of(_map, struct mmap, core);
struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
return mmap__mmap(map, mp, output, cpu);
}
unsigned long perf_event_mlock_kb_in_pages(void)
{
unsigned long pages;
int max;
if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) {
/*
* Pick a once upon a time good value, i.e. things look
* strange since we can't read a sysctl value, but lets not
* die yet...
*/
max = 512;
} else {
max -= (page_size / 1024);
}
pages = (max * 1024) / page_size;
if (!is_power_of_2(pages))
pages = rounddown_pow_of_two(pages);
return pages;
}
size_t evlist__mmap_size(unsigned long pages)
{
if (pages == UINT_MAX)
pages = perf_event_mlock_kb_in_pages();
else if (!is_power_of_2(pages))
return 0;
return (pages + 1) * page_size;
}
static long parse_pages_arg(const char *str, unsigned long min,
unsigned long max)
{
unsigned long pages, val;
static struct parse_tag tags[] = {
{ .tag = 'B', .mult = 1 },
{ .tag = 'K', .mult = 1 << 10 },
{ .tag = 'M', .mult = 1 << 20 },
{ .tag = 'G', .mult = 1 << 30 },
{ .tag = 0 },
};
if (str == NULL)
return -EINVAL;
val = parse_tag_value(str, tags);
if (val != (unsigned long) -1) {
/* we got file size value */
pages = PERF_ALIGN(val, page_size) / page_size;
} else {
/* we got pages count value */
char *eptr;
pages = strtoul(str, &eptr, 10);
if (*eptr != '\0')
return -EINVAL;
}
if (pages == 0 && min == 0) {
/* leave number of pages at 0 */
} else if (!is_power_of_2(pages)) {
char buf[100];
/* round pages up to next power of 2 */
pages = roundup_pow_of_two(pages);
if (!pages)
return -EINVAL;
unit_number__scnprintf(buf, sizeof(buf), pages * page_size);
pr_info("rounding mmap pages size to %s (%lu pages)\n",
buf, pages);
}
if (pages > max)
return -EINVAL;
return pages;
}
int __evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str)
{
unsigned long max = UINT_MAX;
long pages;
if (max > SIZE_MAX / page_size)
max = SIZE_MAX / page_size;
pages = parse_pages_arg(str, 1, max);
if (pages < 0) {
pr_err("Invalid argument for --mmap_pages/-m\n");
return -1;
}
*mmap_pages = pages;
return 0;
}
int evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused)
{
return __evlist__parse_mmap_pages(opt->value, str);
}
/**
* evlist__mmap_ex - Create mmaps to receive events.
* @evlist: list of events
* @pages: map length in pages
* @overwrite: overwrite older events?
* @auxtrace_pages - auxtrace map length in pages
* @auxtrace_overwrite - overwrite older auxtrace data?
*
* If @overwrite is %false the user needs to signal event consumption using
* perf_mmap__write_tail(). Using evlist__mmap_read() does this
* automatically.
*
* Similarly, if @auxtrace_overwrite is %false the user needs to signal data
* consumption using auxtrace_mmap__write_tail().
*
* Return: %0 on success, negative error code otherwise.
*/
int evlist__mmap_ex(struct evlist *evlist, unsigned int pages,
unsigned int auxtrace_pages,
bool auxtrace_overwrite, int nr_cblocks, int affinity, int flush,
int comp_level)
{
/*
* Delay setting mp.prot: set it before calling perf_mmap__mmap.
* Its value is decided by evsel's write_backward.
* So &mp should not be passed through const pointer.
*/
struct mmap_params mp = {
.nr_cblocks = nr_cblocks,
.affinity = affinity,
.flush = flush,
.comp_level = comp_level
};
struct perf_evlist_mmap_ops ops = {
.idx = perf_evlist__mmap_cb_idx,
.get = perf_evlist__mmap_cb_get,
.mmap = perf_evlist__mmap_cb_mmap,
};
evlist->core.mmap_len = evlist__mmap_size(pages);
pr_debug("mmap size %zuB\n", evlist->core.mmap_len);
auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->core.mmap_len,
auxtrace_pages, auxtrace_overwrite);
return perf_evlist__mmap_ops(&evlist->core, &ops, &mp.core);
}
int evlist__mmap(struct evlist *evlist, unsigned int pages)
{
return evlist__mmap_ex(evlist, pages, 0, false, 0, PERF_AFFINITY_SYS, 1, 0);
}
int evlist__create_maps(struct evlist *evlist, struct target *target)
{
bool all_threads = (target->per_thread && target->system_wide);
struct perf_cpu_map *cpus;
struct perf_thread_map *threads;
/*
* If specify '-a' and '--per-thread' to perf record, perf record
* will override '--per-thread'. target->per_thread = false and
* target->system_wide = true.
*
* If specify '--per-thread' only to perf record,
* target->per_thread = true and target->system_wide = false.
*
* So target->per_thread && target->system_wide is false.
* For perf record, thread_map__new_str doesn't call
* thread_map__new_all_cpus. That will keep perf record's
* current behavior.
