| /****************************************************************************** | 
 |  * | 
 |  * This file is provided under a dual BSD/GPLv2 license.  When using or | 
 |  * redistributing this file, you may do so under either license. | 
 |  * | 
 |  * GPL LICENSE SUMMARY | 
 |  * | 
 |  * Copyright(c) 2007 - 2015 Intel Corporation. All rights reserved. | 
 |  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH | 
 |  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of version 2 of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, | 
 |  * USA | 
 |  * | 
 |  * The full GNU General Public License is included in this distribution | 
 |  * in the file called COPYING. | 
 |  * | 
 |  * Contact Information: | 
 |  *  Intel Linux Wireless <linuxwifi@intel.com> | 
 |  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
 |  * | 
 |  * BSD LICENSE | 
 |  * | 
 |  * Copyright(c) 2005 - 2015 Intel Corporation. All rights reserved. | 
 |  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH | 
 |  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH | 
 |  * All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  *  * Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  *  * Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  *  * Neither the name Intel Corporation nor the names of its | 
 |  *    contributors may be used to endorse or promote products derived | 
 |  *    from this software without specific prior written permission. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 |  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 |  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 |  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 |  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 |  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * | 
 |  *****************************************************************************/ | 
 | #include <linux/pci.h> | 
 | #include <linux/pci-aspm.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/pm_runtime.h> | 
 |  | 
 | #include "iwl-drv.h" | 
 | #include "iwl-trans.h" | 
 | #include "iwl-csr.h" | 
 | #include "iwl-prph.h" | 
 | #include "iwl-scd.h" | 
 | #include "iwl-agn-hw.h" | 
 | #include "fw/error-dump.h" | 
 | #include "internal.h" | 
 | #include "iwl-fh.h" | 
 |  | 
 | /* extended range in FW SRAM */ | 
 | #define IWL_FW_MEM_EXTENDED_START	0x40000 | 
 | #define IWL_FW_MEM_EXTENDED_END		0x57FFF | 
 |  | 
 | static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	if (!trans_pcie->fw_mon_page) | 
 | 		return; | 
 |  | 
 | 	dma_unmap_page(trans->dev, trans_pcie->fw_mon_phys, | 
 | 		       trans_pcie->fw_mon_size, DMA_FROM_DEVICE); | 
 | 	__free_pages(trans_pcie->fw_mon_page, | 
 | 		     get_order(trans_pcie->fw_mon_size)); | 
 | 	trans_pcie->fw_mon_page = NULL; | 
 | 	trans_pcie->fw_mon_phys = 0; | 
 | 	trans_pcie->fw_mon_size = 0; | 
 | } | 
 |  | 
 | static void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	struct page *page = NULL; | 
 | 	dma_addr_t phys; | 
 | 	u32 size = 0; | 
 | 	u8 power; | 
 |  | 
 | 	if (!max_power) { | 
 | 		/* default max_power is maximum */ | 
 | 		max_power = 26; | 
 | 	} else { | 
 | 		max_power += 11; | 
 | 	} | 
 |  | 
 | 	if (WARN(max_power > 26, | 
 | 		 "External buffer size for monitor is too big %d, check the FW TLV\n", | 
 | 		 max_power)) | 
 | 		return; | 
 |  | 
 | 	if (trans_pcie->fw_mon_page) { | 
 | 		dma_sync_single_for_device(trans->dev, trans_pcie->fw_mon_phys, | 
 | 					   trans_pcie->fw_mon_size, | 
 | 					   DMA_FROM_DEVICE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	phys = 0; | 
 | 	for (power = max_power; power >= 11; power--) { | 
 | 		int order; | 
 |  | 
 | 		size = BIT(power); | 
 | 		order = get_order(size); | 
 | 		page = alloc_pages(__GFP_COMP | __GFP_NOWARN | __GFP_ZERO, | 
 | 				   order); | 
 | 		if (!page) | 
 | 			continue; | 
 |  | 
 | 		phys = dma_map_page(trans->dev, page, 0, PAGE_SIZE << order, | 
 | 				    DMA_FROM_DEVICE); | 
 | 		if (dma_mapping_error(trans->dev, phys)) { | 
 | 			__free_pages(page, order); | 
 | 			page = NULL; | 
 | 			continue; | 
 | 		} | 
 | 		IWL_INFO(trans, | 
 | 			 "Allocated 0x%08x bytes (order %d) for firmware monitor.\n", | 
 | 			 size, order); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (WARN_ON_ONCE(!page)) | 
 | 		return; | 
 |  | 
 | 	if (power != max_power) | 
 | 		IWL_ERR(trans, | 
 | 			"Sorry - debug buffer is only %luK while you requested %luK\n", | 
 | 			(unsigned long)BIT(power - 10), | 
 | 			(unsigned long)BIT(max_power - 10)); | 
 |  | 
 | 	trans_pcie->fw_mon_page = page; | 
 | 	trans_pcie->fw_mon_phys = phys; | 
 | 	trans_pcie->fw_mon_size = size; | 
 | } | 
 |  | 
 | static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg) | 
 | { | 
 | 	iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, | 
 | 		    ((reg & 0x0000ffff) | (2 << 28))); | 
 | 	return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG); | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val) | 
 | { | 
 | 	iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val); | 
 | 	iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, | 
 | 		    ((reg & 0x0000ffff) | (3 << 28))); | 
 | } | 
 |  | 
 | static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux) | 
 | { | 
 | 	if (trans->cfg->apmg_not_supported) | 
 | 		return; | 
 |  | 
 | 	if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold)) | 
 | 		iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, | 
 | 				       APMG_PS_CTRL_VAL_PWR_SRC_VAUX, | 
 | 				       ~APMG_PS_CTRL_MSK_PWR_SRC); | 
 | 	else | 
 | 		iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, | 
 | 				       APMG_PS_CTRL_VAL_PWR_SRC_VMAIN, | 
 | 				       ~APMG_PS_CTRL_MSK_PWR_SRC); | 
 | } | 
 |  | 
 | /* PCI registers */ | 
 | #define PCI_CFG_RETRY_TIMEOUT	0x041 | 
 |  | 
 | void iwl_pcie_apm_config(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	u16 lctl; | 
 | 	u16 cap; | 
 |  | 
 | 	/* | 
 | 	 * HW bug W/A for instability in PCIe bus L0S->L1 transition. | 
 | 	 * Check if BIOS (or OS) enabled L1-ASPM on this device. | 
 | 	 * If so (likely), disable L0S, so device moves directly L0->L1; | 
 | 	 *    costs negligible amount of power savings. | 
 | 	 * If not (unlikely), enable L0S, so there is at least some | 
 | 	 *    power savings, even without L1. | 
 | 	 */ | 
 | 	pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl); | 
 | 	if (lctl & PCI_EXP_LNKCTL_ASPM_L1) | 
 | 		iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); | 
 | 	else | 
 | 		iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); | 
 | 	trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S); | 
 |  | 
 | 	pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap); | 
 | 	trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN; | 
 | 	IWL_DEBUG_POWER(trans, "L1 %sabled - LTR %sabled\n", | 
 | 			(lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis", | 
 | 			trans->ltr_enabled ? "En" : "Dis"); | 
 | } | 
 |  | 
 | /* | 
 |  * Start up NIC's basic functionality after it has been reset | 
 |  * (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop()) | 
 |  * NOTE:  This does not load uCode nor start the embedded processor | 
 |  */ | 
 | static int iwl_pcie_apm_init(struct iwl_trans *trans) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	IWL_DEBUG_INFO(trans, "Init card's basic functions\n"); | 
 |  | 
 | 	/* | 
 | 	 * Use "set_bit" below rather than "write", to preserve any hardware | 
 | 	 * bits already set by default after reset. | 
 | 	 */ | 
 |  | 
 | 	/* Disable L0S exit timer (platform NMI Work/Around) */ | 
 | 	if (trans->cfg->device_family < IWL_DEVICE_FAMILY_8000) | 
 | 		iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, | 
 | 			    CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); | 
 |  | 
 | 	/* | 
 | 	 * Disable L0s without affecting L1; | 
 | 	 *  don't wait for ICH L0s (ICH bug W/A) | 
 | 	 */ | 
 | 	iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, | 
 | 		    CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); | 
 |  | 
 | 	/* Set FH wait threshold to maximum (HW error during stress W/A) */ | 
 | 	iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL); | 
 |  | 
 | 	/* | 
 | 	 * Enable HAP INTA (interrupt from management bus) to | 
 | 	 * wake device's PCI Express link L1a -> L0s | 
 | 	 */ | 
 | 	iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, | 
 | 		    CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); | 
 |  | 
 | 	iwl_pcie_apm_config(trans); | 
 |  | 
 | 	/* Configure analog phase-lock-loop before activating to D0A */ | 
 | 	if (trans->cfg->base_params->pll_cfg) | 
 | 		iwl_set_bit(trans, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL); | 
 |  | 
 | 	/* | 
 | 	 * Set "initialization complete" bit to move adapter from | 
 | 	 * D0U* --> D0A* (powered-up active) state. | 
 | 	 */ | 
 | 	iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); | 
 |  | 
 | 	/* | 
 | 	 * Wait for clock stabilization; once stabilized, access to | 
 | 	 * device-internal resources is supported, e.g. iwl_write_prph() | 
 | 	 * and accesses to uCode SRAM. | 
 | 	 */ | 
 | 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL, | 
 | 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, | 
 | 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); | 
 | 	if (ret < 0) { | 
 | 		IWL_ERR(trans, "Failed to init the card\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (trans->cfg->host_interrupt_operation_mode) { | 
 | 		/* | 
 | 		 * This is a bit of an abuse - This is needed for 7260 / 3160 | 
 | 		 * only check host_interrupt_operation_mode even if this is | 
 | 		 * not related to host_interrupt_operation_mode. | 
 | 		 * | 
 | 		 * Enable the oscillator to count wake up time for L1 exit. This | 
 | 		 * consumes slightly more power (100uA) - but allows to be sure | 
 | 		 * that we wake up from L1 on time. | 
 | 		 * | 
 | 		 * This looks weird: read twice the same register, discard the | 
 | 		 * value, set a bit, and yet again, read that same register | 
 | 		 * just to discard the value. But that's the way the hardware | 
 | 		 * seems to like it. | 
 | 		 */ | 
 | 		iwl_read_prph(trans, OSC_CLK); | 
 | 		iwl_read_prph(trans, OSC_CLK); | 
 | 		iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL); | 
