| /* |
| * Copyright 2016 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/firmware.h> |
| #include <drm/drmP.h> |
| #include "amdgpu.h" |
| #include "amdgpu_ucode.h" |
| #include "amdgpu_trace.h" |
| |
| #include "sdma0/sdma0_4_2_offset.h" |
| #include "sdma0/sdma0_4_2_sh_mask.h" |
| #include "sdma1/sdma1_4_2_offset.h" |
| #include "sdma1/sdma1_4_2_sh_mask.h" |
| #include "hdp/hdp_4_0_offset.h" |
| #include "sdma0/sdma0_4_1_default.h" |
| |
| #include "soc15_common.h" |
| #include "soc15.h" |
| #include "vega10_sdma_pkt_open.h" |
| |
| #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" |
| #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" |
| |
| MODULE_FIRMWARE("amdgpu/vega10_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin"); |
| MODULE_FIRMWARE("amdgpu/vega12_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin"); |
| MODULE_FIRMWARE("amdgpu/vega20_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin"); |
| MODULE_FIRMWARE("amdgpu/raven_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/picasso_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/raven2_sdma.bin"); |
| |
| #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L |
| #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L |
| |
| #define WREG32_SDMA(instance, offset, value) \ |
| WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value) |
| #define RREG32_SDMA(instance, offset) \ |
| RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset))) |
| |
| static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev); |
| static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev); |
| static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev); |
| static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev); |
| |
| static const struct soc15_reg_golden golden_settings_sdma_4[] = { |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000) |
| }; |
| |
| static const struct soc15_reg_golden golden_settings_sdma_vg10[] = { |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002) |
| }; |
| |
| static const struct soc15_reg_golden golden_settings_sdma_vg12[] = { |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001) |
| }; |
| |
| static const struct soc15_reg_golden golden_settings_sdma_4_1[] = { |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000) |
| }; |
| |
| static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = { |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), |
| }; |
| |
| static const struct soc15_reg_golden golden_settings_sdma0_4_2[] = |
| { |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000), |
| }; |
| |
| static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = { |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
| SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000), |
| }; |
| |
| static const struct soc15_reg_golden golden_settings_sdma_rv1[] = |
| { |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002) |
| }; |
| |
| static const struct soc15_reg_golden golden_settings_sdma_rv2[] = |
| { |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001), |
| SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001) |
| }; |
| |
| static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev, |
| u32 instance, u32 offset) |
| { |
| return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) : |
| (adev->reg_offset[SDMA1_HWIP][0][0] + offset)); |
| } |
| |
| static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev) |
| { |
| switch (adev->asic_type) { |
| case CHIP_VEGA10: |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma_4, |
| ARRAY_SIZE(golden_settings_sdma_4)); |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma_vg10, |
| ARRAY_SIZE(golden_settings_sdma_vg10)); |
| break; |
| case CHIP_VEGA12: |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma_4, |
| ARRAY_SIZE(golden_settings_sdma_4)); |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma_vg12, |
| ARRAY_SIZE(golden_settings_sdma_vg12)); |
| break; |
| case CHIP_VEGA20: |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma0_4_2_init, |
| ARRAY_SIZE(golden_settings_sdma0_4_2_init)); |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma0_4_2, |
| ARRAY_SIZE(golden_settings_sdma0_4_2)); |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma1_4_2, |
| ARRAY_SIZE(golden_settings_sdma1_4_2)); |
| break; |
| case CHIP_RAVEN: |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma_4_1, |
| ARRAY_SIZE(golden_settings_sdma_4_1)); |
| if (adev->rev_id >= 8) |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma_rv2, |
| ARRAY_SIZE(golden_settings_sdma_rv2)); |
| else |
| soc15_program_register_sequence(adev, |
| golden_settings_sdma_rv1, |
| ARRAY_SIZE(golden_settings_sdma_rv1)); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * sdma_v4_0_init_microcode - load ucode images from disk |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Use the firmware interface to load the ucode images into |
| * the driver (not loaded into hw). |
| * Returns 0 on success, error on failure. |
| */ |
| |
| // emulation only, won't work on real chip |
| // vega10 real chip need to use PSP to load firmware |
| static int sdma_v4_0_init_microcode(struct amdgpu_device *adev) |
| { |
| const char *chip_name; |
| char fw_name[30]; |
| int err = 0, i; |
| struct amdgpu_firmware_info *info = NULL; |
| const struct common_firmware_header *header = NULL; |
| const struct sdma_firmware_header_v1_0 *hdr; |
| |
| DRM_DEBUG("\n"); |
| |
| switch (adev->asic_type) { |
| case CHIP_VEGA10: |
| chip_name = "vega10"; |
| break; |
| case CHIP_VEGA12: |
| chip_name = "vega12"; |
| break; |
| case CHIP_VEGA20: |
| chip_name = "vega20"; |
| break; |
| case CHIP_RAVEN: |
| if (adev->rev_id >= 8) |
| chip_name = "raven2"; |
| else if (adev->pdev->device == 0x15d8) |
| chip_name = "picasso"; |
| else |
| chip_name = "raven"; |
| break; |
| default: |
| BUG(); |
| } |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| if (i == 0) |
| snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); |
| else |
| snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); |
| err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); |
| if (err) |
| goto out; |
| err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); |
| if (err) |
| goto out; |
| hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; |
| adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); |
| adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); |
| if (adev->sdma.instance[i].feature_version >= 20) |
| adev->sdma.instance[i].burst_nop = true; |
| DRM_DEBUG("psp_load == '%s'\n", |
| adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false"); |
| |
| if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { |
| info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; |
| info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; |
| info->fw = adev->sdma.instance[i].fw; |
| header = (const struct common_firmware_header *)info->fw->data; |
| adev->firmware.fw_size += |
| ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); |
| } |
| } |
| out: |
| if (err) { |
| DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name); |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| release_firmware(adev->sdma.instance[i].fw); |