*
* For perf stat, it allows the case that target->per_thread and
* target->system_wide are all true. It means to collect system-wide
* per-thread data. thread_map__new_str will call
* thread_map__new_all_cpus to enumerate all threads.
*/
threads = thread_map__new_str(target->pid, target->tid, target->uid,
all_threads);
if (!threads)
return -1;
if (target__uses_dummy_map(target))
cpus = perf_cpu_map__dummy_new();
else
cpus = perf_cpu_map__new(target->cpu_list);
if (!cpus)
goto out_delete_threads;
evlist->core.has_user_cpus = !!target->cpu_list && !target->hybrid;
perf_evlist__set_maps(&evlist->core, cpus, threads);
/* as evlist now has references, put count here */
perf_cpu_map__put(cpus);
perf_thread_map__put(threads);
return 0;
out_delete_threads:
perf_thread_map__put(threads);
return -1;
}
int evlist__apply_filters(struct evlist *evlist, struct evsel **err_evsel)
{
struct evsel *evsel;
int err = 0;
evlist__for_each_entry(evlist, evsel) {
/*
* filters only work for tracepoint event, which doesn't have cpu limit.
* So evlist and evsel should always be same.
*/
if (evsel->filter) {
err = perf_evsel__apply_filter(&evsel->core, evsel->filter);
if (err) {
*err_evsel = evsel;
break;
}
}
/*
* non-tracepoint events can have BPF filters.
*/
if (!list_empty(&evsel->bpf_filters)) {
err = perf_bpf_filter__prepare(evsel);
if (err) {
*err_evsel = evsel;
break;
}
}
}
return err;
}
int evlist__set_tp_filter(struct evlist *evlist, const char *filter)
{
struct evsel *evsel;
int err = 0;
if (filter == NULL)
return -1;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
continue;
err = evsel__set_filter(evsel, filter);
if (err)
break;
}
return err;
}
int evlist__append_tp_filter(struct evlist *evlist, const char *filter)
{
struct evsel *evsel;
int err = 0;
if (filter == NULL)
return -1;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
continue;
err = evsel__append_tp_filter(evsel, filter);
if (err)
break;
}
return err;
}
char *asprintf__tp_filter_pids(size_t npids, pid_t *pids)
{
char *filter;
size_t i;
for (i = 0; i < npids; ++i) {
if (i == 0) {
if (asprintf(&filter, "common_pid != %d", pids[i]) < 0)
return NULL;
} else {
char *tmp;
if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0)
goto out_free;
free(filter);
filter = tmp;
}
}
return filter;
out_free:
free(filter);
return NULL;
}
int evlist__set_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
{
char *filter = asprintf__tp_filter_pids(npids, pids);
int ret = evlist__set_tp_filter(evlist, filter);
free(filter);
return ret;
}
int evlist__set_tp_filter_pid(struct evlist *evlist, pid_t pid)
{
return evlist__set_tp_filter_pids(evlist, 1, &pid);
}
int evlist__append_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
{
char *filter = asprintf__tp_filter_pids(npids, pids);
int ret = evlist__append_tp_filter(evlist, filter);
free(filter);
return ret;
}
int evlist__append_tp_filter_pid(struct evlist *evlist, pid_t pid)
{
return evlist__append_tp_filter_pids(evlist, 1, &pid);
}
bool evlist__valid_sample_type(struct evlist *evlist)
{
struct evsel *pos;
if (evlist->core.nr_entries == 1)
return true;
if (evlist->id_pos < 0 || evlist->is_pos < 0)
return false;
evlist__for_each_entry(evlist, pos) {
if (pos->id_pos != evlist->id_pos ||
pos->is_pos != evlist->is_pos)
return false;
}
return true;
}
u64 __evlist__combined_sample_type(struct evlist *evlist)
{
struct evsel *evsel;
if (evlist->combined_sample_type)
return evlist->combined_sample_type;
evlist__for_each_entry(evlist, evsel)
evlist->combined_sample_type |= evsel->core.attr.sample_type;
return evlist->combined_sample_type;
}
u64 evlist__combined_sample_type(struct evlist *evlist)
{
evlist->combined_sample_type = 0;
return __evlist__combined_sample_type(evlist);
}
u64 evlist__combined_branch_type(struct evlist *evlist)
{
struct evsel *evsel;
u64 branch_type = 0;
evlist__for_each_entry(evlist, evsel)
branch_type |= evsel->core.attr.branch_sample_type;
return branch_type;
}
bool evlist__valid_read_format(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist), *pos = first;
u64 read_format = first->core.attr.read_format;
u64 sample_type = first->core.attr.sample_type;
evlist__for_each_entry(evlist, pos) {
if (read_format != pos->core.attr.read_format) {
pr_debug("Read format differs %#" PRIx64 " vs %#" PRIx64 "\n",
read_format, (u64)pos->core.attr.read_format);
}
}
/* PERF_SAMPLE_READ implies PERF_FORMAT_ID. */
if ((sample_type & PERF_SAMPLE_READ) &&
!(read_format & PERF_FORMAT_ID)) {
return false;
}
return true;
}
u16 evlist__id_hdr_size(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist);
return first->core.attr.sample_id_all ? evsel__id_hdr_size(first) : 0;
}
bool evlist__valid_sample_id_all(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist), *pos = first;
evlist__for_each_entry_continue(evlist, pos) {
if (first->core.attr.sample_id_all != pos->core.attr.sample_id_all)
return false;
}
return true;
}
bool evlist__sample_id_all(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist);
return first->core.attr.sample_id_all;
}
void evlist__set_selected(struct evlist *evlist, struct evsel *evsel)
{
evlist->selected = evsel;
}
void evlist__close(struct evlist *evlist)
{
struct evsel *evsel;
struct evlist_cpu_iterator evlist_cpu_itr;
struct affinity affinity;
/*
* With perf record core.user_requested_cpus is usually NULL.