 | 		iwl_read_prph(trans, OSC_CLK); | 
 | 		iwl_read_prph(trans, OSC_CLK); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable DMA clock and wait for it to stabilize. | 
 | 	 * | 
 | 	 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" | 
 | 	 * bits do not disable clocks.  This preserves any hardware | 
 | 	 * bits already set by default in "CLK_CTRL_REG" after reset. | 
 | 	 */ | 
 | 	if (!trans->cfg->apmg_not_supported) { | 
 | 		iwl_write_prph(trans, APMG_CLK_EN_REG, | 
 | 			       APMG_CLK_VAL_DMA_CLK_RQT); | 
 | 		udelay(20); | 
 |  | 
 | 		/* Disable L1-Active */ | 
 | 		iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, | 
 | 				  APMG_PCIDEV_STT_VAL_L1_ACT_DIS); | 
 |  | 
 | 		/* Clear the interrupt in APMG if the NIC is in RFKILL */ | 
 | 		iwl_write_prph(trans, APMG_RTC_INT_STT_REG, | 
 | 			       APMG_RTC_INT_STT_RFKILL); | 
 | 	} | 
 |  | 
 | 	set_bit(STATUS_DEVICE_ENABLED, &trans->status); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Enable LP XTAL to avoid HW bug where device may consume much power if | 
 |  * FW is not loaded after device reset. LP XTAL is disabled by default | 
 |  * after device HW reset. Do it only if XTAL is fed by internal source. | 
 |  * Configure device's "persistence" mode to avoid resetting XTAL again when | 
 |  * SHRD_HW_RST occurs in S3. | 
 |  */ | 
 | static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans) | 
 | { | 
 | 	int ret; | 
 | 	u32 apmg_gp1_reg; | 
 | 	u32 apmg_xtal_cfg_reg; | 
 | 	u32 dl_cfg_reg; | 
 |  | 
 | 	/* Force XTAL ON */ | 
 | 	__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, | 
 | 				 CSR_GP_CNTRL_REG_FLAG_XTAL_ON); | 
 |  | 
 | 	iwl_pcie_sw_reset(trans); | 
 |  | 
 | 	/* | 
 | 	 * Set "initialization complete" bit to move adapter from | 
 | 	 * D0U* --> D0A* (powered-up active) state. | 
 | 	 */ | 
 | 	iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); | 
 |  | 
 | 	/* | 
 | 	 * Wait for clock stabilization; once stabilized, access to | 
 | 	 * device-internal resources is possible. | 
 | 	 */ | 
 | 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL, | 
 | 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, | 
 | 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, | 
 | 			   25000); | 
 | 	if (WARN_ON(ret < 0)) { | 
 | 		IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n"); | 
 | 		/* Release XTAL ON request */ | 
 | 		__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, | 
 | 					   CSR_GP_CNTRL_REG_FLAG_XTAL_ON); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clear "disable persistence" to avoid LP XTAL resetting when | 
 | 	 * SHRD_HW_RST is applied in S3. | 
 | 	 */ | 
 | 	iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG, | 
 | 				    APMG_PCIDEV_STT_VAL_PERSIST_DIS); | 
 |  | 
 | 	/* | 
 | 	 * Force APMG XTAL to be active to prevent its disabling by HW | 
 | 	 * caused by APMG idle state. | 
 | 	 */ | 
 | 	apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans, | 
 | 						    SHR_APMG_XTAL_CFG_REG); | 
 | 	iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, | 
 | 				 apmg_xtal_cfg_reg | | 
 | 				 SHR_APMG_XTAL_CFG_XTAL_ON_REQ); | 
 |  | 
 | 	iwl_pcie_sw_reset(trans); | 
 |  | 
 | 	/* Enable LP XTAL by indirect access through CSR */ | 
 | 	apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG); | 
 | 	iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg | | 
 | 				 SHR_APMG_GP1_WF_XTAL_LP_EN | | 
 | 				 SHR_APMG_GP1_CHICKEN_BIT_SELECT); | 
 |  | 
 | 	/* Clear delay line clock power up */ | 
 | 	dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG); | 
 | 	iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg & | 
 | 				 ~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP); | 
 |  | 
 | 	/* | 
 | 	 * Enable persistence mode to avoid LP XTAL resetting when | 
 | 	 * SHRD_HW_RST is applied in S3. | 
 | 	 */ | 
 | 	iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, | 
 | 		    CSR_HW_IF_CONFIG_REG_PERSIST_MODE); | 
 |  | 
 | 	/* | 
 | 	 * Clear "initialization complete" bit to move adapter from | 
 | 	 * D0A* (powered-up Active) --> D0U* (Uninitialized) state. | 
 | 	 */ | 
 | 	iwl_clear_bit(trans, CSR_GP_CNTRL, | 
 | 		      CSR_GP_CNTRL_REG_FLAG_INIT_DONE); | 
 |  | 
 | 	/* Activates XTAL resources monitor */ | 
 | 	__iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG, | 
 | 				 CSR_MONITOR_XTAL_RESOURCES); | 
 |  | 
 | 	/* Release XTAL ON request */ | 
 | 	__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, | 
 | 				   CSR_GP_CNTRL_REG_FLAG_XTAL_ON); | 
 | 	udelay(10); | 
 |  | 
 | 	/* Release APMG XTAL */ | 
 | 	iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, | 
 | 				 apmg_xtal_cfg_reg & | 
 | 				 ~SHR_APMG_XTAL_CFG_XTAL_ON_REQ); | 
 | } | 
 |  | 
 | void iwl_pcie_apm_stop_master(struct iwl_trans *trans) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* stop device's busmaster DMA activity */ | 
 | 	iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); | 
 |  | 
 | 	ret = iwl_poll_bit(trans, CSR_RESET, | 
 | 			   CSR_RESET_REG_FLAG_MASTER_DISABLED, | 
 | 			   CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); | 
 | 	if (ret < 0) | 
 | 		IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n"); | 
 |  | 
 | 	IWL_DEBUG_INFO(trans, "stop master\n"); | 
 | } | 
 |  | 
 | static void iwl_pcie_apm_stop(struct iwl_trans *trans, bool op_mode_leave) | 
 | { | 
 | 	IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n"); | 
 |  | 
 | 	if (op_mode_leave) { | 
 | 		if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) | 
 | 			iwl_pcie_apm_init(trans); | 
 |  | 
 | 		/* inform ME that we are leaving */ | 
 | 		if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) | 
 | 			iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, | 
 | 					  APMG_PCIDEV_STT_VAL_WAKE_ME); | 
 | 		else if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) { | 
 | 			iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, | 
 | 				    CSR_RESET_LINK_PWR_MGMT_DISABLED); | 
 | 			iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, | 
 | 				    CSR_HW_IF_CONFIG_REG_PREPARE | | 
 | 				    CSR_HW_IF_CONFIG_REG_ENABLE_PME); | 
 | 			mdelay(1); | 
 | 			iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, | 
 | 				      CSR_RESET_LINK_PWR_MGMT_DISABLED); | 
 | 		} | 
 | 		mdelay(5); | 
 | 	} | 
 |  | 
 | 	clear_bit(STATUS_DEVICE_ENABLED, &trans->status); | 
 |  | 
 | 	/* Stop device's DMA activity */ | 
 | 	iwl_pcie_apm_stop_master(trans); | 
 |  | 
 | 	if (trans->cfg->lp_xtal_workaround) { | 
 | 		iwl_pcie_apm_lp_xtal_enable(trans); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	iwl_pcie_sw_reset(trans); | 
 |  | 
 | 	/* | 
 | 	 * Clear "initialization complete" bit to move adapter from | 
 | 	 * D0A* (powered-up Active) --> D0U* (Uninitialized) state. | 
 | 	 */ | 
 | 	iwl_clear_bit(trans, CSR_GP_CNTRL, | 
 | 		      CSR_GP_CNTRL_REG_FLAG_INIT_DONE); | 
 | } | 
 |  | 
 | static int iwl_pcie_nic_init(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int ret; | 
 |  | 
 | 	/* nic_init */ | 
 | 	spin_lock(&trans_pcie->irq_lock); | 
 | 	ret = iwl_pcie_apm_init(trans); | 
 | 	spin_unlock(&trans_pcie->irq_lock); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	iwl_pcie_set_pwr(trans, false); | 
 |  | 
 | 	iwl_op_mode_nic_config(trans->op_mode); | 
 |  | 
 | 	/* Allocate the RX queue, or reset if it is already allocated */ | 
 | 	iwl_pcie_rx_init(trans); | 
 |  | 
 | 	/* Allocate or reset and init all Tx and Command queues */ | 
 | 	if (iwl_pcie_tx_init(trans)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (trans->cfg->base_params->shadow_reg_enable) { | 
 | 		/* enable shadow regs in HW */ | 
 | 		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF); | 
 | 		IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n"); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define HW_READY_TIMEOUT (50) | 
 |  | 
 | /* Note: returns poll_bit return value, which is >= 0 if success */ | 
 | static int iwl_pcie_set_hw_ready(struct iwl_trans *trans) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, | 
 | 		    CSR_HW_IF_CONFIG_REG_BIT_NIC_READY); | 
 |  | 
 | 	/* See if we got it */ | 
 | 	ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG, | 
 | 			   CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, | 
 | 			   CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, | 
 | 			   HW_READY_TIMEOUT); | 
 |  | 
 | 	if (ret >= 0) | 
 | 		iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE); | 
 |  | 
 | 	IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : ""); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Note: returns standard 0/-ERROR code */ | 
 | int iwl_pcie_prepare_card_hw(struct iwl_trans *trans) | 
 | { | 
 | 	int ret; | 
 | 	int t = 0; | 
 | 	int iter; | 
 |  | 
 | 	IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n"); | 
 |  | 
 | 	ret = iwl_pcie_set_hw_ready(trans); | 
 | 	/* If the card is ready, exit 0 */ | 
 | 	if (ret >= 0) | 
 | 		return 0; | 
 |  | 
 | 	iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, | 
 | 		    CSR_RESET_LINK_PWR_MGMT_DISABLED); | 
 | 	usleep_range(1000, 2000); | 
 |  | 
 | 	for (iter = 0; iter < 10; iter++) { | 
 | 		/* If HW is not ready, prepare the conditions to check again */ | 
 | 		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, | 
 | 			    CSR_HW_IF_CONFIG_REG_PREPARE); | 
 |  | 
 | 		do { | 
 | 			ret = iwl_pcie_set_hw_ready(trans); | 
 | 			if (ret >= 0) | 
 | 				return 0; | 
 |  | 
 | 			usleep_range(200, 1000); | 
 | 			t += 200; | 
 | 		} while (t < 150000); | 
 | 		msleep(25); | 
 | 	} | 
 |  | 
 | 	IWL_ERR(trans, "Couldn't prepare the card\n"); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * ucode | 
 |  */ | 
 | static void iwl_pcie_load_firmware_chunk_fh(struct iwl_trans *trans, | 
 | 					    u32 dst_addr, dma_addr_t phy_addr, | 
 | 					    u32 byte_cnt) | 
 | { | 
 | 	iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), | 
 | 		    FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); | 
 |  | 
 | 	iwl_write32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), | 
 | 		    dst_addr); | 
 |  | 
 | 	iwl_write32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL), | 
 | 		    phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); | 
 |  | 