| adev->sdma.instance[i].fw = NULL; |
| } |
| } |
| return err; |
| } |
| |
| /** |
| * sdma_v4_0_ring_get_rptr - get the current read pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Get the current rptr from the hardware (VEGA10+). |
| */ |
| static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring) |
| { |
| u64 *rptr; |
| |
| /* XXX check if swapping is necessary on BE */ |
| rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); |
| |
| DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); |
| return ((*rptr) >> 2); |
| } |
| |
| /** |
| * sdma_v4_0_ring_get_wptr - get the current write pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Get the current wptr from the hardware (VEGA10+). |
| */ |
| static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| u64 wptr; |
| |
| if (ring->use_doorbell) { |
| /* XXX check if swapping is necessary on BE */ |
| wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); |
| DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); |
| } else { |
| wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI); |
| wptr = wptr << 32; |
| wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR); |
| DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", |
| ring->me, wptr); |
| } |
| |
| return wptr >> 2; |
| } |
| |
| /** |
| * sdma_v4_0_ring_set_wptr - commit the write pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Write the wptr back to the hardware (VEGA10+). |
| */ |
| static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| |
| DRM_DEBUG("Setting write pointer\n"); |
| if (ring->use_doorbell) { |
| u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; |
| |
| DRM_DEBUG("Using doorbell -- " |
| "wptr_offs == 0x%08x " |
| "lower_32_bits(ring->wptr) << 2 == 0x%08x " |
| "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", |
| ring->wptr_offs, |
| lower_32_bits(ring->wptr << 2), |
| upper_32_bits(ring->wptr << 2)); |
| /* XXX check if swapping is necessary on BE */ |
| WRITE_ONCE(*wb, (ring->wptr << 2)); |
| DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", |
| ring->doorbell_index, ring->wptr << 2); |
| WDOORBELL64(ring->doorbell_index, ring->wptr << 2); |
| } else { |
| DRM_DEBUG("Not using doorbell -- " |
| "mmSDMA%i_GFX_RB_WPTR == 0x%08x " |
| "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", |
| ring->me, |
| lower_32_bits(ring->wptr << 2), |
| ring->me, |
| upper_32_bits(ring->wptr << 2)); |
| WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR, |
| lower_32_bits(ring->wptr << 2)); |
| WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI, |
| upper_32_bits(ring->wptr << 2)); |
| } |
| } |
| |
| /** |
| * sdma_v4_0_page_ring_get_wptr - get the current write pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Get the current wptr from the hardware (VEGA10+). |
| */ |
| static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| u64 wptr; |
| |
| if (ring->use_doorbell) { |
| /* XXX check if swapping is necessary on BE */ |
| wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); |
| } else { |
| wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI); |
| wptr = wptr << 32; |
| wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR); |
| } |
| |
| return wptr >> 2; |
| } |
| |
| /** |
| * sdma_v4_0_ring_set_wptr - commit the write pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Write the wptr back to the hardware (VEGA10+). |
| */ |
| static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| |
| if (ring->use_doorbell) { |
| u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; |
| |
| /* XXX check if swapping is necessary on BE */ |
| WRITE_ONCE(*wb, (ring->wptr << 2)); |
| WDOORBELL64(ring->doorbell_index, ring->wptr << 2); |
| } else { |
| uint64_t wptr = ring->wptr << 2; |
| |
| WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR, |
| lower_32_bits(wptr)); |
| WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI, |
| upper_32_bits(wptr)); |
| } |
| } |
| |
| static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) |
| { |
| struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); |
| int i; |
| |
| for (i = 0; i < count; i++) |
| if (sdma && sdma->burst_nop && (i == 0)) |
| amdgpu_ring_write(ring, ring->funcs->nop | |
| SDMA_PKT_NOP_HEADER_COUNT(count - 1)); |
| else |
| amdgpu_ring_write(ring, ring->funcs->nop); |
| } |
| |
| /** |
| * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine |
| * |
| * @ring: amdgpu ring pointer |
| * @ib: IB object to schedule |
| * |
| * Schedule an IB in the DMA ring (VEGA10). |
| */ |
| static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring, |
| struct amdgpu_job *job, |
| struct amdgpu_ib *ib, |
| bool ctx_switch) |
| { |
| unsigned vmid = AMDGPU_JOB_GET_VMID(job); |
| |
| /* IB packet must end on a 8 DW boundary */ |
| sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8); |
| |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | |
| SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); |
| /* base must be 32 byte aligned */ |
| amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); |
| amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); |
| amdgpu_ring_write(ring, ib->length_dw); |
| amdgpu_ring_write(ring, 0); |
| amdgpu_ring_write(ring, 0); |
| |
| } |
| |
| static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring, |
| int mem_space, int hdp, |
| uint32_t addr0, uint32_t addr1, |
| uint32_t ref, uint32_t mask, |
| uint32_t inv) |
| { |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | |
| SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | |
| SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | |
| SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ |
| if (mem_space) { |
| /* memory */ |
| amdgpu_ring_write(ring, addr0); |
| amdgpu_ring_write(ring, addr1); |
| } else { |
| /* registers */ |
| amdgpu_ring_write(ring, addr0 << 2); |
| amdgpu_ring_write(ring, addr1 << 2); |
| } |
| amdgpu_ring_write(ring, ref); /* reference */ |
| amdgpu_ring_write(ring, mask); /* mask */ |
| amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
| SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ |
| } |
| |
| /** |
| * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Emit an hdp flush packet on the requested DMA ring. |
| */ |
| static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| u32 ref_and_mask = 0; |
| const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg; |
| |
| if (ring->me == 0) |
| ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0; |
| else |
| ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1; |
| |
| sdma_v4_0_wait_reg_mem(ring, 0, 1, |
| adev->nbio_funcs->get_hdp_flush_done_offset(adev), |
| adev->nbio_funcs->get_hdp_flush_req_offset(adev), |
| ref_and_mask, ref_and_mask, 10); |
| } |
| |
| /** |
| * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring |
| * |
| * @ring: amdgpu ring pointer |
| * @fence: amdgpu fence object |
| * |
| * Add a DMA fence packet to the ring to write |
| * the fence seq number and DMA trap packet to generate |
| * an interrupt if needed (VEGA10). |
| */ |
| static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, |
| unsigned flags) |
| { |
| bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; |