* Use the old method to handle this for now.
*/
if (!evlist->core.user_requested_cpus ||
cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
evlist__for_each_entry_reverse(evlist, evsel)
evsel__close(evsel);
return;
}
if (affinity__setup(&affinity) < 0)
return;
evlist__for_each_cpu(evlist_cpu_itr, evlist, &affinity) {
perf_evsel__close_cpu(&evlist_cpu_itr.evsel->core,
evlist_cpu_itr.cpu_map_idx);
}
affinity__cleanup(&affinity);
evlist__for_each_entry_reverse(evlist, evsel) {
perf_evsel__free_fd(&evsel->core);
perf_evsel__free_id(&evsel->core);
}
perf_evlist__reset_id_hash(&evlist->core);
}
static int evlist__create_syswide_maps(struct evlist *evlist)
{
struct perf_cpu_map *cpus;
struct perf_thread_map *threads;
/*
* Try reading /sys/devices/system/cpu/online to get
* an all cpus map.
*
* FIXME: -ENOMEM is the best we can do here, the cpu_map
* code needs an overhaul to properly forward the
* error, and we may not want to do that fallback to a
* default cpu identity map :-\
*/
cpus = perf_cpu_map__new(NULL);
if (!cpus)
goto out;
threads = perf_thread_map__new_dummy();
if (!threads)
goto out_put;
perf_evlist__set_maps(&evlist->core, cpus, threads);
perf_thread_map__put(threads);
out_put:
perf_cpu_map__put(cpus);
out:
return -ENOMEM;
}
int evlist__open(struct evlist *evlist)
{
struct evsel *evsel;
int err;
/*
* Default: one fd per CPU, all threads, aka systemwide
* as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL
*/
if (evlist->core.threads == NULL && evlist->core.user_requested_cpus == NULL) {
err = evlist__create_syswide_maps(evlist);
if (err < 0)
goto out_err;
}
evlist__update_id_pos(evlist);
evlist__for_each_entry(evlist, evsel) {
err = evsel__open(evsel, evsel->core.cpus, evsel->core.threads);
if (err < 0)
goto out_err;
}
return 0;
out_err:
evlist__close(evlist);
errno = -err;
return err;
}
int evlist__prepare_workload(struct evlist *evlist, struct target *target, const char *argv[],
bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext))
{
int child_ready_pipe[2], go_pipe[2];
char bf;
if (pipe(child_ready_pipe) < 0) {
perror("failed to create 'ready' pipe");
return -1;
}
if (pipe(go_pipe) < 0) {
perror("failed to create 'go' pipe");
goto out_close_ready_pipe;
}
evlist->workload.pid = fork();
if (evlist->workload.pid < 0) {
perror("failed to fork");
goto out_close_pipes;
}
if (!evlist->workload.pid) {
int ret;
if (pipe_output)
dup2(2, 1);
signal(SIGTERM, SIG_DFL);
close(child_ready_pipe[0]);
close(go_pipe[1]);
fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
/*
* Change the name of this process not to confuse --exclude-perf users
* that sees 'perf' in the window up to the execvp() and thinks that
* perf samples are not being excluded.
*/
prctl(PR_SET_NAME, "perf-exec");
/*
* Tell the parent we're ready to go
*/
close(child_ready_pipe[1]);
/*
* Wait until the parent tells us to go.
*/
ret = read(go_pipe[0], &bf, 1);
/*
* The parent will ask for the execvp() to be performed by
* writing exactly one byte, in workload.cork_fd, usually via
* evlist__start_workload().
*
* For cancelling the workload without actually running it,
* the parent will just close workload.cork_fd, without writing
* anything, i.e. read will return zero and we just exit()
* here.