 | 	iwl_write32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL), | 
 | 		    (iwl_get_dma_hi_addr(phy_addr) | 
 | 			<< FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); | 
 |  | 
 | 	iwl_write32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL), | 
 | 		    BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM) | | 
 | 		    BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX) | | 
 | 		    FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); | 
 |  | 
 | 	iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), | 
 | 		    FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | | 
 | 		    FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | | 
 | 		    FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); | 
 | } | 
 |  | 
 | static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans, | 
 | 					u32 dst_addr, dma_addr_t phy_addr, | 
 | 					u32 byte_cnt) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	trans_pcie->ucode_write_complete = false; | 
 |  | 
 | 	if (!iwl_trans_grab_nic_access(trans, &flags)) | 
 | 		return -EIO; | 
 |  | 
 | 	iwl_pcie_load_firmware_chunk_fh(trans, dst_addr, phy_addr, | 
 | 					byte_cnt); | 
 | 	iwl_trans_release_nic_access(trans, &flags); | 
 |  | 
 | 	ret = wait_event_timeout(trans_pcie->ucode_write_waitq, | 
 | 				 trans_pcie->ucode_write_complete, 5 * HZ); | 
 | 	if (!ret) { | 
 | 		IWL_ERR(trans, "Failed to load firmware chunk!\n"); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num, | 
 | 			    const struct fw_desc *section) | 
 | { | 
 | 	u8 *v_addr; | 
 | 	dma_addr_t p_addr; | 
 | 	u32 offset, chunk_sz = min_t(u32, FH_MEM_TB_MAX_LENGTH, section->len); | 
 | 	int ret = 0; | 
 |  | 
 | 	IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n", | 
 | 		     section_num); | 
 |  | 
 | 	v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr, | 
 | 				    GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (!v_addr) { | 
 | 		IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n"); | 
 | 		chunk_sz = PAGE_SIZE; | 
 | 		v_addr = dma_alloc_coherent(trans->dev, chunk_sz, | 
 | 					    &p_addr, GFP_KERNEL); | 
 | 		if (!v_addr) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for (offset = 0; offset < section->len; offset += chunk_sz) { | 
 | 		u32 copy_size, dst_addr; | 
 | 		bool extended_addr = false; | 
 |  | 
 | 		copy_size = min_t(u32, chunk_sz, section->len - offset); | 
 | 		dst_addr = section->offset + offset; | 
 |  | 
 | 		if (dst_addr >= IWL_FW_MEM_EXTENDED_START && | 
 | 		    dst_addr <= IWL_FW_MEM_EXTENDED_END) | 
 | 			extended_addr = true; | 
 |  | 
 | 		if (extended_addr) | 
 | 			iwl_set_bits_prph(trans, LMPM_CHICK, | 
 | 					  LMPM_CHICK_EXTENDED_ADDR_SPACE); | 
 |  | 
 | 		memcpy(v_addr, (u8 *)section->data + offset, copy_size); | 
 | 		ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr, | 
 | 						   copy_size); | 
 |  | 
 | 		if (extended_addr) | 
 | 			iwl_clear_bits_prph(trans, LMPM_CHICK, | 
 | 					    LMPM_CHICK_EXTENDED_ADDR_SPACE); | 
 |  | 
 | 		if (ret) { | 
 | 			IWL_ERR(trans, | 
 | 				"Could not load the [%d] uCode section\n", | 
 | 				section_num); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int iwl_pcie_load_cpu_sections_8000(struct iwl_trans *trans, | 
 | 					   const struct fw_img *image, | 
 | 					   int cpu, | 
 | 					   int *first_ucode_section) | 
 | { | 
 | 	int shift_param; | 
 | 	int i, ret = 0, sec_num = 0x1; | 
 | 	u32 val, last_read_idx = 0; | 
 |  | 
 | 	if (cpu == 1) { | 
 | 		shift_param = 0; | 
 | 		*first_ucode_section = 0; | 
 | 	} else { | 
 | 		shift_param = 16; | 
 | 		(*first_ucode_section)++; | 
 | 	} | 
 |  | 
 | 	for (i = *first_ucode_section; i < image->num_sec; i++) { | 
 | 		last_read_idx = i; | 
 |  | 
 | 		/* | 
 | 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between | 
 | 		 * CPU1 to CPU2. | 
 | 		 * PAGING_SEPARATOR_SECTION delimiter - separate between | 
 | 		 * CPU2 non paged to CPU2 paging sec. | 
 | 		 */ | 
 | 		if (!image->sec[i].data || | 
 | 		    image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION || | 
 | 		    image->sec[i].offset == PAGING_SEPARATOR_SECTION) { | 
 | 			IWL_DEBUG_FW(trans, | 
 | 				     "Break since Data not valid or Empty section, sec = %d\n", | 
 | 				     i); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = iwl_pcie_load_section(trans, i, &image->sec[i]); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		/* Notify ucode of loaded section number and status */ | 
 | 		val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS); | 
 | 		val = val | (sec_num << shift_param); | 
 | 		iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val); | 
 |  | 
 | 		sec_num = (sec_num << 1) | 0x1; | 
 | 	} | 
 |  | 
 | 	*first_ucode_section = last_read_idx; | 
 |  | 
 | 	iwl_enable_interrupts(trans); | 
 |  | 
 | 	if (trans->cfg->use_tfh) { | 
 | 		if (cpu == 1) | 
 | 			iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS, | 
 | 				       0xFFFF); | 
 | 		else | 
 | 			iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS, | 
 | 				       0xFFFFFFFF); | 
 | 	} else { | 
 | 		if (cpu == 1) | 
 | 			iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, | 
 | 					   0xFFFF); | 
 | 		else | 
 | 			iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, | 
 | 					   0xFFFFFFFF); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans, | 
 | 				      const struct fw_img *image, | 
 | 				      int cpu, | 
 | 				      int *first_ucode_section) | 
 | { | 
 | 	int i, ret = 0; | 
 | 	u32 last_read_idx = 0; | 
 |  | 
 | 	if (cpu == 1) | 
 | 		*first_ucode_section = 0; | 
 | 	else | 
 | 		(*first_ucode_section)++; | 
 |  | 
 | 	for (i = *first_ucode_section; i < image->num_sec; i++) { | 
 | 		last_read_idx = i; | 
 |  | 
 | 		/* | 
 | 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between | 
 | 		 * CPU1 to CPU2. | 
 | 		 * PAGING_SEPARATOR_SECTION delimiter - separate between | 
 | 		 * CPU2 non paged to CPU2 paging sec. | 
 | 		 */ | 
 | 		if (!image->sec[i].data || | 
 | 		    image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION || | 
 | 		    image->sec[i].offset == PAGING_SEPARATOR_SECTION) { | 
 | 			IWL_DEBUG_FW(trans, | 
 | 				     "Break since Data not valid or Empty section, sec = %d\n", | 
 | 				     i); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = iwl_pcie_load_section(trans, i, &image->sec[i]); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	*first_ucode_section = last_read_idx; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void iwl_pcie_apply_destination(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	const struct iwl_fw_dbg_dest_tlv *dest = trans->dbg_dest_tlv; | 
 | 	int i; | 
 |  | 
 | 	if (dest->version) | 
 | 		IWL_ERR(trans, | 
 | 			"DBG DEST version is %d - expect issues\n", | 
 | 			dest->version); | 
 |  | 
 | 	IWL_INFO(trans, "Applying debug destination %s\n", | 
 | 		 get_fw_dbg_mode_string(dest->monitor_mode)); | 
 |  | 
 | 	if (dest->monitor_mode == EXTERNAL_MODE) | 
 | 		iwl_pcie_alloc_fw_monitor(trans, dest->size_power); | 
 | 	else | 
 | 		IWL_WARN(trans, "PCI should have external buffer debug\n"); | 
 |  | 
 | 	for (i = 0; i < trans->dbg_dest_reg_num; i++) { | 
 | 		u32 addr = le32_to_cpu(dest->reg_ops[i].addr); | 
 | 		u32 val = le32_to_cpu(dest->reg_ops[i].val); | 
 |  | 
 | 		switch (dest->reg_ops[i].op) { | 
 | 		case CSR_ASSIGN: | 
 | 			iwl_write32(trans, addr, val); | 
 | 			break; | 
 | 		case CSR_SETBIT: | 
 | 			iwl_set_bit(trans, addr, BIT(val)); | 
 | 			break; | 
 | 		case CSR_CLEARBIT: | 
 | 			iwl_clear_bit(trans, addr, BIT(val)); | 
 | 			break; | 
 | 		case PRPH_ASSIGN: | 
 | 			iwl_write_prph(trans, addr, val); | 
 | 			break; | 
 | 		case PRPH_SETBIT: | 
 | 			iwl_set_bits_prph(trans, addr, BIT(val)); | 
 | 			break; | 
 | 		case PRPH_CLEARBIT: | 
 | 			iwl_clear_bits_prph(trans, addr, BIT(val)); | 
 | 			break; | 
 | 		case PRPH_BLOCKBIT: | 
 | 			if (iwl_read_prph(trans, addr) & BIT(val)) { | 
 | 				IWL_ERR(trans, | 
 | 					"BIT(%u) in address 0x%x is 1, stopping FW configuration\n", | 
 | 					val, addr); | 
 | 				goto monitor; | 
 | 			} | 
 | 			break; | 
 | 		default: | 
 | 			IWL_ERR(trans, "FW debug - unknown OP %d\n", | 
 | 				dest->reg_ops[i].op); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | monitor: | 
 | 	if (dest->monitor_mode == EXTERNAL_MODE && trans_pcie->fw_mon_size) { | 
 | 		iwl_write_prph(trans, le32_to_cpu(dest->base_reg), | 
 | 			       trans_pcie->fw_mon_phys >> dest->base_shift); | 
 | 		if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) | 
 | 			iwl_write_prph(trans, le32_to_cpu(dest->end_reg), | 
 | 				       (trans_pcie->fw_mon_phys + | 
 | 					trans_pcie->fw_mon_size - 256) >> | 
 | 						dest->end_shift); | 
 | 		else | 
 | 			iwl_write_prph(trans, le32_to_cpu(dest->end_reg), | 
 | 				       (trans_pcie->fw_mon_phys + | 
 | 					trans_pcie->fw_mon_size) >> | 
 | 						dest->end_shift); | 
 | 	} | 
 | } | 
 |  | 
 | static int iwl_pcie_load_given_ucode(struct iwl_trans *trans, | 
 | 				const struct fw_img *image) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int ret = 0; | 
 | 	int first_ucode_section; | 
 |  | 
 | 	IWL_DEBUG_FW(trans, "working with %s CPU\n", | 
 | 		     image->is_dual_cpus ? "Dual" : "Single"); | 
 |  | 
 | 	/* load to FW the binary non secured sections of CPU1 */ | 
 | 	ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (image->is_dual_cpus) { | 
 | 		/* set CPU2 header address */ | 
 | 		iwl_write_prph(trans, | 
 | 			       LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, | 
 | 			       LMPM_SECURE_CPU2_HDR_MEM_SPACE); | 
 |  | 
 | 		/* load to FW the binary sections of CPU2 */ | 
 | 		ret = iwl_pcie_load_cpu_sections(trans, image, 2, | 
 | 						 &first_ucode_section); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* supported for 7000 only for the moment */ | 
 | 	if (iwlwifi_mod_params.fw_monitor && | 
 | 	    trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) { | 
 | 		iwl_pcie_alloc_fw_monitor(trans, 0); | 
 |  | 
 | 		if (trans_pcie->fw_mon_size) { | 
 | 			iwl_write_prph(trans, MON_BUFF_BASE_ADDR, | 
 | 				       trans_pcie->fw_mon_phys >> 4); | 
 | 			iwl_write_prph(trans, MON_BUFF_END_ADDR, | 
 | 				       (trans_pcie->fw_mon_phys + | 
 | 					trans_pcie->fw_mon_size) >> 4); | 
 | 		} | 
