blob: 49008451085b86ccb84ee3760c406554db51fd49 [file] [log] [blame]
/*
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk-provider.h>
#include "dsi_pll.h"
#include "dsi.xml.h"
/*
* DSI PLL 28nm (8960/A family) - clock diagram (eg: DSI1):
*
*
* +------+
* dsi1vco_clk ----o-----| DIV1 |---dsi1pllbit (not exposed as clock)
* F * byte_clk | +------+
* | bit clock divider (F / 8)
* |
* | +------+
* o-----| DIV2 |---dsi0pllbyte---o---> To byte RCG
* | +------+ | (sets parent rate)
* | byte clock divider (F) |
* | |
* | o---> To esc RCG
* | (doesn't set parent rate)
* |
* | +------+
* o-----| DIV3 |----dsi0pll------o---> To dsi RCG
* +------+ | (sets parent rate)
* dsi clock divider (F * magic) |
* |
* o---> To pixel rcg
* (doesn't set parent rate)
*/
#define POLL_MAX_READS 8000
#define POLL_TIMEOUT_US 1
#define NUM_PROVIDED_CLKS 2
#define VCO_REF_CLK_RATE 27000000
#define VCO_MIN_RATE 600000000
#define VCO_MAX_RATE 1200000000
#define DSI_BYTE_PLL_CLK 0
#define DSI_PIXEL_PLL_CLK 1
#define VCO_PREF_DIV_RATIO 27
struct pll_28nm_cached_state {
unsigned long vco_rate;
u8 postdiv3;
u8 postdiv2;
u8 postdiv1;
};
struct clk_bytediv {
struct clk_hw hw;
void __iomem *reg;
};
struct dsi_pll_28nm {
struct msm_dsi_pll base;
int id;
struct platform_device *pdev;
void __iomem *mmio;
/* custom byte clock divider */
struct clk_bytediv *bytediv;
/* private clocks: */
struct clk *clks[NUM_DSI_CLOCKS_MAX];
u32 num_clks;
/* clock-provider: */
struct clk *provided_clks[NUM_PROVIDED_CLKS];
struct clk_onecell_data clk_data;
struct pll_28nm_cached_state cached_state;
};
#define to_pll_28nm(x) container_of(x, struct dsi_pll_28nm, base)
static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
int nb_tries, int timeout_us)
{
bool pll_locked = false;
u32 val;
while (nb_tries--) {
val = pll_read(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_RDY);
pll_locked = !!(val & DSI_28nm_8960_PHY_PLL_RDY_PLL_RDY);
if (pll_locked)
break;
udelay(timeout_us);
}
DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
return pll_locked;
}
/*
* Clock Callbacks
*/
static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
void __iomem *base = pll_28nm->mmio;
u32 val, temp, fb_divider;
DBG("rate=%lu, parent's=%lu", rate, parent_rate);
temp = rate / 10;
val = VCO_REF_CLK_RATE / 10;
fb_divider = (temp * VCO_PREF_DIV_RATIO) / val;
fb_divider = fb_divider / 2 - 1;
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1,
fb_divider & 0xff);
val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2);
val |= (fb_divider >> 8) & 0x07;
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2,
val);
val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
val |= (VCO_PREF_DIV_RATIO - 1) & 0x3f;
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3,
val);
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_6,
0xf);
val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
val |= 0x7 << 4;
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
val);
return 0;
}
static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
POLL_TIMEOUT_US);
}
static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
void __iomem *base = pll_28nm->mmio;
unsigned long vco_rate;
u32 status, fb_divider, temp, ref_divider;
VERB("parent_rate=%lu", parent_rate);
status = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0);
if (status & DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE) {
fb_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1);
fb_divider &= 0xff;
temp = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2) & 0x07;
fb_divider = (temp << 8) | fb_divider;
fb_divider += 1;
ref_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
ref_divider &= 0x3f;
ref_divider += 1;
/* multiply by 2 */
vco_rate = (parent_rate / ref_divider) * fb_divider * 2;
} else {
vco_rate = 0;
}
DBG("returning vco rate = %lu", vco_rate);
return vco_rate;
}
static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
.round_rate = msm_dsi_pll_helper_clk_round_rate,
.set_rate = dsi_pll_28nm_clk_set_rate,
.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
.prepare = msm_dsi_pll_helper_clk_prepare,
.unprepare = msm_dsi_pll_helper_clk_unprepare,
.is_enabled = dsi_pll_28nm_clk_is_enabled,
};
/*
* Custom byte clock divier clk_ops
*
* This clock is the entry point to configuring the PLL. The user (dsi host)
* will set this clock's rate to the desired byte clock rate. The VCO lock
* frequency is a multiple of the byte clock rate. The multiplication factor
* (shown as F in the diagram above) is a function of the byte clock rate.