| /* write the fence */ |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); |
| /* zero in first two bits */ |
| BUG_ON(addr & 0x3); |
| amdgpu_ring_write(ring, lower_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(addr)); |
| amdgpu_ring_write(ring, lower_32_bits(seq)); |
| |
| /* optionally write high bits as well */ |
| if (write64bit) { |
| addr += 4; |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); |
| /* zero in first two bits */ |
| BUG_ON(addr & 0x3); |
| amdgpu_ring_write(ring, lower_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(seq)); |
| } |
| |
| /* generate an interrupt */ |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); |
| amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); |
| } |
| |
| |
| /** |
| * sdma_v4_0_gfx_stop - stop the gfx async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Stop the gfx async dma ring buffers (VEGA10). |
| */ |
| static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev) |
| { |
| struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; |
| struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; |
| u32 rb_cntl, ib_cntl; |
| int i; |
| |
| if ((adev->mman.buffer_funcs_ring == sdma0) || |
| (adev->mman.buffer_funcs_ring == sdma1)) |
| amdgpu_ttm_set_buffer_funcs_status(adev, false); |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); |
| ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); |
| WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); |
| } |
| |
| sdma0->sched.ready = false; |
| sdma1->sched.ready = false; |
| } |
| |
| /** |
| * sdma_v4_0_rlc_stop - stop the compute async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Stop the compute async dma queues (VEGA10). |
| */ |
| static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev) |
| { |
| /* XXX todo */ |
| } |
| |
| /** |
| * sdma_v4_0_page_stop - stop the page async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Stop the page async dma ring buffers (VEGA10). |
| */ |
| static void sdma_v4_0_page_stop(struct amdgpu_device *adev) |
| { |
| struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page; |
| struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page; |
| u32 rb_cntl, ib_cntl; |
| int i; |
| |
| if ((adev->mman.buffer_funcs_ring == sdma0) || |
| (adev->mman.buffer_funcs_ring == sdma1)) |
| amdgpu_ttm_set_buffer_funcs_status(adev, false); |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, |
| RB_ENABLE, 0); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); |
| ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, |
| IB_ENABLE, 0); |
| WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); |
| } |
| |
| sdma0->sched.ready = false; |
| sdma1->sched.ready = false; |
| } |
| |
| /** |
| * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch |
| * |
| * @adev: amdgpu_device pointer |
| * @enable: enable/disable the DMA MEs context switch. |
| * |
| * Halt or unhalt the async dma engines context switch (VEGA10). |
| */ |
| static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) |
| { |
| u32 f32_cntl, phase_quantum = 0; |
| int i; |
| |
| if (amdgpu_sdma_phase_quantum) { |
| unsigned value = amdgpu_sdma_phase_quantum; |
| unsigned unit = 0; |
| |
| while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> |
| SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { |
| value = (value + 1) >> 1; |
| unit++; |
| } |
| if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> |
| SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { |
| value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> |
| SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); |
| unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> |
| SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); |
| WARN_ONCE(1, |
| "clamping sdma_phase_quantum to %uK clock cycles\n", |
| value << unit); |
| } |
| phase_quantum = |
| value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | |
| unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; |
| } |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL); |
| f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, |
| AUTO_CTXSW_ENABLE, enable ? 1 : 0); |
| if (enable && amdgpu_sdma_phase_quantum) { |
| WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum); |
| WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum); |
| WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum); |
| } |
| WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl); |
| } |
| |
| } |
| |
| /** |
| * sdma_v4_0_enable - stop the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * @enable: enable/disable the DMA MEs. |
| * |
| * Halt or unhalt the async dma engines (VEGA10). |
| */ |
| static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable) |
| { |
| u32 f32_cntl; |
| int i; |
| |
| if (enable == false) { |
| sdma_v4_0_gfx_stop(adev); |
| sdma_v4_0_rlc_stop(adev); |
| if (adev->sdma.has_page_queue) |
| sdma_v4_0_page_stop(adev); |
| } |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL); |
| f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); |
| WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl); |
| } |
| } |
| |
| /** |
| * sdma_v4_0_rb_cntl - get parameters for rb_cntl |
| */ |
| static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) |
| { |
| /* Set ring buffer size in dwords */ |
| uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); |
| |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); |
| #ifdef __BIG_ENDIAN |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, |
| RPTR_WRITEBACK_SWAP_ENABLE, 1); |
| #endif |
| return rb_cntl; |
| } |
| |
| /** |
| * sdma_v4_0_gfx_resume - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * @i: instance to resume |
| * |
| * Set up the gfx DMA ring buffers and enable them (VEGA10). |
| * Returns 0 for success, error for failure. |
| */ |
| static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i) |
| { |
| struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; |
| u32 rb_cntl, ib_cntl, wptr_poll_cntl; |
| u32 wb_offset; |
| u32 doorbell; |
| u32 doorbell_offset; |
| u64 wptr_gpu_addr; |
| |
| wb_offset = (ring->rptr_offs * 4); |
| |
| rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); |
| rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); |
| |
| /* Initialize the ring buffer's read and write pointers */ |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0); |
| |
| /* set the wb address whether it's enabled or not */ |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI, |
| upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO, |
| lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); |
| |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, |
| RPTR_WRITEBACK_ENABLE, 1); |
| |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40); |
| |
| ring->wptr = 0; |
| |
| /* before programing wptr to a less value, need set minor_ptr_update first */ |
| WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1); |
| |
| doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL); |
| doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET); |
| |
| doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, |
| ring->use_doorbell); |
| doorbell_offset = REG_SET_FIELD(doorbell_offset, |
| SDMA0_GFX_DOORBELL_OFFSET, |