*/
if (ret != 1) {
if (ret == -1)
perror("unable to read pipe");
exit(ret);
}
execvp(argv[0], (char **)argv);
if (exec_error) {
union sigval val;
val.sival_int = errno;
if (sigqueue(getppid(), SIGUSR1, val))
perror(argv[0]);
} else
perror(argv[0]);
exit(-1);
}
if (exec_error) {
struct sigaction act = {
.sa_flags = SA_SIGINFO,
.sa_sigaction = exec_error,
};
sigaction(SIGUSR1, &act, NULL);
}
if (target__none(target)) {
if (evlist->core.threads == NULL) {
fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n",
__func__, __LINE__);
goto out_close_pipes;
}
perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid);
}
close(child_ready_pipe[1]);
close(go_pipe[0]);
/*
* wait for child to settle
*/
if (read(child_ready_pipe[0], &bf, 1) == -1) {
perror("unable to read pipe");
goto out_close_pipes;
}
fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
evlist->workload.cork_fd = go_pipe[1];
close(child_ready_pipe[0]);
return 0;
out_close_pipes:
close(go_pipe[0]);
close(go_pipe[1]);
out_close_ready_pipe:
close(child_ready_pipe[0]);
close(child_ready_pipe[1]);
return -1;
}
int evlist__start_workload(struct evlist *evlist)
{
if (evlist->workload.cork_fd > 0) {
char bf = 0;
int ret;
/*
* Remove the cork, let it rip!
*/
ret = write(evlist->workload.cork_fd, &bf, 1);
if (ret < 0)
perror("unable to write to pipe");
close(evlist->workload.cork_fd);
return ret;
}
return 0;
}
int evlist__parse_sample(struct evlist *evlist, union perf_event *event, struct perf_sample *sample)
{
struct evsel *evsel = evlist__event2evsel(evlist, event);
int ret;
if (!evsel)
return -EFAULT;
ret = evsel__parse_sample(evsel, event, sample);
if (ret)
return ret;
if (perf_guest && sample->id) {
struct perf_sample_id *sid = evlist__id2sid(evlist, sample->id);
if (sid) {
sample->machine_pid = sid->machine_pid;
sample->vcpu = sid->vcpu.cpu;
}
}
return 0;
}
int evlist__parse_sample_timestamp(struct evlist *evlist, union perf_event *event, u64 *timestamp)
{
struct evsel *evsel = evlist__event2evsel(evlist, event);
if (!evsel)
return -EFAULT;
return evsel__parse_sample_timestamp(evsel, event, timestamp);
}
int evlist__strerror_open(struct evlist *evlist, int err, char *buf, size_t size)
{
int printed, value;
char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
switch (err) {
case EACCES:
case EPERM:
printed = scnprintf(buf, size,
"Error:\t%s.\n"
"Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg);
value = perf_event_paranoid();
printed += scnprintf(buf + printed, size - printed, "\nHint:\t");
if (value >= 2) {
printed += scnprintf(buf + printed, size - printed,
"For your workloads it needs to be <= 1\nHint:\t");
}
printed += scnprintf(buf + printed, size - printed,
"For system wide tracing it needs to be set to -1.\n");
printed += scnprintf(buf + printed, size - printed,
"Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n"
"Hint:\tThe current value is %d.", value);
break;
case EINVAL: {
struct evsel *first = evlist__first(evlist);
int max_freq;
if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0)
goto out_default;
if (first->core.attr.sample_freq < (u64)max_freq)
goto out_default;
printed = scnprintf(buf, size,
"Error:\t%s.\n"
"Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n"
"Hint:\tThe current value is %d and %" PRIu64 " is being requested.",
emsg, max_freq, first->core.attr.sample_freq);
break;
}
default:
out_default:
scnprintf(buf, size, "%s", emsg);
break;
}
return 0;
}
int evlist__strerror_mmap(struct evlist *evlist, int err, char *buf, size_t size)
{
char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
int pages_attempted = evlist->core.mmap_len / 1024, pages_max_per_user, printed = 0;
switch (err) {
case EPERM:
sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user);
printed += scnprintf(buf + printed, size - printed,
"Error:\t%s.\n"
"Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n"
"Hint:\tTried using %zd kB.\n",
emsg, pages_max_per_user, pages_attempted);
if (pages_attempted >= pages_max_per_user) {
printed += scnprintf(buf + printed, size - printed,
"Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n",
pages_max_per_user + pages_attempted);
}
printed += scnprintf(buf + printed, size - printed,
"Hint:\tTry using a smaller -m/--mmap-pages value.");
break;
default:
scnprintf(buf, size, "%s", emsg);
break;
}
return 0;
}
void evlist__to_front(struct evlist *evlist, struct evsel *move_evsel)
{
struct evsel *evsel, *n;
LIST_HEAD(move);
if (move_evsel == evlist__first(evlist))
return;
evlist__for_each_entry_safe(evlist, n, evsel) {
if (evsel__leader(evsel) == evsel__leader(move_evsel))
list_move_tail(&evsel->core.node, &move);
}
list_splice(&move, &evlist->core.entries);
}
struct evsel *evlist__get_tracking_event(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->tracking)
return evsel;
}
return evlist__first(evlist);
}
void evlist__set_tracking_event(struct evlist *evlist, struct evsel *tracking_evsel)
{
struct evsel *evsel;
if (tracking_evsel->tracking)
return;
evlist__for_each_entry(evlist, evsel) {
if (evsel != tracking_evsel)
evsel->tracking = false;
}
tracking_evsel->tracking = true;
}
struct evsel *evlist__find_evsel_by_str(struct evlist *evlist, const char *str)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (!evsel->name)
continue;
if (evsel__name_is(evsel, str))
return evsel;
}
return NULL;
}
void evlist__toggle_bkw_mmap(struct evlist *evlist, enum bkw_mmap_state state)
{
enum bkw_mmap_state old_state = evlist->bkw_mmap_state;
enum action {
NONE,
PAUSE,
RESUME,
} action = NONE;
if (!evlist->overwrite_mmap)
return;
switch (old_state) {
case BKW_MMAP_NOTREADY: {
if (state != BKW_MMAP_RUNNING)
goto state_err;
break;
}
case BKW_MMAP_RUNNING: {
if (state != BKW_MMAP_DATA_PENDING)
goto state_err;
action = PAUSE;
break;
}
case BKW_MMAP_DATA_PENDING: {
if (state != BKW_MMAP_EMPTY)
goto state_err;
break;
}
case BKW_MMAP_EMPTY: {
if (state != BKW_MMAP_RUNNING)
goto state_err;
action = RESUME;
break;
}
default:
WARN_ONCE(1, "Shouldn't get there\n");
}
evlist->bkw_mmap_state = state;
switch (action) {
case PAUSE:
evlist__pause(evlist);
break;
case RESUME:
evlist__resume(evlist);
break;
case NONE:
default:
break;
}
state_err:
return;
}
bool evlist__exclude_kernel(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (!evsel->core.attr.exclude_kernel)
return false;
}
return true;
}
/*
* Events in data file are not collect in groups, but we still want
* the group display. Set the artificial group and set the leader's
* forced_leader flag to notify the display code.
*/
void evlist__force_leader(struct evlist *evlist)
{
if (evlist__nr_groups(evlist) == 0) {
struct evsel *leader = evlist__first(evlist);
evlist__set_leader(evlist);
leader->forced_leader = true;
}
}
struct evsel *evlist__reset_weak_group(struct evlist *evsel_list, struct evsel *evsel, bool close)
{
struct evsel *c2, *leader;
bool is_open = true;
leader = evsel__leader(evsel);
pr_debug("Weak group for %s/%d failed\n",
leader->name, leader->core.nr_members);
/*
* for_each_group_member doesn't work here because it doesn't
* include the first entry.
*/
evlist__for_each_entry(evsel_list, c2) {
if (c2 == evsel)
is_open = false;
if (evsel__has_leader(c2, leader)) {
if (is_open && close)
perf_evsel__close(&c2->core);
/*
* We want to close all members of the group and reopen
* them. Some events, like Intel topdown, require being
* in a group and so keep these in the group.
*/
evsel__remove_from_group(c2, leader);
/*
* Set this for all former members of the group
* to indicate they get reopened.
*/
c2->reset_group = true;
}
}
/* Reset the leader count if all entries were removed. */
if (leader->core.nr_members == 1)
leader->core.nr_members = 0;
return leader;
}
static int evlist__parse_control_fifo(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
{
char *s, *p;
int ret = 0, fd;
if (strncmp(str, "fifo:", 5))
return -EINVAL;
str += 5;
if (!*str || *str == ',')
return -EINVAL;
s = strdup(str);
if (!s)
return -ENOMEM;
p = strchr(s, ',');
if (p)
*p = '\0';
/*
* O_RDWR avoids POLLHUPs which is necessary to allow the other
* end of a FIFO to be repeatedly opened and closed.