*
* This custom divider clock ensures that its parent (VCO) is set to the
* desired rate, and that the byte clock postdivider (POSTDIV2) is configured
* accordingly
*/
#define to_clk_bytediv(_hw) container_of(_hw, struct clk_bytediv, hw)
static unsigned long clk_bytediv_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_bytediv *bytediv = to_clk_bytediv(hw);
unsigned int div;
div = pll_read(bytediv->reg) & 0xff;
return parent_rate / (div + 1);
}
/* find multiplication factor(wrt byte clock) at which the VCO should be set */
static unsigned int get_vco_mul_factor(unsigned long byte_clk_rate)
{
unsigned long bit_mhz;
/* convert to bit clock in Mhz */
bit_mhz = (byte_clk_rate * 8) / 1000000;
if (bit_mhz < 125)
return 64;
else if (bit_mhz < 250)
return 32;
else if (bit_mhz < 600)
return 16;
else
return 8;
}
static long clk_bytediv_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
unsigned long best_parent;
unsigned int factor;
factor = get_vco_mul_factor(rate);
best_parent = rate * factor;
*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
return *prate / factor;
}
static int clk_bytediv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_bytediv *bytediv = to_clk_bytediv(hw);
u32 val;
unsigned int factor;
factor = get_vco_mul_factor(rate);
val = pll_read(bytediv->reg);
val |= (factor - 1) & 0xff;
pll_write(bytediv->reg, val);
return 0;
}
/* Our special byte clock divider ops */
static const struct clk_ops clk_bytediv_ops = {
.round_rate = clk_bytediv_round_rate,
.set_rate = clk_bytediv_set_rate,
.recalc_rate = clk_bytediv_recalc_rate,
};
/*
* PLL Callbacks
*/
static int dsi_pll_28nm_enable_seq(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
struct device *dev = &pll_28nm->pdev->dev;
void __iomem *base = pll_28nm->mmio;
bool locked;
unsigned int bit_div, byte_div;
int max_reads = 1000, timeout_us = 100;
u32 val;
DBG("id=%d", pll_28nm->id);
/*
* before enabling the PLL, configure the bit clock divider since we
* don't expose it as a clock to the outside world
* 1: read back the byte clock divider that should already be set
* 2: divide by 8 to get bit clock divider
* 3: write it to POSTDIV1
*/
val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
byte_div = val + 1;
bit_div = byte_div / 8;
val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
val &= ~0xf;
val |= (bit_div - 1);
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, val);
/* enable the PLL */
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0,
DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE);
locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
if (unlikely(!locked))
dev_err(dev, "DSI PLL lock failed\n");
else
DBG("DSI PLL lock success");
return locked ? 0 : -EINVAL;
}
static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
DBG("id=%d", pll_28nm->id);
pll_write(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_0, 0x00);
}
static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
void __iomem *base = pll_28nm->mmio;
cached_state->postdiv3 =
pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10);
cached_state->postdiv2 =
pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
cached_state->postdiv1 =
pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
}
static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
void __iomem *base = pll_28nm->mmio;
int ret;
ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw,
cached_state->vco_rate, 0);
if (ret) {
dev_err(&pll_28nm->pdev->dev,
"restore vco rate failed. ret=%d\n", ret);
return ret;
}
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
cached_state->postdiv3);
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9,
cached_state->postdiv2);
pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