 | 	} else if (trans->dbg_dest_tlv) { | 
 | 		iwl_pcie_apply_destination(trans); | 
 | 	} | 
 |  | 
 | 	iwl_enable_interrupts(trans); | 
 |  | 
 | 	/* release CPU reset */ | 
 | 	iwl_write32(trans, CSR_RESET, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iwl_pcie_load_given_ucode_8000(struct iwl_trans *trans, | 
 | 					  const struct fw_img *image) | 
 | { | 
 | 	int ret = 0; | 
 | 	int first_ucode_section; | 
 |  | 
 | 	IWL_DEBUG_FW(trans, "working with %s CPU\n", | 
 | 		     image->is_dual_cpus ? "Dual" : "Single"); | 
 |  | 
 | 	if (trans->dbg_dest_tlv) | 
 | 		iwl_pcie_apply_destination(trans); | 
 |  | 
 | 	IWL_DEBUG_POWER(trans, "Original WFPM value = 0x%08X\n", | 
 | 			iwl_read_prph(trans, WFPM_GP2)); | 
 |  | 
 | 	/* | 
 | 	 * Set default value. On resume reading the values that were | 
 | 	 * zeored can provide debug data on the resume flow. | 
 | 	 * This is for debugging only and has no functional impact. | 
 | 	 */ | 
 | 	iwl_write_prph(trans, WFPM_GP2, 0x01010101); | 
 |  | 
 | 	/* configure the ucode to be ready to get the secured image */ | 
 | 	/* release CPU reset */ | 
 | 	iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT); | 
 |  | 
 | 	/* load to FW the binary Secured sections of CPU1 */ | 
 | 	ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1, | 
 | 					      &first_ucode_section); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* load to FW the binary sections of CPU2 */ | 
 | 	return iwl_pcie_load_cpu_sections_8000(trans, image, 2, | 
 | 					       &first_ucode_section); | 
 | } | 
 |  | 
 | bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie =  IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	bool hw_rfkill = iwl_is_rfkill_set(trans); | 
 | 	bool prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); | 
 | 	bool report; | 
 |  | 
 | 	if (hw_rfkill) { | 
 | 		set_bit(STATUS_RFKILL_HW, &trans->status); | 
 | 		set_bit(STATUS_RFKILL_OPMODE, &trans->status); | 
 | 	} else { | 
 | 		clear_bit(STATUS_RFKILL_HW, &trans->status); | 
 | 		if (trans_pcie->opmode_down) | 
 | 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status); | 
 | 	} | 
 |  | 
 | 	report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); | 
 |  | 
 | 	if (prev != report) | 
 | 		iwl_trans_pcie_rf_kill(trans, report); | 
 |  | 
 | 	return hw_rfkill; | 
 | } | 
 |  | 
 | struct iwl_causes_list { | 
 | 	u32 cause_num; | 
 | 	u32 mask_reg; | 
 | 	u8 addr; | 
 | }; | 
 |  | 
 | static struct iwl_causes_list causes_list[] = { | 
 | 	{MSIX_FH_INT_CAUSES_D2S_CH0_NUM,	CSR_MSIX_FH_INT_MASK_AD, 0}, | 
 | 	{MSIX_FH_INT_CAUSES_D2S_CH1_NUM,	CSR_MSIX_FH_INT_MASK_AD, 0x1}, | 
 | 	{MSIX_FH_INT_CAUSES_S2D,		CSR_MSIX_FH_INT_MASK_AD, 0x3}, | 
 | 	{MSIX_FH_INT_CAUSES_FH_ERR,		CSR_MSIX_FH_INT_MASK_AD, 0x5}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_ALIVE,		CSR_MSIX_HW_INT_MASK_AD, 0x10}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_WAKEUP,		CSR_MSIX_HW_INT_MASK_AD, 0x11}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_CT_KILL,	CSR_MSIX_HW_INT_MASK_AD, 0x16}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_RF_KILL,	CSR_MSIX_HW_INT_MASK_AD, 0x17}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_PERIODIC,	CSR_MSIX_HW_INT_MASK_AD, 0x18}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_SW_ERR,		CSR_MSIX_HW_INT_MASK_AD, 0x29}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_SCD,		CSR_MSIX_HW_INT_MASK_AD, 0x2A}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_FH_TX,		CSR_MSIX_HW_INT_MASK_AD, 0x2B}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_HW_ERR,		CSR_MSIX_HW_INT_MASK_AD, 0x2D}, | 
 | 	{MSIX_HW_INT_CAUSES_REG_HAP,		CSR_MSIX_HW_INT_MASK_AD, 0x2E}, | 
 | }; | 
 |  | 
 | static void iwl_pcie_map_non_rx_causes(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie =  IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int val = trans_pcie->def_irq | MSIX_NON_AUTO_CLEAR_CAUSE; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Access all non RX causes and map them to the default irq. | 
 | 	 * In case we are missing at least one interrupt vector, | 
 | 	 * the first interrupt vector will serve non-RX and FBQ causes. | 
 | 	 */ | 
 | 	for (i = 0; i < ARRAY_SIZE(causes_list); i++) { | 
 | 		iwl_write8(trans, CSR_MSIX_IVAR(causes_list[i].addr), val); | 
 | 		iwl_clear_bit(trans, causes_list[i].mask_reg, | 
 | 			      causes_list[i].cause_num); | 
 | 	} | 
 | } | 
 |  | 
 | static void iwl_pcie_map_rx_causes(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	u32 offset = | 
 | 		trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0; | 
 | 	u32 val, idx; | 
 |  | 
 | 	/* | 
 | 	 * The first RX queue - fallback queue, which is designated for | 
 | 	 * management frame, command responses etc, is always mapped to the | 
 | 	 * first interrupt vector. The other RX queues are mapped to | 
 | 	 * the other (N - 2) interrupt vectors. | 
 | 	 */ | 
 | 	val = BIT(MSIX_FH_INT_CAUSES_Q(0)); | 
 | 	for (idx = 1; idx < trans->num_rx_queues; idx++) { | 
 | 		iwl_write8(trans, CSR_MSIX_RX_IVAR(idx), | 
 | 			   MSIX_FH_INT_CAUSES_Q(idx - offset)); | 
 | 		val |= BIT(MSIX_FH_INT_CAUSES_Q(idx)); | 
 | 	} | 
 | 	iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~val); | 
 |  | 
 | 	val = MSIX_FH_INT_CAUSES_Q(0); | 
 | 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) | 
 | 		val |= MSIX_NON_AUTO_CLEAR_CAUSE; | 
 | 	iwl_write8(trans, CSR_MSIX_RX_IVAR(0), val); | 
 |  | 
 | 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) | 
 | 		iwl_write8(trans, CSR_MSIX_RX_IVAR(1), val); | 
 | } | 
 |  | 
 | void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie) | 
 | { | 
 | 	struct iwl_trans *trans = trans_pcie->trans; | 
 |  | 
 | 	if (!trans_pcie->msix_enabled) { | 
 | 		if (trans->cfg->mq_rx_supported && | 
 | 		    test_bit(STATUS_DEVICE_ENABLED, &trans->status)) | 
 | 			iwl_write_prph(trans, UREG_CHICK, | 
 | 				       UREG_CHICK_MSI_ENABLE); | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * The IVAR table needs to be configured again after reset, | 
 | 	 * but if the device is disabled, we can't write to | 
 | 	 * prph. | 
 | 	 */ | 
 | 	if (test_bit(STATUS_DEVICE_ENABLED, &trans->status)) | 
 | 		iwl_write_prph(trans, UREG_CHICK, UREG_CHICK_MSIX_ENABLE); | 
 |  | 
 | 	/* | 
 | 	 * Each cause from the causes list above and the RX causes is | 
 | 	 * represented as a byte in the IVAR table. The first nibble | 
 | 	 * represents the bound interrupt vector of the cause, the second | 
 | 	 * represents no auto clear for this cause. This will be set if its | 
 | 	 * interrupt vector is bound to serve other causes. | 
 | 	 */ | 
 | 	iwl_pcie_map_rx_causes(trans); | 
 |  | 
 | 	iwl_pcie_map_non_rx_causes(trans); | 
 | } | 
 |  | 
 | static void iwl_pcie_init_msix(struct iwl_trans_pcie *trans_pcie) | 
 | { | 
 | 	struct iwl_trans *trans = trans_pcie->trans; | 
 |  | 
 | 	iwl_pcie_conf_msix_hw(trans_pcie); | 
 |  | 
 | 	if (!trans_pcie->msix_enabled) | 
 | 		return; | 
 |  | 
 | 	trans_pcie->fh_init_mask = ~iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD); | 
 | 	trans_pcie->fh_mask = trans_pcie->fh_init_mask; | 
 | 	trans_pcie->hw_init_mask = ~iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD); | 
 | 	trans_pcie->hw_mask = trans_pcie->hw_init_mask; | 
 | } | 
 |  | 
 | static void _iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	lockdep_assert_held(&trans_pcie->mutex); | 
 |  | 
 | 	if (trans_pcie->is_down) | 
 | 		return; | 
 |  | 
 | 	trans_pcie->is_down = true; | 
 |  | 
 | 	/* tell the device to stop sending interrupts */ | 
 | 	iwl_disable_interrupts(trans); | 
 |  | 
 | 	/* device going down, Stop using ICT table */ | 
 | 	iwl_pcie_disable_ict(trans); | 
 |  | 
 | 	/* | 
 | 	 * If a HW restart happens during firmware loading, | 
 | 	 * then the firmware loading might call this function | 
 | 	 * and later it might be called again due to the | 
 | 	 * restart. So don't process again if the device is | 
 | 	 * already dead. | 
 | 	 */ | 
 | 	if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) { | 
 | 		IWL_DEBUG_INFO(trans, | 
 | 			       "DEVICE_ENABLED bit was set and is now cleared\n"); | 
 | 		iwl_pcie_tx_stop(trans); | 
 | 		iwl_pcie_rx_stop(trans); | 
 |  | 
 | 		/* Power-down device's busmaster DMA clocks */ | 
 | 		if (!trans->cfg->apmg_not_supported) { | 
 | 			iwl_write_prph(trans, APMG_CLK_DIS_REG, | 
 | 				       APMG_CLK_VAL_DMA_CLK_RQT); | 
 | 			udelay(5); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Make sure (redundant) we've released our request to stay awake */ | 
 | 	iwl_clear_bit(trans, CSR_GP_CNTRL, | 
 | 		      CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); | 
 |  | 
 | 	/* Stop the device, and put it in low power state */ | 
 | 	iwl_pcie_apm_stop(trans, false); | 
 |  | 
 | 	iwl_pcie_sw_reset(trans); | 
 |  | 
 | 	/* | 
 | 	 * Upon stop, the IVAR table gets erased, so msi-x won't | 
 | 	 * work. This causes a bug in RF-KILL flows, since the interrupt | 
 | 	 * that enables radio won't fire on the correct irq, and the | 
 | 	 * driver won't be able to handle the interrupt. | 
 | 	 * Configure the IVAR table again after reset. | 
 | 	 */ | 
 | 	iwl_pcie_conf_msix_hw(trans_pcie); | 
 |  | 
 | 	/* | 
 | 	 * Upon stop, the APM issues an interrupt if HW RF kill is set. | 
 | 	 * This is a bug in certain verions of the hardware. | 
 | 	 * Certain devices also keep sending HW RF kill interrupt all | 
 | 	 * the time, unless the interrupt is ACKed even if the interrupt | 
 | 	 * should be masked. Re-ACK all the interrupts here. | 
 | 	 */ | 
 | 	iwl_disable_interrupts(trans); | 
 |  | 
 | 	/* clear all status bits */ | 
 | 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); | 
 | 	clear_bit(STATUS_INT_ENABLED, &trans->status); | 
 | 	clear_bit(STATUS_TPOWER_PMI, &trans->status); | 
 |  | 
 | 	/* | 
 | 	 * Even if we stop the HW, we still want the RF kill | 
 | 	 * interrupt | 
 | 	 */ | 
 | 	iwl_enable_rfkill_int(trans); | 
 |  | 
 | 	/* re-take ownership to prevent other users from stealing the device */ | 
 | 	iwl_pcie_prepare_card_hw(trans); | 
 | } | 
 |  | 
 | void iwl_pcie_synchronize_irqs(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	if (trans_pcie->msix_enabled) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < trans_pcie->alloc_vecs; i++) | 
 | 			synchronize_irq(trans_pcie->msix_entries[i].vector); | 