*/
fd = open(s, O_RDWR | O_NONBLOCK | O_CLOEXEC);
if (fd < 0) {
pr_err("Failed to open '%s'\n", s);
ret = -errno;
goto out_free;
}
*ctl_fd = fd;
*ctl_fd_close = true;
if (p && *++p) {
/* O_RDWR | O_NONBLOCK means the other end need not be open */
fd = open(p, O_RDWR | O_NONBLOCK | O_CLOEXEC);
if (fd < 0) {
pr_err("Failed to open '%s'\n", p);
ret = -errno;
goto out_free;
}
*ctl_fd_ack = fd;
}
out_free:
free(s);
return ret;
}
int evlist__parse_control(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
{
char *comma = NULL, *endptr = NULL;
*ctl_fd_close = false;
if (strncmp(str, "fd:", 3))
return evlist__parse_control_fifo(str, ctl_fd, ctl_fd_ack, ctl_fd_close);
*ctl_fd = strtoul(&str[3], &endptr, 0);
if (endptr == &str[3])
return -EINVAL;
comma = strchr(str, ',');
if (comma) {
if (endptr != comma)
return -EINVAL;
*ctl_fd_ack = strtoul(comma + 1, &endptr, 0);
if (endptr == comma + 1 || *endptr != '\0')
return -EINVAL;
}
return 0;
}
void evlist__close_control(int ctl_fd, int ctl_fd_ack, bool *ctl_fd_close)
{
if (*ctl_fd_close) {
*ctl_fd_close = false;
close(ctl_fd);
if (ctl_fd_ack >= 0)
close(ctl_fd_ack);
}
}
int evlist__initialize_ctlfd(struct evlist *evlist, int fd, int ack)
{
if (fd == -1) {
pr_debug("Control descriptor is not initialized\n");
return 0;
}
evlist->ctl_fd.pos = perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
fdarray_flag__nonfilterable |
fdarray_flag__non_perf_event);
if (evlist->ctl_fd.pos < 0) {
evlist->ctl_fd.pos = -1;
pr_err("Failed to add ctl fd entry: %m\n");
return -1;
}
evlist->ctl_fd.fd = fd;
evlist->ctl_fd.ack = ack;
return 0;
}
bool evlist__ctlfd_initialized(struct evlist *evlist)
{
return evlist->ctl_fd.pos >= 0;
}
int evlist__finalize_ctlfd(struct evlist *evlist)
{
struct pollfd *entries = evlist->core.pollfd.entries;
if (!evlist__ctlfd_initialized(evlist))
return 0;
entries[evlist->ctl_fd.pos].fd = -1;
entries[evlist->ctl_fd.pos].events = 0;
entries[evlist->ctl_fd.pos].revents = 0;
evlist->ctl_fd.pos = -1;
evlist->ctl_fd.ack = -1;
evlist->ctl_fd.fd = -1;
return 0;
}
static int evlist__ctlfd_recv(struct evlist *evlist, enum evlist_ctl_cmd *cmd,
char *cmd_data, size_t data_size)
{
int err;
char c;
size_t bytes_read = 0;
*cmd = EVLIST_CTL_CMD_UNSUPPORTED;
memset(cmd_data, 0, data_size);
data_size--;
do {
err = read(evlist->ctl_fd.fd, &c, 1);
if (err > 0) {
if (c == '\n' || c == '\0')
break;
cmd_data[bytes_read++] = c;
if (bytes_read == data_size)
break;
continue;
} else if (err == -1) {
if (errno == EINTR)
continue;
if (errno == EAGAIN || errno == EWOULDBLOCK)
err = 0;
else
pr_err("Failed to read from ctlfd %d: %m\n", evlist->ctl_fd.fd);
}
break;
} while (1);
pr_debug("Message from ctl_fd: \"%s%s\"\n", cmd_data,
bytes_read == data_size ? "" : c == '\n' ? "\\n" : "\\0");
if (bytes_read > 0) {
if (!strncmp(cmd_data, EVLIST_CTL_CMD_ENABLE_TAG,
(sizeof(EVLIST_CTL_CMD_ENABLE_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_ENABLE;
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_DISABLE_TAG,
(sizeof(EVLIST_CTL_CMD_DISABLE_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_DISABLE;
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_SNAPSHOT_TAG,
(sizeof(EVLIST_CTL_CMD_SNAPSHOT_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_SNAPSHOT;
pr_debug("is snapshot\n");
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_EVLIST_TAG,
(sizeof(EVLIST_CTL_CMD_EVLIST_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_EVLIST;
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_STOP_TAG,
(sizeof(EVLIST_CTL_CMD_STOP_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_STOP;
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_PING_TAG,
(sizeof(EVLIST_CTL_CMD_PING_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_PING;
}
}
return bytes_read ? (int)bytes_read : err;
}
int evlist__ctlfd_ack(struct evlist *evlist)
{
int err;
if (evlist->ctl_fd.ack == -1)
return 0;
err = write(evlist->ctl_fd.ack, EVLIST_CTL_CMD_ACK_TAG,
sizeof(EVLIST_CTL_CMD_ACK_TAG));
if (err == -1)
pr_err("failed to write to ctl_ack_fd %d: %m\n", evlist->ctl_fd.ack);
return err;
}
static int get_cmd_arg(char *cmd_data, size_t cmd_size, char **arg)
{
char *data = cmd_data + cmd_size;
/* no argument */
if (!*data)
return 0;
/* there's argument */