| OFFSET, ring->doorbell_index); |
| WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell); |
| WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset); |
| adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell, |
| ring->doorbell_index); |
| |
| sdma_v4_0_ring_set_wptr(ring); |
| |
| /* set minor_ptr_update to 0 after wptr programed */ |
| WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0); |
| |
| /* setup the wptr shadow polling */ |
| wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO, |
| lower_32_bits(wptr_gpu_addr)); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI, |
| upper_32_bits(wptr_gpu_addr)); |
| wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL); |
| wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, |
| SDMA0_GFX_RB_WPTR_POLL_CNTL, |
| F32_POLL_ENABLE, amdgpu_sriov_vf(adev)); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); |
| |
| /* enable DMA RB */ |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); |
| WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); |
| |
| ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); |
| #ifdef __BIG_ENDIAN |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); |
| #endif |
| /* enable DMA IBs */ |
| WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); |
| |
| ring->sched.ready = true; |
| } |
| |
| /** |
| * sdma_v4_0_page_resume - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * @i: instance to resume |
| * |
| * Set up the page DMA ring buffers and enable them (VEGA10). |
| * Returns 0 for success, error for failure. |
| */ |
| static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i) |
| { |
| struct amdgpu_ring *ring = &adev->sdma.instance[i].page; |
| u32 rb_cntl, ib_cntl, wptr_poll_cntl; |
| u32 wb_offset; |
| u32 doorbell; |
| u32 doorbell_offset; |
| u64 wptr_gpu_addr; |
| |
| wb_offset = (ring->rptr_offs * 4); |
| |
| rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); |
| rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); |
| |
| /* Initialize the ring buffer's read and write pointers */ |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0); |
| |
| /* set the wb address whether it's enabled or not */ |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI, |
| upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, |
| lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); |
| |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, |
| RPTR_WRITEBACK_ENABLE, 1); |
| |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); |
| |
| ring->wptr = 0; |
| |
| /* before programing wptr to a less value, need set minor_ptr_update first */ |
| WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1); |
| |
| doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL); |
| doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET); |
| |
| doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE, |
| ring->use_doorbell); |
| doorbell_offset = REG_SET_FIELD(doorbell_offset, |
| SDMA0_PAGE_DOORBELL_OFFSET, |
| OFFSET, ring->doorbell_index); |
| WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell); |
| WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset); |
| |
| /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */ |
| sdma_v4_0_page_ring_set_wptr(ring); |
| |
| /* set minor_ptr_update to 0 after wptr programed */ |
| WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0); |
| |
| /* setup the wptr shadow polling */ |
| wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO, |
| lower_32_bits(wptr_gpu_addr)); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI, |
| upper_32_bits(wptr_gpu_addr)); |
| wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL); |
| wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, |
| SDMA0_PAGE_RB_WPTR_POLL_CNTL, |
| F32_POLL_ENABLE, amdgpu_sriov_vf(adev)); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); |
| |
| /* enable DMA RB */ |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1); |
| WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); |
| |
| ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1); |
| #ifdef __BIG_ENDIAN |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); |
| #endif |
| /* enable DMA IBs */ |
| WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); |
| |
| ring->sched.ready = true; |
| } |
| |
| static void |
| sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable) |
| { |
| uint32_t def, data; |
| |
| if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) { |
| /* enable idle interrupt */ |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); |
| data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; |
| |
| if (data != def) |
| WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); |
| } else { |
| /* disable idle interrupt */ |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); |
| data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; |
| if (data != def) |
| WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); |
| } |
| } |
| |
| static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev) |
| { |
| uint32_t def, data; |
| |
| /* Enable HW based PG. */ |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
| data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK; |
| if (data != def) |
| WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); |
| |
| /* enable interrupt */ |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); |
| data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; |
| if (data != def) |
| WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); |
| |
| /* Configure hold time to filter in-valid power on/off request. Use default right now */ |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
| data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK; |
| data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK); |
| /* Configure switch time for hysteresis purpose. Use default right now */ |
| data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK; |
| data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK); |
| if(data != def) |
| WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); |
| } |
| |
| static void sdma_v4_0_init_pg(struct amdgpu_device *adev) |
| { |
| if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA)) |
| return; |
| |
| switch (adev->asic_type) { |
| case CHIP_RAVEN: |
| sdma_v4_1_init_power_gating(adev); |
| sdma_v4_1_update_power_gating(adev, true); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * sdma_v4_0_rlc_resume - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Set up the compute DMA queues and enable them (VEGA10). |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev) |
| { |
| sdma_v4_0_init_pg(adev); |
| |
| return 0; |
| } |
| |
| /** |
| * sdma_v4_0_load_microcode - load the sDMA ME ucode |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Loads the sDMA0/1 ucode. |
| * Returns 0 for success, -EINVAL if the ucode is not available. |
| */ |
| static int sdma_v4_0_load_microcode(struct amdgpu_device *adev) |
| { |
| const struct sdma_firmware_header_v1_0 *hdr; |
| const __le32 *fw_data; |
| u32 fw_size; |
| int i, j; |
| |
| /* halt the MEs */ |
| sdma_v4_0_enable(adev, false); |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| if (!adev->sdma.instance[i].fw) |