 | 	} else { | 
 | 		synchronize_irq(trans_pcie->pci_dev->irq); | 
 | 	} | 
 | } | 
 |  | 
 | static int iwl_trans_pcie_start_fw(struct iwl_trans *trans, | 
 | 				   const struct fw_img *fw, bool run_in_rfkill) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	bool hw_rfkill; | 
 | 	int ret; | 
 |  | 
 | 	/* This may fail if AMT took ownership of the device */ | 
 | 	if (iwl_pcie_prepare_card_hw(trans)) { | 
 | 		IWL_WARN(trans, "Exit HW not ready\n"); | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	iwl_enable_rfkill_int(trans); | 
 |  | 
 | 	iwl_write32(trans, CSR_INT, 0xFFFFFFFF); | 
 |  | 
 | 	/* | 
 | 	 * We enabled the RF-Kill interrupt and the handler may very | 
 | 	 * well be running. Disable the interrupts to make sure no other | 
 | 	 * interrupt can be fired. | 
 | 	 */ | 
 | 	iwl_disable_interrupts(trans); | 
 |  | 
 | 	/* Make sure it finished running */ | 
 | 	iwl_pcie_synchronize_irqs(trans); | 
 |  | 
 | 	mutex_lock(&trans_pcie->mutex); | 
 |  | 
 | 	/* If platform's RF_KILL switch is NOT set to KILL */ | 
 | 	hw_rfkill = iwl_pcie_check_hw_rf_kill(trans); | 
 | 	if (hw_rfkill && !run_in_rfkill) { | 
 | 		ret = -ERFKILL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Someone called stop_device, don't try to start_fw */ | 
 | 	if (trans_pcie->is_down) { | 
 | 		IWL_WARN(trans, | 
 | 			 "Can't start_fw since the HW hasn't been started\n"); | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* make sure rfkill handshake bits are cleared */ | 
 | 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); | 
 | 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, | 
 | 		    CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); | 
 |  | 
 | 	/* clear (again), then enable host interrupts */ | 
 | 	iwl_write32(trans, CSR_INT, 0xFFFFFFFF); | 
 |  | 
 | 	ret = iwl_pcie_nic_init(trans); | 
 | 	if (ret) { | 
 | 		IWL_ERR(trans, "Unable to init nic\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now, we load the firmware and don't want to be interrupted, even | 
 | 	 * by the RF-Kill interrupt (hence mask all the interrupt besides the | 
 | 	 * FH_TX interrupt which is needed to load the firmware). If the | 
 | 	 * RF-Kill switch is toggled, we will find out after having loaded | 
 | 	 * the firmware and return the proper value to the caller. | 
 | 	 */ | 
 | 	iwl_enable_fw_load_int(trans); | 
 |  | 
 | 	/* really make sure rfkill handshake bits are cleared */ | 
 | 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); | 
 | 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); | 
 |  | 
 | 	/* Load the given image to the HW */ | 
 | 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) | 
 | 		ret = iwl_pcie_load_given_ucode_8000(trans, fw); | 
 | 	else | 
 | 		ret = iwl_pcie_load_given_ucode(trans, fw); | 
 |  | 
 | 	/* re-check RF-Kill state since we may have missed the interrupt */ | 
 | 	hw_rfkill = iwl_pcie_check_hw_rf_kill(trans); | 
 | 	if (hw_rfkill && !run_in_rfkill) | 
 | 		ret = -ERFKILL; | 
 |  | 
 | out: | 
 | 	mutex_unlock(&trans_pcie->mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr) | 
 | { | 
 | 	iwl_pcie_reset_ict(trans); | 
 | 	iwl_pcie_tx_start(trans, scd_addr); | 
 | } | 
 |  | 
 | void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans, | 
 | 				       bool was_in_rfkill) | 
 | { | 
 | 	bool hw_rfkill; | 
 |  | 
 | 	/* | 
 | 	 * Check again since the RF kill state may have changed while | 
 | 	 * all the interrupts were disabled, in this case we couldn't | 
 | 	 * receive the RF kill interrupt and update the state in the | 
 | 	 * op_mode. | 
 | 	 * Don't call the op_mode if the rkfill state hasn't changed. | 
 | 	 * This allows the op_mode to call stop_device from the rfkill | 
 | 	 * notification without endless recursion. Under very rare | 
 | 	 * circumstances, we might have a small recursion if the rfkill | 
 | 	 * state changed exactly now while we were called from stop_device. | 
 | 	 * This is very unlikely but can happen and is supported. | 
 | 	 */ | 
 | 	hw_rfkill = iwl_is_rfkill_set(trans); | 
 | 	if (hw_rfkill) { | 
 | 		set_bit(STATUS_RFKILL_HW, &trans->status); | 
 | 		set_bit(STATUS_RFKILL_OPMODE, &trans->status); | 
 | 	} else { | 
 | 		clear_bit(STATUS_RFKILL_HW, &trans->status); | 
 | 		clear_bit(STATUS_RFKILL_OPMODE, &trans->status); | 
 | 	} | 
 | 	if (hw_rfkill != was_in_rfkill) | 
 | 		iwl_trans_pcie_rf_kill(trans, hw_rfkill); | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	bool was_in_rfkill; | 
 |  | 
 | 	mutex_lock(&trans_pcie->mutex); | 
 | 	trans_pcie->opmode_down = true; | 
 | 	was_in_rfkill = test_bit(STATUS_RFKILL_OPMODE, &trans->status); | 
 | 	_iwl_trans_pcie_stop_device(trans, low_power); | 
 | 	iwl_trans_pcie_handle_stop_rfkill(trans, was_in_rfkill); | 
 | 	mutex_unlock(&trans_pcie->mutex); | 
 | } | 
 |  | 
 | void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state) | 
 | { | 
 | 	struct iwl_trans_pcie __maybe_unused *trans_pcie = | 
 | 		IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	lockdep_assert_held(&trans_pcie->mutex); | 
 |  | 
 | 	IWL_WARN(trans, "reporting RF_KILL (radio %s)\n", | 
 | 		 state ? "disabled" : "enabled"); | 
 | 	if (iwl_op_mode_hw_rf_kill(trans->op_mode, state)) { | 
 | 		if (trans->cfg->gen2) | 
 | 			_iwl_trans_pcie_gen2_stop_device(trans, true); | 
 | 		else | 
 | 			_iwl_trans_pcie_stop_device(trans, true); | 
 | 	} | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test, | 
 | 				      bool reset) | 
 | { | 
 | 	if (!reset) { | 
 | 		/* Enable persistence mode to avoid reset */ | 
 | 		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, | 
 | 			    CSR_HW_IF_CONFIG_REG_PERSIST_MODE); | 
 | 	} | 
 |  | 
 | 	iwl_disable_interrupts(trans); | 
 |  | 
 | 	/* | 
 | 	 * in testing mode, the host stays awake and the | 
 | 	 * hardware won't be reset (not even partially) | 
 | 	 */ | 
 | 	if (test) | 
 | 		return; | 
 |  | 
 | 	iwl_pcie_disable_ict(trans); | 
 |  | 
 | 	iwl_pcie_synchronize_irqs(trans); | 
 |  | 
 | 	iwl_clear_bit(trans, CSR_GP_CNTRL, | 
 | 		      CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); | 
 | 	iwl_clear_bit(trans, CSR_GP_CNTRL, | 
 | 		      CSR_GP_CNTRL_REG_FLAG_INIT_DONE); | 
 |  | 
 | 	iwl_pcie_enable_rx_wake(trans, false); | 
 |  | 
 | 	if (reset) { | 
 | 		/* | 
 | 		 * reset TX queues -- some of their registers reset during S3 | 
 | 		 * so if we don't reset everything here the D3 image would try | 
 | 		 * to execute some invalid memory upon resume | 
 | 		 */ | 
 | 		iwl_trans_pcie_tx_reset(trans); | 
 | 	} | 
 |  | 
 | 	iwl_pcie_set_pwr(trans, true); | 
 | } | 
 |  | 
 | static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans, | 
 | 				    enum iwl_d3_status *status, | 
 | 				    bool test,  bool reset) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie =  IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	u32 val; | 
 | 	int ret; | 
 |  | 
 | 	if (test) { | 
 | 		iwl_enable_interrupts(trans); | 
 | 		*status = IWL_D3_STATUS_ALIVE; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	iwl_pcie_enable_rx_wake(trans, true); | 
 |  | 
 | 	/* | 
 | 	 * Reconfigure IVAR table in case of MSIX or reset ict table in | 
 | 	 * MSI mode since HW reset erased it. | 
 | 	 * Also enables interrupts - none will happen as | 
 | 	 * the device doesn't know we're waking it up, only when | 
 | 	 * the opmode actually tells it after this call. | 
 | 	 */ | 
 | 	iwl_pcie_conf_msix_hw(trans_pcie); | 
 | 	if (!trans_pcie->msix_enabled) | 
 | 		iwl_pcie_reset_ict(trans); | 
 | 	iwl_enable_interrupts(trans); | 
 |  | 
 | 	iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); | 
 | 	iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); | 
 |  | 
 | 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) | 
 | 		udelay(2); | 
 |  | 
 | 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL, | 
 | 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, | 
 | 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, | 
 | 			   25000); | 
 | 	if (ret < 0) { | 
 | 		IWL_ERR(trans, "Failed to resume the device (mac ready)\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	iwl_pcie_set_pwr(trans, false); | 
 |  | 
 | 	if (!reset) { | 
 | 		iwl_clear_bit(trans, CSR_GP_CNTRL, | 
 | 			      CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); | 
 | 	} else { | 
 | 		iwl_trans_pcie_tx_reset(trans); | 
 |  | 
 | 		ret = iwl_pcie_rx_init(trans); | 
 | 		if (ret) { | 
 | 			IWL_ERR(trans, | 
 | 				"Failed to resume the device (RX reset)\n"); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	IWL_DEBUG_POWER(trans, "WFPM value upon resume = 0x%08X\n", | 
 | 			iwl_read_prph(trans, WFPM_GP2)); | 
 |  | 
 | 	val = iwl_read32(trans, CSR_RESET); | 
 | 	if (val & CSR_RESET_REG_FLAG_NEVO_RESET) | 
 | 		*status = IWL_D3_STATUS_RESET; | 
 | 	else | 
 | 		*status = IWL_D3_STATUS_ALIVE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void iwl_pcie_set_interrupt_capa(struct pci_dev *pdev, | 
 | 					struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int max_irqs, num_irqs, i, ret, nr_online_cpus; | 
 | 	u16 pci_cmd; | 
 |  | 
 | 	if (!trans->cfg->mq_rx_supported) | 
 | 		goto enable_msi; | 
 |  | 
 | 	nr_online_cpus = num_online_cpus(); | 
 | 	max_irqs = min_t(u32, nr_online_cpus + 2, IWL_MAX_RX_HW_QUEUES); | 
 | 	for (i = 0; i < max_irqs; i++) | 
 | 		trans_pcie->msix_entries[i].entry = i; | 
 |  | 
 | 	num_irqs = pci_enable_msix_range(pdev, trans_pcie->msix_entries, | 
 | 					 MSIX_MIN_INTERRUPT_VECTORS, | 
 | 					 max_irqs); | 
 | 	if (num_irqs < 0) { | 
 | 		IWL_DEBUG_INFO(trans, | 
 | 			       "Failed to enable msi-x mode (ret %d). Moving to msi mode.\n", | 
 | 			       num_irqs); | 
 | 		goto enable_msi; | 
 | 	} | 
 | 	trans_pcie->def_irq = (num_irqs == max_irqs) ? num_irqs - 1 : 0; | 
 |  | 
 | 	IWL_DEBUG_INFO(trans, | 
 | 		       "MSI-X enabled. %d interrupt vectors were allocated\n", | 
 | 		       num_irqs); | 
 |  | 
 | 	/* | 
 | 	 * In case the OS provides fewer interrupts than requested, different | 
 | 	 * causes will share the same interrupt vector as follows: | 
 | 	 * One interrupt less: non rx causes shared with FBQ. | 
 | 	 * Two interrupts less: non rx causes shared with FBQ and RSS. | 
 | 	 * More than two interrupts: we will use fewer RSS queues. | 
 | 	 */ | 