if (*data == ' ') {
*arg = data + 1;
return 1;
}
/* malformed */
return -1;
}
static int evlist__ctlfd_enable(struct evlist *evlist, char *cmd_data, bool enable)
{
struct evsel *evsel;
char *name;
int err;
err = get_cmd_arg(cmd_data,
enable ? sizeof(EVLIST_CTL_CMD_ENABLE_TAG) - 1 :
sizeof(EVLIST_CTL_CMD_DISABLE_TAG) - 1,
&name);
if (err < 0) {
pr_info("failed: wrong command\n");
return -1;
}
if (err) {
evsel = evlist__find_evsel_by_str(evlist, name);
if (evsel) {
if (enable)
evlist__enable_evsel(evlist, name);
else
evlist__disable_evsel(evlist, name);
pr_info("Event %s %s\n", evsel->name,
enable ? "enabled" : "disabled");
} else {
pr_info("failed: can't find '%s' event\n", name);
}
} else {
if (enable) {
evlist__enable(evlist);
pr_info(EVLIST_ENABLED_MSG);
} else {
evlist__disable(evlist);
pr_info(EVLIST_DISABLED_MSG);
}
}
return 0;
}
static int evlist__ctlfd_list(struct evlist *evlist, char *cmd_data)
{
struct perf_attr_details details = { .verbose = false, };
struct evsel *evsel;
char *arg;
int err;
err = get_cmd_arg(cmd_data,
sizeof(EVLIST_CTL_CMD_EVLIST_TAG) - 1,
&arg);
if (err < 0) {
pr_info("failed: wrong command\n");
return -1;
}
if (err) {
if (!strcmp(arg, "-v")) {
details.verbose = true;
} else if (!strcmp(arg, "-g")) {
details.event_group = true;
} else if (!strcmp(arg, "-F")) {
details.freq = true;
} else {
pr_info("failed: wrong command\n");
return -1;
}
}
evlist__for_each_entry(evlist, evsel)
evsel__fprintf(evsel, &details, stderr);
return 0;
}
int evlist__ctlfd_process(struct evlist *evlist, enum evlist_ctl_cmd *cmd)
{
int err = 0;
char cmd_data[EVLIST_CTL_CMD_MAX_LEN];
int ctlfd_pos = evlist->ctl_fd.pos;
struct pollfd *entries = evlist->core.pollfd.entries;
if (!evlist__ctlfd_initialized(evlist) || !entries[ctlfd_pos].revents)
return 0;
if (entries[ctlfd_pos].revents & POLLIN) {
err = evlist__ctlfd_recv(evlist, cmd, cmd_data,
EVLIST_CTL_CMD_MAX_LEN);
if (err > 0) {
switch (*cmd) {
case EVLIST_CTL_CMD_ENABLE:
case EVLIST_CTL_CMD_DISABLE:
err = evlist__ctlfd_enable(evlist, cmd_data,
*cmd == EVLIST_CTL_CMD_ENABLE);
break;
case EVLIST_CTL_CMD_EVLIST:
err = evlist__ctlfd_list(evlist, cmd_data);
break;
case EVLIST_CTL_CMD_SNAPSHOT:
case EVLIST_CTL_CMD_STOP:
case EVLIST_CTL_CMD_PING:
break;
case EVLIST_CTL_CMD_ACK:
case EVLIST_CTL_CMD_UNSUPPORTED:
default:
pr_debug("ctlfd: unsupported %d\n", *cmd);
break;
}
if (!(*cmd == EVLIST_CTL_CMD_ACK || *cmd == EVLIST_CTL_CMD_UNSUPPORTED ||
*cmd == EVLIST_CTL_CMD_SNAPSHOT))
evlist__ctlfd_ack(evlist);
}
}
if (entries[ctlfd_pos].revents & (POLLHUP | POLLERR))
evlist__finalize_ctlfd(evlist);
else
entries[ctlfd_pos].revents = 0;
return err;
}
/**
* struct event_enable_time - perf record -D/--delay single time range.
* @start: start of time range to enable events in milliseconds
* @end: end of time range to enable events in milliseconds
*
* N.B. this structure is also accessed as an array of int.
*/
struct event_enable_time {
int start;
int end;
};
static int parse_event_enable_time(const char *str, struct event_enable_time *range, bool first)
{
const char *fmt = first ? "%u - %u %n" : " , %u - %u %n";
int ret, start, end, n;
ret = sscanf(str, fmt, &start, &end, &n);
if (ret != 2 || end <= start)
return -EINVAL;
if (range) {
range->start = start;
range->end = end;
}
return n;
}
static ssize_t parse_event_enable_times(const char *str, struct event_enable_time *range)
{
int incr = !!range;
bool first = true;
ssize_t ret, cnt;
for (cnt = 0; *str; cnt++) {
ret = parse_event_enable_time(str, range, first);
if (ret < 0)
return ret;
/* Check no overlap */
if (!first && range && range->start <= range[-1].end)
return -EINVAL;
str += ret;
range += incr;
first = false;
}
return cnt;
}
/**
* struct event_enable_timer - control structure for perf record -D/--delay.
* @evlist: event list
* @times: time ranges that events are enabled (N.B. this is also accessed as an
* array of int)
* @times_cnt: number of time ranges
* @timerfd: timer file descriptor
* @pollfd_pos: position in @evlist array of file descriptors to poll (fdarray)
* @times_step: current position in (int *)@times)[],
* refer event_enable_timer__process()
*
* Note, this structure is only used when there are time ranges, not when there
* is only an initial delay.