| return -EINVAL; |
| |
| hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; |
| amdgpu_ucode_print_sdma_hdr(&hdr->header); |
| fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; |
| |
| fw_data = (const __le32 *) |
| (adev->sdma.instance[i].fw->data + |
| le32_to_cpu(hdr->header.ucode_array_offset_bytes)); |
| |
| WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0); |
| |
| for (j = 0; j < fw_size; j++) |
| WREG32_SDMA(i, mmSDMA0_UCODE_DATA, |
| le32_to_cpup(fw_data++)); |
| |
| WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, |
| adev->sdma.instance[i].fw_version); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * sdma_v4_0_start - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Set up the DMA engines and enable them (VEGA10). |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v4_0_start(struct amdgpu_device *adev) |
| { |
| struct amdgpu_ring *ring; |
| int i, r; |
| |
| if (amdgpu_sriov_vf(adev)) { |
| sdma_v4_0_ctx_switch_enable(adev, false); |
| sdma_v4_0_enable(adev, false); |
| } else { |
| |
| if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { |
| r = sdma_v4_0_load_microcode(adev); |
| if (r) |
| return r; |
| } |
| |
| /* unhalt the MEs */ |
| sdma_v4_0_enable(adev, true); |
| /* enable sdma ring preemption */ |
| sdma_v4_0_ctx_switch_enable(adev, true); |
| } |
| |
| /* start the gfx rings and rlc compute queues */ |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| uint32_t temp; |
| |
| WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0); |
| sdma_v4_0_gfx_resume(adev, i); |
| if (adev->sdma.has_page_queue) |
| sdma_v4_0_page_resume(adev, i); |
| |
| /* set utc l1 enable flag always to 1 */ |
| temp = RREG32_SDMA(i, mmSDMA0_CNTL); |
| temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); |
| WREG32_SDMA(i, mmSDMA0_CNTL, temp); |
| |
| if (!amdgpu_sriov_vf(adev)) { |
| /* unhalt engine */ |
| temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL); |
| temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); |
| WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp); |
| } |
| } |
| |
| if (amdgpu_sriov_vf(adev)) { |
| sdma_v4_0_ctx_switch_enable(adev, true); |
| sdma_v4_0_enable(adev, true); |
| } else { |
| r = sdma_v4_0_rlc_resume(adev); |
| if (r) |
| return r; |
| } |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| ring = &adev->sdma.instance[i].ring; |
| |
| r = amdgpu_ring_test_helper(ring); |
| if (r) |
| return r; |
| |
| if (adev->sdma.has_page_queue) { |
| struct amdgpu_ring *page = &adev->sdma.instance[i].page; |
| |
| r = amdgpu_ring_test_helper(page); |
| if (r) |
| return r; |
| |
| if (adev->mman.buffer_funcs_ring == page) |
| amdgpu_ttm_set_buffer_funcs_status(adev, true); |
| } |
| |
| if (adev->mman.buffer_funcs_ring == ring) |
| amdgpu_ttm_set_buffer_funcs_status(adev, true); |
| } |
| |
| return r; |
| } |
| |
| /** |
| * sdma_v4_0_ring_test_ring - simple async dma engine test |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * |
| * Test the DMA engine by writing using it to write an |
| * value to memory. (VEGA10). |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| unsigned i; |
| unsigned index; |
| int r; |
| u32 tmp; |
| u64 gpu_addr; |
| |
| r = amdgpu_device_wb_get(adev, &index); |
| if (r) |
| return r; |
| |
| gpu_addr = adev->wb.gpu_addr + (index * 4); |
| tmp = 0xCAFEDEAD; |
| adev->wb.wb[index] = cpu_to_le32(tmp); |
| |
| r = amdgpu_ring_alloc(ring, 5); |
| if (r) |
| goto error_free_wb; |
| |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); |
| amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); |
| amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); |
| amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); |
| amdgpu_ring_write(ring, 0xDEADBEEF); |
| amdgpu_ring_commit(ring); |
| |
| for (i = 0; i < adev->usec_timeout; i++) { |
| tmp = le32_to_cpu(adev->wb.wb[index]); |
| if (tmp == 0xDEADBEEF) |
| break; |
| DRM_UDELAY(1); |
| } |
| |
| if (i >= adev->usec_timeout) |
| r = -ETIMEDOUT; |
| |
| error_free_wb: |
| amdgpu_device_wb_free(adev, index); |
| return r; |
| } |
| |
| /** |
| * sdma_v4_0_ring_test_ib - test an IB on the DMA engine |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * |
| * Test a simple IB in the DMA ring (VEGA10). |
| * Returns 0 on success, error on failure. |
| */ |
| static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_ib ib; |
| struct dma_fence *f = NULL; |
| unsigned index; |
| long r; |
| u32 tmp = 0; |
| u64 gpu_addr; |
| |
| r = amdgpu_device_wb_get(adev, &index); |
| if (r) |
| return r; |
| |
| gpu_addr = adev->wb.gpu_addr + (index * 4); |
| tmp = 0xCAFEDEAD; |
| adev->wb.wb[index] = cpu_to_le32(tmp); |
| memset(&ib, 0, sizeof(ib)); |
| r = amdgpu_ib_get(adev, NULL, 256, &ib); |
| if (r) |
| goto err0; |
| |
| ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); |
| ib.ptr[1] = lower_32_bits(gpu_addr); |
| ib.ptr[2] = upper_32_bits(gpu_addr); |
| ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); |
| ib.ptr[4] = 0xDEADBEEF; |
| ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
| ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
| ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
| ib.length_dw = 8; |
| |
| r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); |
| if (r) |
| goto err1; |
| |
| r = dma_fence_wait_timeout(f, false, timeout); |
| if (r == 0) { |
| r = -ETIMEDOUT; |
| goto err1; |
| } else if (r < 0) { |
| goto err1; |
| } |
| tmp = le32_to_cpu(adev->wb.wb[index]); |
| if (tmp == 0xDEADBEEF) |
| r = 0; |
| else |
| r = -EINVAL; |
| |
| err1: |
| amdgpu_ib_free(adev, &ib, NULL); |
| dma_fence_put(f); |
| err0: |
| amdgpu_device_wb_free(adev, index); |
| return r; |
| } |
| |
| |
| /** |
| * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART |
| * |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @src: src addr to copy from |
| * @count: number of page entries to update |
| * |
| * Update PTEs by copying them from the GART using sDMA (VEGA10). |
| */ |
| static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib, |
| uint64_t pe, uint64_t src, |
| unsigned count) |
| { |
| unsigned bytes = count * 8; |
| |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); |
| ib->ptr[ib->length_dw++] = bytes - 1; |
| ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ |
| ib->ptr[ib->length_dw++] = lower_32_bits(src); |
| ib->ptr[ib->length_dw++] = upper_32_bits(src); |
| ib->ptr[ib->length_dw++] = lower_32_bits(pe); |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| |
| } |
| |
| /** |
| * sdma_v4_0_vm_write_pte - update PTEs by writing them manually |
| * |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @addr: dst addr to write into pe |
| * @count: number of page entries to update |
| * @incr: increase next addr by incr bytes |
| * @flags: access flags |
| * |
| * Update PTEs by writing them manually using sDMA (VEGA10). |
| */ |
| static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, |
| uint64_t value, unsigned count, |
| uint32_t incr) |
| { |
| unsigned ndw = count * 2; |
| |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); |
| ib->ptr[ib->length_dw++] = lower_32_bits(pe); |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| ib->ptr[ib->length_dw++] = ndw - 1; |