 | 	if (num_irqs <= nr_online_cpus) { | 
 | 		trans_pcie->trans->num_rx_queues = num_irqs + 1; | 
 | 		trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX | | 
 | 			IWL_SHARED_IRQ_FIRST_RSS; | 
 | 	} else if (num_irqs == nr_online_cpus + 1) { | 
 | 		trans_pcie->trans->num_rx_queues = num_irqs; | 
 | 		trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX; | 
 | 	} else { | 
 | 		trans_pcie->trans->num_rx_queues = num_irqs - 1; | 
 | 	} | 
 |  | 
 | 	trans_pcie->alloc_vecs = num_irqs; | 
 | 	trans_pcie->msix_enabled = true; | 
 | 	return; | 
 |  | 
 | enable_msi: | 
 | 	ret = pci_enable_msi(pdev); | 
 | 	if (ret) { | 
 | 		dev_err(&pdev->dev, "pci_enable_msi failed - %d\n", ret); | 
 | 		/* enable rfkill interrupt: hw bug w/a */ | 
 | 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); | 
 | 		if (pci_cmd & PCI_COMMAND_INTX_DISABLE) { | 
 | 			pci_cmd &= ~PCI_COMMAND_INTX_DISABLE; | 
 | 			pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void iwl_pcie_irq_set_affinity(struct iwl_trans *trans) | 
 | { | 
 | 	int iter_rx_q, i, ret, cpu, offset; | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	i = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 0 : 1; | 
 | 	iter_rx_q = trans_pcie->trans->num_rx_queues - 1 + i; | 
 | 	offset = 1 + i; | 
 | 	for (; i < iter_rx_q ; i++) { | 
 | 		/* | 
 | 		 * Get the cpu prior to the place to search | 
 | 		 * (i.e. return will be > i - 1). | 
 | 		 */ | 
 | 		cpu = cpumask_next(i - offset, cpu_online_mask); | 
 | 		cpumask_set_cpu(cpu, &trans_pcie->affinity_mask[i]); | 
 | 		ret = irq_set_affinity_hint(trans_pcie->msix_entries[i].vector, | 
 | 					    &trans_pcie->affinity_mask[i]); | 
 | 		if (ret) | 
 | 			IWL_ERR(trans_pcie->trans, | 
 | 				"Failed to set affinity mask for IRQ %d\n", | 
 | 				i); | 
 | 	} | 
 | } | 
 |  | 
 | static const char *queue_name(struct device *dev, | 
 | 			      struct iwl_trans_pcie *trans_p, int i) | 
 | { | 
 | 	if (trans_p->shared_vec_mask) { | 
 | 		int vec = trans_p->shared_vec_mask & | 
 | 			  IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0; | 
 |  | 
 | 		if (i == 0) | 
 | 			return DRV_NAME ": shared IRQ"; | 
 |  | 
 | 		return devm_kasprintf(dev, GFP_KERNEL, | 
 | 				      DRV_NAME ": queue %d", i + vec); | 
 | 	} | 
 | 	if (i == 0) | 
 | 		return DRV_NAME ": default queue"; | 
 |  | 
 | 	if (i == trans_p->alloc_vecs - 1) | 
 | 		return DRV_NAME ": exception"; | 
 |  | 
 | 	return devm_kasprintf(dev, GFP_KERNEL, | 
 | 			      DRV_NAME  ": queue %d", i); | 
 | } | 
 |  | 
 | static int iwl_pcie_init_msix_handler(struct pci_dev *pdev, | 
 | 				      struct iwl_trans_pcie *trans_pcie) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < trans_pcie->alloc_vecs; i++) { | 
 | 		int ret; | 
 | 		struct msix_entry *msix_entry; | 
 | 		const char *qname = queue_name(&pdev->dev, trans_pcie, i); | 
 |  | 
 | 		if (!qname) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		msix_entry = &trans_pcie->msix_entries[i]; | 
 | 		ret = devm_request_threaded_irq(&pdev->dev, | 
 | 						msix_entry->vector, | 
 | 						iwl_pcie_msix_isr, | 
 | 						(i == trans_pcie->def_irq) ? | 
 | 						iwl_pcie_irq_msix_handler : | 
 | 						iwl_pcie_irq_rx_msix_handler, | 
 | 						IRQF_SHARED, | 
 | 						qname, | 
 | 						msix_entry); | 
 | 		if (ret) { | 
 | 			IWL_ERR(trans_pcie->trans, | 
 | 				"Error allocating IRQ %d\n", i); | 
 |  | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 | 	iwl_pcie_irq_set_affinity(trans_pcie->trans); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int _iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int err; | 
 |  | 
 | 	lockdep_assert_held(&trans_pcie->mutex); | 
 |  | 
 | 	err = iwl_pcie_prepare_card_hw(trans); | 
 | 	if (err) { | 
 | 		IWL_ERR(trans, "Error while preparing HW: %d\n", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	iwl_pcie_sw_reset(trans); | 
 |  | 
 | 	err = iwl_pcie_apm_init(trans); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	iwl_pcie_init_msix(trans_pcie); | 
 |  | 
 | 	/* From now on, the op_mode will be kept updated about RF kill state */ | 
 | 	iwl_enable_rfkill_int(trans); | 
 |  | 
 | 	trans_pcie->opmode_down = false; | 
 |  | 
 | 	/* Set is_down to false here so that...*/ | 
 | 	trans_pcie->is_down = false; | 
 |  | 
 | 	/* ...rfkill can call stop_device and set it false if needed */ | 
 | 	iwl_pcie_check_hw_rf_kill(trans); | 
 |  | 
 | 	/* Make sure we sync here, because we'll need full access later */ | 
 | 	if (low_power) | 
 | 		pm_runtime_resume(trans->dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&trans_pcie->mutex); | 
 | 	ret = _iwl_trans_pcie_start_hw(trans, low_power); | 
 | 	mutex_unlock(&trans_pcie->mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	mutex_lock(&trans_pcie->mutex); | 
 |  | 
 | 	/* disable interrupts - don't enable HW RF kill interrupt */ | 
 | 	iwl_disable_interrupts(trans); | 
 |  | 
 | 	iwl_pcie_apm_stop(trans, true); | 
 |  | 
 | 	iwl_disable_interrupts(trans); | 
 |  | 
 | 	iwl_pcie_disable_ict(trans); | 
 |  | 
 | 	mutex_unlock(&trans_pcie->mutex); | 
 |  | 
 | 	iwl_pcie_synchronize_irqs(trans); | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val) | 
 | { | 
 | 	writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val) | 
 | { | 
 | 	writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); | 
 | } | 
 |  | 
 | static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs) | 
 | { | 
 | 	return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); | 
 | } | 
 |  | 
 | static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg) | 
 | { | 
 | 	iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR, | 
 | 			       ((reg & 0x000FFFFF) | (3 << 24))); | 
 | 	return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT); | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, | 
 | 				      u32 val) | 
 | { | 
 | 	iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR, | 
 | 			       ((addr & 0x000FFFFF) | (3 << 24))); | 
 | 	iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val); | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_configure(struct iwl_trans *trans, | 
 | 				     const struct iwl_trans_config *trans_cfg) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	trans_pcie->cmd_queue = trans_cfg->cmd_queue; | 
 | 	trans_pcie->cmd_fifo = trans_cfg->cmd_fifo; | 
 | 	trans_pcie->cmd_q_wdg_timeout = trans_cfg->cmd_q_wdg_timeout; | 
 | 	if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS)) | 
 | 		trans_pcie->n_no_reclaim_cmds = 0; | 
 | 	else | 
 | 		trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds; | 
 | 	if (trans_pcie->n_no_reclaim_cmds) | 
 | 		memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds, | 
 | 		       trans_pcie->n_no_reclaim_cmds * sizeof(u8)); | 
 |  | 
 | 	trans_pcie->rx_buf_size = trans_cfg->rx_buf_size; | 
 | 	trans_pcie->rx_page_order = | 
 | 		iwl_trans_get_rb_size_order(trans_pcie->rx_buf_size); | 
 |  | 
 | 	trans_pcie->bc_table_dword = trans_cfg->bc_table_dword; | 
 | 	trans_pcie->scd_set_active = trans_cfg->scd_set_active; | 
 | 	trans_pcie->sw_csum_tx = trans_cfg->sw_csum_tx; | 
 |  | 
 | 	trans_pcie->page_offs = trans_cfg->cb_data_offs; | 
 | 	trans_pcie->dev_cmd_offs = trans_cfg->cb_data_offs + sizeof(void *); | 
 |  | 
 | 	trans->command_groups = trans_cfg->command_groups; | 
 | 	trans->command_groups_size = trans_cfg->command_groups_size; | 
 |  | 
 | 	/* Initialize NAPI here - it should be before registering to mac80211 | 
 | 	 * in the opmode but after the HW struct is allocated. | 
 | 	 * As this function may be called again in some corner cases don't | 
 | 	 * do anything if NAPI was already initialized. | 
 | 	 */ | 
 | 	if (trans_pcie->napi_dev.reg_state != NETREG_DUMMY) | 
 | 		init_dummy_netdev(&trans_pcie->napi_dev); | 
 | } | 
 |  | 
 | void iwl_trans_pcie_free(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int i; | 
 |  | 
 | 	iwl_pcie_synchronize_irqs(trans); | 
 |  | 
 | 	if (trans->cfg->gen2) | 
 | 		iwl_pcie_gen2_tx_free(trans); | 
 | 	else | 
 | 		iwl_pcie_tx_free(trans); | 
 | 	iwl_pcie_rx_free(trans); | 
 |  | 
 | 	if (trans_pcie->rba.alloc_wq) { | 
 | 		destroy_workqueue(trans_pcie->rba.alloc_wq); | 
 | 		trans_pcie->rba.alloc_wq = NULL; | 
 | 	} | 
 |  | 
 | 	if (trans_pcie->msix_enabled) { | 
 | 		for (i = 0; i < trans_pcie->alloc_vecs; i++) { | 
 | 			irq_set_affinity_hint( | 
 | 				trans_pcie->msix_entries[i].vector, | 
 | 				NULL); | 
 | 		} | 
 |  | 
 | 		trans_pcie->msix_enabled = false; | 
 | 	} else { | 
 | 		iwl_pcie_free_ict(trans); | 
 | 	} | 
 |  | 
 | 	iwl_pcie_free_fw_monitor(trans); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct iwl_tso_hdr_page *p = | 
 | 			per_cpu_ptr(trans_pcie->tso_hdr_page, i); | 
 |  | 
 | 		if (p->page) | 
 | 			__free_page(p->page); | 
 | 	} | 
 |  | 
 | 	free_percpu(trans_pcie->tso_hdr_page); | 
 | 	mutex_destroy(&trans_pcie->mutex); | 
 | 	iwl_trans_free(trans); | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state) | 
 | { | 
 | 	if (state) | 
 | 		set_bit(STATUS_TPOWER_PMI, &trans->status); | 
 | 	else | 
 | 		clear_bit(STATUS_TPOWER_PMI, &trans->status); | 
 | } | 
 |  | 
 | static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans, | 
 | 					   unsigned long *flags) | 
 | { | 
 | 	int ret; | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	spin_lock_irqsave(&trans_pcie->reg_lock, *flags); | 
 |  | 
 | 	if (trans_pcie->cmd_hold_nic_awake) | 
 | 		goto out; | 
 |  | 
 | 	/* this bit wakes up the NIC */ | 
 | 	__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, | 
 | 				 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); | 
 | 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) | 
 | 		udelay(2); | 
 |  | 
 | 	/* | 
 | 	 * These bits say the device is running, and should keep running for | 
 | 	 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1), | 
 | 	 * but they do not indicate that embedded SRAM is restored yet; | 
 | 	 * HW with volatile SRAM must save/restore contents to/from | 
 | 	 * host DRAM when sleeping/waking for power-saving. | 
 | 	 * Each direction takes approximately 1/4 millisecond; with this | 
 | 	 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a | 
 | 	 * series of register accesses are expected (e.g. reading Event Log), | 
 | 	 * to keep device from sleeping. | 