*/
struct event_enable_timer {
struct evlist *evlist;
struct event_enable_time *times;
size_t times_cnt;
int timerfd;
int pollfd_pos;
size_t times_step;
};
static int str_to_delay(const char *str)
{
char *endptr;
long d;
d = strtol(str, &endptr, 10);
if (*endptr || d > INT_MAX || d < -1)
return 0;
return d;
}
int evlist__parse_event_enable_time(struct evlist *evlist, struct record_opts *opts,
const char *str, int unset)
{
enum fdarray_flags flags = fdarray_flag__nonfilterable | fdarray_flag__non_perf_event;
struct event_enable_timer *eet;
ssize_t times_cnt;
ssize_t ret;
int err;
if (unset)
return 0;
opts->target.initial_delay = str_to_delay(str);
if (opts->target.initial_delay)
return 0;
ret = parse_event_enable_times(str, NULL);
if (ret < 0)
return ret;
times_cnt = ret;
if (times_cnt == 0)
return -EINVAL;
eet = zalloc(sizeof(*eet));
if (!eet)
return -ENOMEM;
eet->times = calloc(times_cnt, sizeof(*eet->times));
if (!eet->times) {
err = -ENOMEM;
goto free_eet;
}
if (parse_event_enable_times(str, eet->times) != times_cnt) {
err = -EINVAL;
goto free_eet_times;
}
eet->times_cnt = times_cnt;
eet->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
if (eet->timerfd == -1) {
err = -errno;
pr_err("timerfd_create failed: %s\n", strerror(errno));
goto free_eet_times;
}
eet->pollfd_pos = perf_evlist__add_pollfd(&evlist->core, eet->timerfd, NULL, POLLIN, flags);
if (eet->pollfd_pos < 0) {
err = eet->pollfd_pos;
goto close_timerfd;
}
eet->evlist = evlist;
evlist->eet = eet;
opts->target.initial_delay = eet->times[0].start;
return 0;
close_timerfd:
close(eet->timerfd);
free_eet_times:
zfree(&eet->times);
free_eet:
free(eet);
return err;
}
static int event_enable_timer__set_timer(struct event_enable_timer *eet, int ms)
{
struct itimerspec its = {
.it_value.tv_sec = ms / MSEC_PER_SEC,
.it_value.tv_nsec = (ms % MSEC_PER_SEC) * NSEC_PER_MSEC,
};
int err = 0;
if (timerfd_settime(eet->timerfd, 0, &its, NULL) < 0) {
err = -errno;
pr_err("timerfd_settime failed: %s\n", strerror(errno));
}
return err;
}
int event_enable_timer__start(struct event_enable_timer *eet)
{
int ms;
if (!eet)
return 0;
ms = eet->times[0].end - eet->times[0].start;
eet->times_step = 1;
return event_enable_timer__set_timer(eet, ms);
}
int event_enable_timer__process(struct event_enable_timer *eet)
{
struct pollfd *entries;
short revents;
if (!eet)
return 0;
entries = eet->evlist->core.pollfd.entries;
revents = entries[eet->pollfd_pos].revents;
entries[eet->pollfd_pos].revents = 0;
if (revents & POLLIN) {
size_t step = eet->times_step;
size_t pos = step / 2;
if (step & 1) {
evlist__disable_non_dummy(eet->evlist);
pr_info(EVLIST_DISABLED_MSG);
if (pos >= eet->times_cnt - 1) {
/* Disarm timer */
event_enable_timer__set_timer(eet, 0);
return 1; /* Stop */
}
} else {
evlist__enable_non_dummy(eet->evlist);
pr_info(EVLIST_ENABLED_MSG);
}
step += 1;
pos = step / 2;
if (pos < eet->times_cnt) {
int *times = (int *)eet->times; /* Accessing 'times' as array of int */
int ms = times[step] - times[step - 1];
eet->times_step = step;
return event_enable_timer__set_timer(eet, ms);
}
}
return 0;
}
void event_enable_timer__exit(struct event_enable_timer **ep)
{
if (!ep || !*ep)
return;
zfree(&(*ep)->times);
zfree(ep);
}
struct evsel *evlist__find_evsel(struct evlist *evlist, int idx)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.idx == idx)
return evsel;
}
return NULL;
}
int evlist__scnprintf_evsels(struct evlist *evlist, size_t size, char *bf)
{
struct evsel *evsel;
int printed = 0;
evlist__for_each_entry(evlist, evsel) {
if (evsel__is_dummy_event(evsel))
continue;
if (size > (strlen(evsel__name(evsel)) + (printed ? 2 : 1))) {
printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "," : "", evsel__name(evsel));
} else {
printed += scnprintf(bf + printed, size - printed, "%s...", printed ? "," : "");
break;
}
}
return printed;
}
void evlist__check_mem_load_aux(struct evlist *evlist)
{
struct evsel *leader, *evsel, *pos;
/*
* For some platforms, the 'mem-loads' event is required to use
* together with 'mem-loads-aux' within a group and 'mem-loads-aux'
* must be the group leader. Now we disable this group before reporting
* because 'mem-loads-aux' is just an auxiliary event. It doesn't carry
* any valid memory load information.
*/
evlist__for_each_entry(evlist, evsel) {
leader = evsel__leader(evsel);
if (leader == evsel)
continue;
if (leader->name && strstr(leader->name, "mem-loads-aux")) {
for_each_group_evsel(pos, leader) {
evsel__set_leader(pos, pos);
pos->core.nr_members = 0;
}
}
}
}