cached_state->postdiv1);
return 0;
}
static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll,
struct clk **byte_clk_provider,
struct clk **pixel_clk_provider)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
if (byte_clk_provider)
*byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK];
if (pixel_clk_provider)
*pixel_clk_provider =
pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK];
return 0;
}
static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev,
pll_28nm->clks, pll_28nm->num_clks);
}
static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm)
{
char *clk_name, *parent_name, *vco_name;
struct clk_init_data vco_init = {
.parent_names = (const char *[]){ "pxo" },
.num_parents = 1,
.flags = CLK_IGNORE_UNUSED,
.ops = &clk_ops_dsi_pll_28nm_vco,
};
struct device *dev = &pll_28nm->pdev->dev;
struct clk **clks = pll_28nm->clks;
struct clk **provided_clks = pll_28nm->provided_clks;
struct clk_bytediv *bytediv;
struct clk_init_data bytediv_init = { };
int ret, num = 0;
DBG("%d", pll_28nm->id);
bytediv = devm_kzalloc(dev, sizeof(*bytediv), GFP_KERNEL);
if (!bytediv)
return -ENOMEM;
vco_name = devm_kzalloc(dev, 32, GFP_KERNEL);
if (!vco_name)
return -ENOMEM;
parent_name = devm_kzalloc(dev, 32, GFP_KERNEL);
if (!parent_name)
return -ENOMEM;
clk_name = devm_kzalloc(dev, 32, GFP_KERNEL);
if (!clk_name)
return -ENOMEM;
pll_28nm->bytediv = bytediv;
snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id);
vco_init.name = vco_name;
pll_28nm->base.clk_hw.init = &vco_init;
clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw);
/* prepare and register bytediv */
bytediv->hw.init = &bytediv_init;
bytediv->reg = pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_9;
snprintf(parent_name, 32, "dsi%dvco_clk", pll_28nm->id);
snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id);
bytediv_init.name = clk_name;
bytediv_init.ops = &clk_bytediv_ops;
bytediv_init.flags = CLK_SET_RATE_PARENT;
bytediv_init.parent_names = (const char * const *) &parent_name;
bytediv_init.num_parents = 1;
/* DIV2 */
clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] =
clk_register(dev, &bytediv->hw);
snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id);
/* DIV3 */
clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] =
clk_register_divider(dev, clk_name,
parent_name, 0, pll_28nm->mmio +
REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
0, 8, 0, NULL);
pll_28nm->num_clks = num;
pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS;
pll_28nm->clk_data.clks = provided_clks;
ret = of_clk_add_provider(dev->of_node,
of_clk_src_onecell_get, &pll_28nm->clk_data);
if (ret) {
dev_err(dev, "failed to register clk provider: %d\n", ret);
return ret;
}
return 0;
}
struct msm_dsi_pll *msm_dsi_pll_28nm_8960_init(struct platform_device *pdev,
int id)
{
struct dsi_pll_28nm *pll_28nm;
struct msm_dsi_pll *pll;
int ret;
if (!pdev)
return ERR_PTR(-ENODEV);
pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
if (!pll_28nm)
return ERR_PTR(-ENOMEM);
pll_28nm->pdev = pdev;
pll_28nm->id = id + 1;
pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
if (IS_ERR_OR_NULL(pll_28nm->mmio)) {
dev_err(&pdev->dev, "%s: failed to map pll base\n", __func__);
return ERR_PTR(-ENOMEM);
}
pll = &pll_28nm->base;
pll->min_rate = VCO_MIN_RATE;
pll->max_rate = VCO_MAX_RATE;
pll->get_provider = dsi_pll_28nm_get_provider;
pll->destroy = dsi_pll_28nm_destroy;
pll->disable_seq = dsi_pll_28nm_disable_seq;
pll->save_state = dsi_pll_28nm_save_state;
pll->restore_state = dsi_pll_28nm_restore_state;
pll->en_seq_cnt = 1;
pll->enable_seqs[0] = dsi_pll_28nm_enable_seq;
ret = pll_28nm_register(pll_28nm);
if (ret) {
dev_err(&pdev->dev, "failed to register PLL: %d\n", ret);
return ERR_PTR(ret);
}
return pll;
}