 | 	 * | 
 | 	 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that | 
 | 	 * SRAM is okay/restored.  We don't check that here because this call | 
 | 	 * is just for hardware register access; but GP1 MAC_SLEEP | 
 | 	 * check is a good idea before accessing the SRAM of HW with | 
 | 	 * volatile SRAM (e.g. reading Event Log). | 
 | 	 * | 
 | 	 * 5000 series and later (including 1000 series) have non-volatile SRAM, | 
 | 	 * and do not save/restore SRAM when power cycling. | 
 | 	 */ | 
 | 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL, | 
 | 			   CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, | 
 | 			   (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | | 
 | 			    CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000); | 
 | 	if (unlikely(ret < 0)) { | 
 | 		iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI); | 
 | 		WARN_ONCE(1, | 
 | 			  "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n", | 
 | 			  iwl_read32(trans, CSR_GP_CNTRL)); | 
 | 		spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * Fool sparse by faking we release the lock - sparse will | 
 | 	 * track nic_access anyway. | 
 | 	 */ | 
 | 	__release(&trans_pcie->reg_lock); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans, | 
 | 					      unsigned long *flags) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	lockdep_assert_held(&trans_pcie->reg_lock); | 
 |  | 
 | 	/* | 
 | 	 * Fool sparse by faking we acquiring the lock - sparse will | 
 | 	 * track nic_access anyway. | 
 | 	 */ | 
 | 	__acquire(&trans_pcie->reg_lock); | 
 |  | 
 | 	if (trans_pcie->cmd_hold_nic_awake) | 
 | 		goto out; | 
 |  | 
 | 	__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, | 
 | 				   CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); | 
 | 	/* | 
 | 	 * Above we read the CSR_GP_CNTRL register, which will flush | 
 | 	 * any previous writes, but we need the write that clears the | 
 | 	 * MAC_ACCESS_REQ bit to be performed before any other writes | 
 | 	 * scheduled on different CPUs (after we drop reg_lock). | 
 | 	 */ | 
 | 	mmiowb(); | 
 | out: | 
 | 	spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags); | 
 | } | 
 |  | 
 | static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr, | 
 | 				   void *buf, int dwords) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int offs, ret = 0; | 
 | 	u32 *vals = buf; | 
 |  | 
 | 	if (iwl_trans_grab_nic_access(trans, &flags)) { | 
 | 		iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr); | 
 | 		for (offs = 0; offs < dwords; offs++) | 
 | 			vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT); | 
 | 		iwl_trans_release_nic_access(trans, &flags); | 
 | 	} else { | 
 | 		ret = -EBUSY; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr, | 
 | 				    const void *buf, int dwords) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int offs, ret = 0; | 
 | 	const u32 *vals = buf; | 
 |  | 
 | 	if (iwl_trans_grab_nic_access(trans, &flags)) { | 
 | 		iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr); | 
 | 		for (offs = 0; offs < dwords; offs++) | 
 | 			iwl_write32(trans, HBUS_TARG_MEM_WDAT, | 
 | 				    vals ? vals[offs] : 0); | 
 | 		iwl_trans_release_nic_access(trans, &flags); | 
 | 	} else { | 
 | 		ret = -EBUSY; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_freeze_txq_timer(struct iwl_trans *trans, | 
 | 					    unsigned long txqs, | 
 | 					    bool freeze) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int queue; | 
 |  | 
 | 	for_each_set_bit(queue, &txqs, BITS_PER_LONG) { | 
 | 		struct iwl_txq *txq = trans_pcie->txq[queue]; | 
 | 		unsigned long now; | 
 |  | 
 | 		spin_lock_bh(&txq->lock); | 
 |  | 
 | 		now = jiffies; | 
 |  | 
 | 		if (txq->frozen == freeze) | 
 | 			goto next_queue; | 
 |  | 
 | 		IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n", | 
 | 				    freeze ? "Freezing" : "Waking", queue); | 
 |  | 
 | 		txq->frozen = freeze; | 
 |  | 
 | 		if (txq->read_ptr == txq->write_ptr) | 
 | 			goto next_queue; | 
 |  | 
 | 		if (freeze) { | 
 | 			if (unlikely(time_after(now, | 
 | 						txq->stuck_timer.expires))) { | 
 | 				/* | 
 | 				 * The timer should have fired, maybe it is | 
 | 				 * spinning right now on the lock. | 
 | 				 */ | 
 | 				goto next_queue; | 
 | 			} | 
 | 			/* remember how long until the timer fires */ | 
 | 			txq->frozen_expiry_remainder = | 
 | 				txq->stuck_timer.expires - now; | 
 | 			del_timer(&txq->stuck_timer); | 
 | 			goto next_queue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Wake a non-empty queue -> arm timer with the | 
 | 		 * remainder before it froze | 
 | 		 */ | 
 | 		mod_timer(&txq->stuck_timer, | 
 | 			  now + txq->frozen_expiry_remainder); | 
 |  | 
 | next_queue: | 
 | 		spin_unlock_bh(&txq->lock); | 
 | 	} | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_block_txq_ptrs(struct iwl_trans *trans, bool block) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { | 
 | 		struct iwl_txq *txq = trans_pcie->txq[i]; | 
 |  | 
 | 		if (i == trans_pcie->cmd_queue) | 
 | 			continue; | 
 |  | 
 | 		spin_lock_bh(&txq->lock); | 
 |  | 
 | 		if (!block && !(WARN_ON_ONCE(!txq->block))) { | 
 | 			txq->block--; | 
 | 			if (!txq->block) { | 
 | 				iwl_write32(trans, HBUS_TARG_WRPTR, | 
 | 					    txq->write_ptr | (i << 8)); | 
 | 			} | 
 | 		} else if (block) { | 
 | 			txq->block++; | 
 | 		} | 
 |  | 
 | 		spin_unlock_bh(&txq->lock); | 
 | 	} | 
 | } | 
 |  | 
 | #define IWL_FLUSH_WAIT_MS	2000 | 
 |  | 
 | void iwl_trans_pcie_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq) | 
 | { | 
 | 	u32 txq_id = txq->id; | 
 | 	u32 status; | 
 | 	bool active; | 
 | 	u8 fifo; | 
 |  | 
 | 	if (trans->cfg->use_tfh) { | 
 | 		IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id, | 
 | 			txq->read_ptr, txq->write_ptr); | 
 | 		/* TODO: access new SCD registers and dump them */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id)); | 
 | 	fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7; | 
 | 	active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE)); | 
 |  | 
 | 	IWL_ERR(trans, | 
 | 		"Queue %d is %sactive on fifo %d and stuck for %u ms. SW [%d, %d] HW [%d, %d] FH TRB=0x0%x\n", | 
 | 		txq_id, active ? "" : "in", fifo, | 
 | 		jiffies_to_msecs(txq->wd_timeout), | 
 | 		txq->read_ptr, txq->write_ptr, | 
 | 		iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) & | 
 | 			(TFD_QUEUE_SIZE_MAX - 1), | 
 | 		iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) & | 
 | 			(TFD_QUEUE_SIZE_MAX - 1), | 
 | 		iwl_read_direct32(trans, FH_TX_TRB_REG(fifo))); | 
 | } | 
 |  | 
 | static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	struct iwl_txq *txq; | 
 | 	unsigned long now = jiffies; | 
 | 	u8 wr_ptr; | 
 |  | 
 | 	if (!test_bit(txq_idx, trans_pcie->queue_used)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", txq_idx); | 
 | 	txq = trans_pcie->txq[txq_idx]; | 
 | 	wr_ptr = ACCESS_ONCE(txq->write_ptr); | 
 |  | 
 | 	while (txq->read_ptr != ACCESS_ONCE(txq->write_ptr) && | 
 | 	       !time_after(jiffies, | 
 | 			   now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) { | 
 | 		u8 write_ptr = ACCESS_ONCE(txq->write_ptr); | 
 |  | 
 | 		if (WARN_ONCE(wr_ptr != write_ptr, | 
 | 			      "WR pointer moved while flushing %d -> %d\n", | 
 | 			      wr_ptr, write_ptr)) | 
 | 			return -ETIMEDOUT; | 
 | 		usleep_range(1000, 2000); | 
 | 	} | 
 |  | 
 | 	if (txq->read_ptr != txq->write_ptr) { | 
 | 		IWL_ERR(trans, | 
 | 			"fail to flush all tx fifo queues Q %d\n", txq_idx); | 
 | 		iwl_trans_pcie_log_scd_error(trans, txq); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 |  | 
 | 	IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", txq_idx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int cnt; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* waiting for all the tx frames complete might take a while */ | 
 | 	for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { | 
 |  | 
 | 		if (cnt == trans_pcie->cmd_queue) | 
 | 			continue; | 
 | 		if (!test_bit(cnt, trans_pcie->queue_used)) | 
 | 			continue; | 
 | 		if (!(BIT(cnt) & txq_bm)) | 
 | 			continue; | 
 |  | 
 | 		ret = iwl_trans_pcie_wait_txq_empty(trans, cnt); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, | 
 | 					 u32 mask, u32 value) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&trans_pcie->reg_lock, flags); | 
 | 	__iwl_trans_pcie_set_bits_mask(trans, reg, mask, value); | 
 | 	spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_ref(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	if (iwlwifi_mod_params.d0i3_disable) | 
 | 		return; | 
 |  | 
 | 	pm_runtime_get(&trans_pcie->pci_dev->dev); | 
 |  | 
 | #ifdef CONFIG_PM | 
 | 	IWL_DEBUG_RPM(trans, "runtime usage count: %d\n", | 
 | 		      atomic_read(&trans_pcie->pci_dev->dev.power.usage_count)); | 
 | #endif /* CONFIG_PM */ | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_unref(struct iwl_trans *trans) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	if (iwlwifi_mod_params.d0i3_disable) | 
 | 		return; | 
 |  | 
 | 	pm_runtime_mark_last_busy(&trans_pcie->pci_dev->dev); | 
 | 	pm_runtime_put_autosuspend(&trans_pcie->pci_dev->dev); | 
 |  | 
 | #ifdef CONFIG_PM | 
 | 	IWL_DEBUG_RPM(trans, "runtime usage count: %d\n", | 
 | 		      atomic_read(&trans_pcie->pci_dev->dev.power.usage_count)); | 
 | #endif /* CONFIG_PM */ | 
 | } | 
 |  | 
 | static const char *get_csr_string(int cmd) | 
 | { | 
 | #define IWL_CMD(x) case x: return #x | 
 | 	switch (cmd) { | 
 | 	IWL_CMD(CSR_HW_IF_CONFIG_REG); | 
 | 	IWL_CMD(CSR_INT_COALESCING); | 
 | 	IWL_CMD(CSR_INT); | 
 | 	IWL_CMD(CSR_INT_MASK); | 
 | 	IWL_CMD(CSR_FH_INT_STATUS); | 
 | 	IWL_CMD(CSR_GPIO_IN); | 
 | 	IWL_CMD(CSR_RESET); | 
 | 	IWL_CMD(CSR_GP_CNTRL); | 
 | 	IWL_CMD(CSR_HW_REV); | 
 | 	IWL_CMD(CSR_EEPROM_REG); | 
 | 	IWL_CMD(CSR_EEPROM_GP); | 
 | 	IWL_CMD(CSR_OTP_GP_REG); | 
 | 	IWL_CMD(CSR_GIO_REG); | 
 | 	IWL_CMD(CSR_GP_UCODE_REG); | 
 | 	IWL_CMD(CSR_GP_DRIVER_REG); | 
 | 	IWL_CMD(CSR_UCODE_DRV_GP1); | 
 | 	IWL_CMD(CSR_UCODE_DRV_GP2); | 
 | 	IWL_CMD(CSR_LED_REG); | 
 | 	IWL_CMD(CSR_DRAM_INT_TBL_REG); | 
 | 	IWL_CMD(CSR_GIO_CHICKEN_BITS); | 
 | 	IWL_CMD(CSR_ANA_PLL_CFG); | 
 | 	IWL_CMD(CSR_HW_REV_WA_REG); | 
 | 	IWL_CMD(CSR_MONITOR_STATUS_REG); | 
 | 	IWL_CMD(CSR_DBG_HPET_MEM_REG); | 