| for (; ndw > 0; ndw -= 2) { |
| ib->ptr[ib->length_dw++] = lower_32_bits(value); |
| ib->ptr[ib->length_dw++] = upper_32_bits(value); |
| value += incr; |
| } |
| } |
| |
| /** |
| * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA |
| * |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @addr: dst addr to write into pe |
| * @count: number of page entries to update |
| * @incr: increase next addr by incr bytes |
| * @flags: access flags |
| * |
| * Update the page tables using sDMA (VEGA10). |
| */ |
| static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib, |
| uint64_t pe, |
| uint64_t addr, unsigned count, |
| uint32_t incr, uint64_t flags) |
| { |
| /* for physically contiguous pages (vram) */ |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); |
| ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(flags); |
| ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(addr); |
| ib->ptr[ib->length_dw++] = incr; /* increment size */ |
| ib->ptr[ib->length_dw++] = 0; |
| ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ |
| } |
| |
| /** |
| * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw |
| * |
| * @ib: indirect buffer to fill with padding |
| * |
| */ |
| static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) |
| { |
| struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); |
| u32 pad_count; |
| int i; |
| |
| pad_count = (8 - (ib->length_dw & 0x7)) % 8; |
| for (i = 0; i < pad_count; i++) |
| if (sdma && sdma->burst_nop && (i == 0)) |
| ib->ptr[ib->length_dw++] = |
| SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | |
| SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); |
| else |
| ib->ptr[ib->length_dw++] = |
| SDMA_PKT_HEADER_OP(SDMA_OP_NOP); |
| } |
| |
| |
| /** |
| * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline |
| * |
| * @ring: amdgpu_ring pointer |
| * |
| * Make sure all previous operations are completed (CIK). |
| */ |
| static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) |
| { |
| uint32_t seq = ring->fence_drv.sync_seq; |
| uint64_t addr = ring->fence_drv.gpu_addr; |
| |
| /* wait for idle */ |
| sdma_v4_0_wait_reg_mem(ring, 1, 0, |
| addr & 0xfffffffc, |
| upper_32_bits(addr) & 0xffffffff, |
| seq, 0xffffffff, 4); |
| } |
| |
| |
| /** |
| * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA |
| * |
| * @ring: amdgpu_ring pointer |
| * @vm: amdgpu_vm pointer |
| * |
| * Update the page table base and flush the VM TLB |
| * using sDMA (VEGA10). |
| */ |
| static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring, |
| unsigned vmid, uint64_t pd_addr) |
| { |
| amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); |
| } |
| |
| static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring, |
| uint32_t reg, uint32_t val) |
| { |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | |
| SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); |
| amdgpu_ring_write(ring, reg); |
| amdgpu_ring_write(ring, val); |
| } |
| |
| static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, |
| uint32_t val, uint32_t mask) |
| { |
| sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); |
| } |
| |
| static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev) |
| { |
| uint fw_version = adev->sdma.instance[0].fw_version; |
| |
| switch (adev->asic_type) { |
| case CHIP_VEGA10: |
| return fw_version >= 430; |
| case CHIP_VEGA12: |
| /*return fw_version >= 31;*/ |
| return false; |
| case CHIP_VEGA20: |
| return fw_version >= 123; |
| default: |
| return false; |
| } |
| } |
| |
| static int sdma_v4_0_early_init(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| int r; |
| |
| if (adev->asic_type == CHIP_RAVEN) |
| adev->sdma.num_instances = 1; |
| else |
| adev->sdma.num_instances = 2; |
| |
| r = sdma_v4_0_init_microcode(adev); |
| if (r) { |
| DRM_ERROR("Failed to load sdma firmware!\n"); |
| return r; |
| } |
| |
| /* TODO: Page queue breaks driver reload under SRIOV */ |
| if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev))) |
| adev->sdma.has_page_queue = false; |
| else if (sdma_v4_0_fw_support_paging_queue(adev)) |
| adev->sdma.has_page_queue = true; |
| |
| sdma_v4_0_set_ring_funcs(adev); |
| sdma_v4_0_set_buffer_funcs(adev); |
| sdma_v4_0_set_vm_pte_funcs(adev); |
| sdma_v4_0_set_irq_funcs(adev); |
| |
| return 0; |
| } |
| |
| static int sdma_v4_0_sw_init(void *handle) |
| { |
| struct amdgpu_ring *ring; |
| int r, i; |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| /* SDMA trap event */ |
| r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP, |
| &adev->sdma.trap_irq); |
| if (r) |
| return r; |
| |
| /* SDMA trap event */ |
| r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP, |
| &adev->sdma.trap_irq); |
| if (r) |
| return r; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| ring = &adev->sdma.instance[i].ring; |
| ring->ring_obj = NULL; |
| ring->use_doorbell = true; |
| |
| DRM_INFO("use_doorbell being set to: [%s]\n", |
| ring->use_doorbell?"true":"false"); |
| |
| /* doorbell size is 2 dwords, get DWORD offset */ |
| ring->doorbell_index = (i == 0) ? |
| (adev->doorbell_index.sdma_engine0 << 1) |
| : (adev->doorbell_index.sdma_engine1 << 1); |
| |
| sprintf(ring->name, "sdma%d", i); |
| r = amdgpu_ring_init(adev, ring, 1024, |
| &adev->sdma.trap_irq, |
| (i == 0) ? |
| AMDGPU_SDMA_IRQ_TRAP0 : |
| AMDGPU_SDMA_IRQ_TRAP1); |
| if (r) |
| return r; |
| |
| if (adev->sdma.has_page_queue) { |
| ring = &adev->sdma.instance[i].page; |
| ring->ring_obj = NULL; |
| ring->use_doorbell = true; |
| |
| /* paging queue use same doorbell index/routing as gfx queue |
| * with 0x400 (4096 dwords) offset on second doorbell page |
| */ |
| ring->doorbell_index = (i == 0) ? |
| (adev->doorbell_index.sdma_engine0 << 1) |
| : (adev->doorbell_index.sdma_engine1 << 1); |
| ring->doorbell_index += 0x400; |
| |
| sprintf(ring->name, "page%d", i); |
| r = amdgpu_ring_init(adev, ring, 1024, |
| &adev->sdma.trap_irq, |
| (i == 0) ? |
| AMDGPU_SDMA_IRQ_TRAP0 : |
| AMDGPU_SDMA_IRQ_TRAP1); |
| if (r) |
| return r; |
| } |
| } |
| |
| return r; |
| } |
| |
| static int sdma_v4_0_sw_fini(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| int i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| amdgpu_ring_fini(&adev->sdma.instance[i].ring); |
| if (adev->sdma.has_page_queue) |
| amdgpu_ring_fini(&adev->sdma.instance[i].page); |
| } |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| release_firmware(adev->sdma.instance[i].fw); |
| adev->sdma.instance[i].fw = NULL; |
| } |
| |
| return 0; |
| } |
| |
| static int sdma_v4_0_hw_init(void *handle) |
| { |
| int r; |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs && |
| adev->powerplay.pp_funcs->set_powergating_by_smu) |
| amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false); |
| |
| sdma_v4_0_init_golden_registers(adev); |
| |
| r = sdma_v4_0_start(adev); |
| |
| return r; |
| } |
| |
| static int sdma_v4_0_hw_fini(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| if (amdgpu_sriov_vf(adev)) |
| return 0; |
| |
| sdma_v4_0_ctx_switch_enable(adev, false); |
| sdma_v4_0_enable(adev, false); |
| |
| if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs |
| && adev->powerplay.pp_funcs->set_powergating_by_smu) |
| amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true); |
| |
| return 0; |
| } |
| |
| static int sdma_v4_0_suspend(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| return sdma_v4_0_hw_fini(adev); |
| } |
| |
| static int sdma_v4_0_resume(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| return sdma_v4_0_hw_init(adev); |
| } |
| |
| static bool sdma_v4_0_is_idle(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| u32 i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG); |
| |
| if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int sdma_v4_0_wait_for_idle(void *handle) |
| { |
| unsigned i; |
| u32 sdma0, sdma1; |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| for (i = 0; i < adev->usec_timeout; i++) { |
| sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG); |
| sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG); |
| |
| if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK) |
| return 0; |
| udelay(1); |
| } |
| return -ETIMEDOUT; |
| } |
| |
| static int sdma_v4_0_soft_reset(void *handle) |
| { |
| /* todo */ |
| |
| return 0; |
| } |
| |
| static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| unsigned type, |
| enum amdgpu_interrupt_state state) |
| { |
| unsigned int instance = (type == AMDGPU_SDMA_IRQ_TRAP0) ? 0 : 1; |
| u32 sdma_cntl; |
| |
| sdma_cntl = RREG32_SDMA(instance, mmSDMA0_CNTL); |
| sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, |
| state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); |
| WREG32_SDMA(instance, mmSDMA0_CNTL, sdma_cntl); |
| |
| return 0; |
| } |
| |
| static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| struct amdgpu_iv_entry *entry) |
| { |
| uint32_t instance; |
| |
| DRM_DEBUG("IH: SDMA trap\n"); |
| switch (entry->client_id) { |
| case SOC15_IH_CLIENTID_SDMA0: |
| instance = 0; |
| break; |
| case SOC15_IH_CLIENTID_SDMA1: |
| instance = 1; |
| break; |
| default: |
| return 0; |
| } |
| |
| switch (entry->ring_id) { |
| case 0: |
| amdgpu_fence_process(&adev->sdma.instance[instance].ring); |
| break; |
| case 1: |
| if (adev->asic_type == CHIP_VEGA20) |
| amdgpu_fence_process(&adev->sdma.instance[instance].page); |
| break; |
| case 2: |
| /* XXX compute */ |
| break; |
| case 3: |
| if (adev->asic_type != CHIP_VEGA20) |
| amdgpu_fence_process(&adev->sdma.instance[instance].page); |
| break; |
| } |
| return 0; |
| } |
| |
| static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| struct amdgpu_iv_entry *entry) |
| { |
| int instance; |
| |
| DRM_ERROR("Illegal instruction in SDMA command stream\n"); |
| |
| switch (entry->client_id) { |
| case SOC15_IH_CLIENTID_SDMA0: |
| instance = 0; |
| break; |
| case SOC15_IH_CLIENTID_SDMA1: |
| instance = 1; |
| break; |
| default: |
| return 0; |
| } |
| |
| switch (entry->ring_id) { |
| case 0: |
| drm_sched_fault(&adev->sdma.instance[instance].ring.sched); |
| break; |
| } |
| return 0; |
| } |
| |
| static void sdma_v4_0_update_medium_grain_clock_gating( |
| struct amdgpu_device *adev, |
| bool enable) |
| { |
| uint32_t data, def; |
| |
| if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { |
| /* enable sdma0 clock gating */ |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); |
| data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); |
| if (def != data) |
| WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data); |
| |
| if (adev->sdma.num_instances > 1) { |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL)); |
| data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK); |
| if (def != data) |
| WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data); |
| } |
| } else { |
| /* disable sdma0 clock gating */ |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); |
| data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); |
| |
| if (def != data) |
| WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data); |
| |
| if (adev->sdma.num_instances > 1) { |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL)); |
| data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
| SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK); |
| if (def != data) |
| WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data); |
| } |
| } |
| } |
| |
| |
| static void sdma_v4_0_update_medium_grain_light_sleep( |
| struct amdgpu_device *adev, |
| bool enable) |
| { |
| uint32_t data, def; |
| |
| if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { |
| /* 1-not override: enable sdma0 mem light sleep */ |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
| data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
| if (def != data) |
| WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); |
| |
| /* 1-not override: enable sdma1 mem light sleep */ |
| if (adev->sdma.num_instances > 1) { |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL)); |
| data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
| if (def != data) |
| WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data); |
| } |
| } else { |
| /* 0-override:disable sdma0 mem light sleep */ |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
| data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
| if (def != data) |
| WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); |
| |
| /* 0-override:disable sdma1 mem light sleep */ |
| if (adev->sdma.num_instances > 1) { |
| def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL)); |
| data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
| if (def != data) |
| WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data); |
| } |
| } |
| } |
| |
| static int sdma_v4_0_set_clockgating_state(void *handle, |
| enum amd_clockgating_state state) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| if (amdgpu_sriov_vf(adev)) |
| return 0; |
| |
| switch (adev->asic_type) { |
| case CHIP_VEGA10: |
| case CHIP_VEGA12: |
| case CHIP_VEGA20: |
| case CHIP_RAVEN: |
| sdma_v4_0_update_medium_grain_clock_gating(adev, |
| state == AMD_CG_STATE_GATE ? true : false); |
| sdma_v4_0_update_medium_grain_light_sleep(adev, |
| state == AMD_CG_STATE_GATE ? true : false); |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| static int sdma_v4_0_set_powergating_state(void *handle, |
| enum amd_powergating_state state) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| switch (adev->asic_type) { |
| case CHIP_RAVEN: |
| sdma_v4_1_update_power_gating(adev, |
| state == AMD_PG_STATE_GATE ? true : false); |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| int data; |
| |
| if (amdgpu_sriov_vf(adev)) |
| *flags = 0; |
| |
| /* AMD_CG_SUPPORT_SDMA_MGCG */ |
| data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); |
| if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) |
| *flags |= AMD_CG_SUPPORT_SDMA_MGCG; |
| |
| /* AMD_CG_SUPPORT_SDMA_LS */ |
| data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
| if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) |
| *flags |= AMD_CG_SUPPORT_SDMA_LS; |
| } |
| |
| const struct amd_ip_funcs sdma_v4_0_ip_funcs = { |
| .name = "sdma_v4_0", |
| .early_init = sdma_v4_0_early_init, |
| .late_init = NULL, |
| .sw_init = sdma_v4_0_sw_init, |
| .sw_fini = sdma_v4_0_sw_fini, |
| .hw_init = sdma_v4_0_hw_init, |
| .hw_fini = sdma_v4_0_hw_fini, |
| .suspend = sdma_v4_0_suspend, |
| .resume = sdma_v4_0_resume, |
| .is_idle = sdma_v4_0_is_idle, |
| .wait_for_idle = sdma_v4_0_wait_for_idle, |
| .soft_reset = sdma_v4_0_soft_reset, |
| .set_clockgating_state = sdma_v4_0_set_clockgating_state, |
| .set_powergating_state = sdma_v4_0_set_powergating_state, |
| .get_clockgating_state = sdma_v4_0_get_clockgating_state, |
| }; |
| |
| static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = { |
| .type = AMDGPU_RING_TYPE_SDMA, |
| .align_mask = 0xf, |
| .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), |
| .support_64bit_ptrs = true, |
| .vmhub = AMDGPU_MMHUB, |
| .get_rptr = sdma_v4_0_ring_get_rptr, |
| .get_wptr = sdma_v4_0_ring_get_wptr, |
| .set_wptr = sdma_v4_0_ring_set_wptr, |
| .emit_frame_size = |
| 6 + /* sdma_v4_0_ring_emit_hdp_flush */ |
| 3 + /* hdp invalidate */ |
| 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ |
| /* sdma_v4_0_ring_emit_vm_flush */ |
| SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + |
| SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + |
| 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ |
| .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ |
| .emit_ib = sdma_v4_0_ring_emit_ib, |
| .emit_fence = sdma_v4_0_ring_emit_fence, |
| .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, |
| .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, |
| .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, |
| .test_ring = sdma_v4_0_ring_test_ring, |
| .test_ib = sdma_v4_0_ring_test_ib, |
| .insert_nop = sdma_v4_0_ring_insert_nop, |
| .pad_ib = sdma_v4_0_ring_pad_ib, |
| .emit_wreg = sdma_v4_0_ring_emit_wreg, |
| .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, |
| .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, |
| }; |
| |
| static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = { |
| .type = AMDGPU_RING_TYPE_SDMA, |
| .align_mask = 0xf, |
| .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), |
| .support_64bit_ptrs = true, |
| .vmhub = AMDGPU_MMHUB, |
| .get_rptr = sdma_v4_0_ring_get_rptr, |
| .get_wptr = sdma_v4_0_page_ring_get_wptr, |
| .set_wptr = sdma_v4_0_page_ring_set_wptr, |
| .emit_frame_size = |
| 6 + /* sdma_v4_0_ring_emit_hdp_flush */ |
| 3 + /* hdp invalidate */ |
| 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ |
| /* sdma_v4_0_ring_emit_vm_flush */ |
| SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + |
| SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + |
| 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ |
| .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ |
| .emit_ib = sdma_v4_0_ring_emit_ib, |
| .emit_fence = sdma_v4_0_ring_emit_fence, |
| .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, |
| .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, |
| .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, |
| .test_ring = sdma_v4_0_ring_test_ring, |
| .test_ib = sdma_v4_0_ring_test_ib, |
| .insert_nop = sdma_v4_0_ring_insert_nop, |
| .pad_ib = sdma_v4_0_ring_pad_ib, |
| .emit_wreg = sdma_v4_0_ring_emit_wreg, |
| .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, |
| .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, |
| }; |
| |
| static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev) |
| { |
| int i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs; |
| adev->sdma.instance[i].ring.me = i; |
| if (adev->sdma.has_page_queue) { |
| adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs; |
| adev->sdma.instance[i].page.me = i; |
| } |
| } |
| } |
| |
| static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = { |
| .set = sdma_v4_0_set_trap_irq_state, |
| .process = sdma_v4_0_process_trap_irq, |
| }; |
| |
| static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = { |
| .process = sdma_v4_0_process_illegal_inst_irq, |
| }; |
| |
| static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev) |
| { |
| adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; |
| adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs; |
| adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs; |
| } |
| |
| /** |
| * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * @src_offset: src GPU address |
| * @dst_offset: dst GPU address |
| * @byte_count: number of bytes to xfer |
| * |
| * Copy GPU buffers using the DMA engine (VEGA10/12). |
| * Used by the amdgpu ttm implementation to move pages if |
| * registered as the asic copy callback. |
| */ |
| static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib, |
| uint64_t src_offset, |
| uint64_t dst_offset, |
| uint32_t byte_count) |
| { |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); |
| ib->ptr[ib->length_dw++] = byte_count - 1; |
| ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ |
| ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); |
| ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); |
| ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); |
| ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); |
| } |
| |
| /** |
| * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * @src_data: value to write to buffer |
| * @dst_offset: dst GPU address |
| * @byte_count: number of bytes to xfer |
| * |
| * Fill GPU buffers using the DMA engine (VEGA10/12). |
| */ |
| static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib, |
| uint32_t src_data, |
| uint64_t dst_offset, |
| uint32_t byte_count) |
| { |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); |
| ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); |
| ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); |
| ib->ptr[ib->length_dw++] = src_data; |
| ib->ptr[ib->length_dw++] = byte_count - 1; |
| } |
| |
| static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = { |
| .copy_max_bytes = 0x400000, |
| .copy_num_dw = 7, |
| .emit_copy_buffer = sdma_v4_0_emit_copy_buffer, |
| |
| .fill_max_bytes = 0x400000, |
| .fill_num_dw = 5, |
| .emit_fill_buffer = sdma_v4_0_emit_fill_buffer, |
| }; |
| |
| static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev) |
| { |
| adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs; |
| if (adev->sdma.has_page_queue) |
| adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; |
| else |
| adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; |
| } |
| |
| static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = { |
| .copy_pte_num_dw = 7, |
| .copy_pte = sdma_v4_0_vm_copy_pte, |
| |
| .write_pte = sdma_v4_0_vm_write_pte, |
| .set_pte_pde = sdma_v4_0_vm_set_pte_pde, |
| }; |
| |
| static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev) |
| { |
| struct drm_gpu_scheduler *sched; |
| unsigned i; |
| |
| adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs; |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| if (adev->sdma.has_page_queue) |
| sched = &adev->sdma.instance[i].page.sched; |
| else |
| sched = &adev->sdma.instance[i].ring.sched; |
| adev->vm_manager.vm_pte_rqs[i] = |
| &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL]; |
| } |
| adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances; |
| } |
| |
| const struct amdgpu_ip_block_version sdma_v4_0_ip_block = { |
| .type = AMD_IP_BLOCK_TYPE_SDMA, |
| .major = 4, |
| .minor = 0, |
| .rev = 0, |
| .funcs = &sdma_v4_0_ip_funcs, |
| }; |