 | 	default: | 
 | 		return "UNKNOWN"; | 
 | 	} | 
 | #undef IWL_CMD | 
 | } | 
 |  | 
 | void iwl_pcie_dump_csr(struct iwl_trans *trans) | 
 | { | 
 | 	int i; | 
 | 	static const u32 csr_tbl[] = { | 
 | 		CSR_HW_IF_CONFIG_REG, | 
 | 		CSR_INT_COALESCING, | 
 | 		CSR_INT, | 
 | 		CSR_INT_MASK, | 
 | 		CSR_FH_INT_STATUS, | 
 | 		CSR_GPIO_IN, | 
 | 		CSR_RESET, | 
 | 		CSR_GP_CNTRL, | 
 | 		CSR_HW_REV, | 
 | 		CSR_EEPROM_REG, | 
 | 		CSR_EEPROM_GP, | 
 | 		CSR_OTP_GP_REG, | 
 | 		CSR_GIO_REG, | 
 | 		CSR_GP_UCODE_REG, | 
 | 		CSR_GP_DRIVER_REG, | 
 | 		CSR_UCODE_DRV_GP1, | 
 | 		CSR_UCODE_DRV_GP2, | 
 | 		CSR_LED_REG, | 
 | 		CSR_DRAM_INT_TBL_REG, | 
 | 		CSR_GIO_CHICKEN_BITS, | 
 | 		CSR_ANA_PLL_CFG, | 
 | 		CSR_MONITOR_STATUS_REG, | 
 | 		CSR_HW_REV_WA_REG, | 
 | 		CSR_DBG_HPET_MEM_REG | 
 | 	}; | 
 | 	IWL_ERR(trans, "CSR values:\n"); | 
 | 	IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is " | 
 | 		"CSR_INT_PERIODIC_REG)\n"); | 
 | 	for (i = 0; i <  ARRAY_SIZE(csr_tbl); i++) { | 
 | 		IWL_ERR(trans, "  %25s: 0X%08x\n", | 
 | 			get_csr_string(csr_tbl[i]), | 
 | 			iwl_read32(trans, csr_tbl[i])); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_IWLWIFI_DEBUGFS | 
 | /* create and remove of files */ | 
 | #define DEBUGFS_ADD_FILE(name, parent, mode) do {			\ | 
 | 	if (!debugfs_create_file(#name, mode, parent, trans,		\ | 
 | 				 &iwl_dbgfs_##name##_ops))		\ | 
 | 		goto err;						\ | 
 | } while (0) | 
 |  | 
 | /* file operation */ | 
 | #define DEBUGFS_READ_FILE_OPS(name)					\ | 
 | static const struct file_operations iwl_dbgfs_##name##_ops = {		\ | 
 | 	.read = iwl_dbgfs_##name##_read,				\ | 
 | 	.open = simple_open,						\ | 
 | 	.llseek = generic_file_llseek,					\ | 
 | }; | 
 |  | 
 | #define DEBUGFS_WRITE_FILE_OPS(name)                                    \ | 
 | static const struct file_operations iwl_dbgfs_##name##_ops = {          \ | 
 | 	.write = iwl_dbgfs_##name##_write,                              \ | 
 | 	.open = simple_open,						\ | 
 | 	.llseek = generic_file_llseek,					\ | 
 | }; | 
 |  | 
 | #define DEBUGFS_READ_WRITE_FILE_OPS(name)				\ | 
 | static const struct file_operations iwl_dbgfs_##name##_ops = {		\ | 
 | 	.write = iwl_dbgfs_##name##_write,				\ | 
 | 	.read = iwl_dbgfs_##name##_read,				\ | 
 | 	.open = simple_open,						\ | 
 | 	.llseek = generic_file_llseek,					\ | 
 | }; | 
 |  | 
 | static ssize_t iwl_dbgfs_tx_queue_read(struct file *file, | 
 | 				       char __user *user_buf, | 
 | 				       size_t count, loff_t *ppos) | 
 | { | 
 | 	struct iwl_trans *trans = file->private_data; | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	struct iwl_txq *txq; | 
 | 	char *buf; | 
 | 	int pos = 0; | 
 | 	int cnt; | 
 | 	int ret; | 
 | 	size_t bufsz; | 
 |  | 
 | 	bufsz = sizeof(char) * 75 * trans->cfg->base_params->num_of_queues; | 
 |  | 
 | 	if (!trans_pcie->txq_memory) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	buf = kzalloc(bufsz, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { | 
 | 		txq = trans_pcie->txq[cnt]; | 
 | 		pos += scnprintf(buf + pos, bufsz - pos, | 
 | 				"hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d frozen=%d%s\n", | 
 | 				cnt, txq->read_ptr, txq->write_ptr, | 
 | 				!!test_bit(cnt, trans_pcie->queue_used), | 
 | 				 !!test_bit(cnt, trans_pcie->queue_stopped), | 
 | 				 txq->need_update, txq->frozen, | 
 | 				 (cnt == trans_pcie->cmd_queue ? " HCMD" : "")); | 
 | 	} | 
 | 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); | 
 | 	kfree(buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t iwl_dbgfs_rx_queue_read(struct file *file, | 
 | 				       char __user *user_buf, | 
 | 				       size_t count, loff_t *ppos) | 
 | { | 
 | 	struct iwl_trans *trans = file->private_data; | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	char *buf; | 
 | 	int pos = 0, i, ret; | 
 | 	size_t bufsz = sizeof(buf); | 
 |  | 
 | 	bufsz = sizeof(char) * 121 * trans->num_rx_queues; | 
 |  | 
 | 	if (!trans_pcie->rxq) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	buf = kzalloc(bufsz, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < trans->num_rx_queues && pos < bufsz; i++) { | 
 | 		struct iwl_rxq *rxq = &trans_pcie->rxq[i]; | 
 |  | 
 | 		pos += scnprintf(buf + pos, bufsz - pos, "queue#: %2d\n", | 
 | 				 i); | 
 | 		pos += scnprintf(buf + pos, bufsz - pos, "\tread: %u\n", | 
 | 				 rxq->read); | 
 | 		pos += scnprintf(buf + pos, bufsz - pos, "\twrite: %u\n", | 
 | 				 rxq->write); | 
 | 		pos += scnprintf(buf + pos, bufsz - pos, "\twrite_actual: %u\n", | 
 | 				 rxq->write_actual); | 
 | 		pos += scnprintf(buf + pos, bufsz - pos, "\tneed_update: %2d\n", | 
 | 				 rxq->need_update); | 
 | 		pos += scnprintf(buf + pos, bufsz - pos, "\tfree_count: %u\n", | 
 | 				 rxq->free_count); | 
 | 		if (rxq->rb_stts) { | 
 | 			pos += scnprintf(buf + pos, bufsz - pos, | 
 | 					 "\tclosed_rb_num: %u\n", | 
 | 					 le16_to_cpu(rxq->rb_stts->closed_rb_num) & | 
 | 					 0x0FFF); | 
 | 		} else { | 
 | 			pos += scnprintf(buf + pos, bufsz - pos, | 
 | 					 "\tclosed_rb_num: Not Allocated\n"); | 
 | 		} | 
 | 	} | 
 | 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); | 
 | 	kfree(buf); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t iwl_dbgfs_interrupt_read(struct file *file, | 
 | 					char __user *user_buf, | 
 | 					size_t count, loff_t *ppos) | 
 | { | 
 | 	struct iwl_trans *trans = file->private_data; | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats; | 
 |  | 
 | 	int pos = 0; | 
 | 	char *buf; | 
 | 	int bufsz = 24 * 64; /* 24 items * 64 char per item */ | 
 | 	ssize_t ret; | 
 |  | 
 | 	buf = kzalloc(bufsz, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, | 
 | 			"Interrupt Statistics Report:\n"); | 
 |  | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n", | 
 | 		isr_stats->hw); | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n", | 
 | 		isr_stats->sw); | 
 | 	if (isr_stats->sw || isr_stats->hw) { | 
 | 		pos += scnprintf(buf + pos, bufsz - pos, | 
 | 			"\tLast Restarting Code:  0x%X\n", | 
 | 			isr_stats->err_code); | 
 | 	} | 
 | #ifdef CONFIG_IWLWIFI_DEBUG | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n", | 
 | 		isr_stats->sch); | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n", | 
 | 		isr_stats->alive); | 
 | #endif | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, | 
 | 		"HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill); | 
 |  | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n", | 
 | 		isr_stats->ctkill); | 
 |  | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n", | 
 | 		isr_stats->wakeup); | 
 |  | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, | 
 | 		"Rx command responses:\t\t %u\n", isr_stats->rx); | 
 |  | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n", | 
 | 		isr_stats->tx); | 
 |  | 
 | 	pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n", | 
 | 		isr_stats->unhandled); | 
 |  | 
 | 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); | 
 | 	kfree(buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t iwl_dbgfs_interrupt_write(struct file *file, | 
 | 					 const char __user *user_buf, | 
 | 					 size_t count, loff_t *ppos) | 
 | { | 
 | 	struct iwl_trans *trans = file->private_data; | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats; | 
 | 	u32 reset_flag; | 
 | 	int ret; | 
 |  | 
 | 	ret = kstrtou32_from_user(user_buf, count, 16, &reset_flag); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	if (reset_flag == 0) | 
 | 		memset(isr_stats, 0, sizeof(*isr_stats)); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t iwl_dbgfs_csr_write(struct file *file, | 
 | 				   const char __user *user_buf, | 
 | 				   size_t count, loff_t *ppos) | 
 | { | 
 | 	struct iwl_trans *trans = file->private_data; | 
 |  | 
 | 	iwl_pcie_dump_csr(trans); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t iwl_dbgfs_fh_reg_read(struct file *file, | 
 | 				     char __user *user_buf, | 
 | 				     size_t count, loff_t *ppos) | 
 | { | 
 | 	struct iwl_trans *trans = file->private_data; | 
 | 	char *buf = NULL; | 
 | 	ssize_t ret; | 
 |  | 
 | 	ret = iwl_dump_fh(trans, &buf); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	if (!buf) | 
 | 		return -EINVAL; | 
 | 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); | 
 | 	kfree(buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t iwl_dbgfs_rfkill_read(struct file *file, | 
 | 				     char __user *user_buf, | 
 | 				     size_t count, loff_t *ppos) | 
 | { | 
 | 	struct iwl_trans *trans = file->private_data; | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	char buf[100]; | 
 | 	int pos; | 
 |  | 
 | 	pos = scnprintf(buf, sizeof(buf), "debug: %d\nhw: %d\n", | 
 | 			trans_pcie->debug_rfkill, | 
 | 			!(iwl_read32(trans, CSR_GP_CNTRL) & | 
 | 				CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)); | 
 |  | 
 | 	return simple_read_from_buffer(user_buf, count, ppos, buf, pos); | 
 | } | 
 |  | 
 | static ssize_t iwl_dbgfs_rfkill_write(struct file *file, | 
 | 				      const char __user *user_buf, | 
 | 				      size_t count, loff_t *ppos) | 
 | { | 
 | 	struct iwl_trans *trans = file->private_data; | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	bool old = trans_pcie->debug_rfkill; | 
 | 	int ret; | 
 |  | 
 | 	ret = kstrtobool_from_user(user_buf, count, &trans_pcie->debug_rfkill); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	if (old == trans_pcie->debug_rfkill) | 
 | 		return count; | 
 | 	IWL_WARN(trans, "changing debug rfkill %d->%d\n", | 
 | 		 old, trans_pcie->debug_rfkill); | 
 | 	iwl_pcie_handle_rfkill_irq(trans); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | DEBUGFS_READ_WRITE_FILE_OPS(interrupt); | 
 | DEBUGFS_READ_FILE_OPS(fh_reg); | 
 | DEBUGFS_READ_FILE_OPS(rx_queue); | 
 | DEBUGFS_READ_FILE_OPS(tx_queue); | 
 | DEBUGFS_WRITE_FILE_OPS(csr); | 
 | DEBUGFS_READ_WRITE_FILE_OPS(rfkill); | 
 |  | 
 | /* Create the debugfs files and directories */ | 
 | int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) | 
 | { | 
 | 	struct dentry *dir = trans->dbgfs_dir; | 
 |  | 
 | 	DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR); | 
 | 	DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR); | 
 | 	DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR); | 
 | 	DEBUGFS_ADD_FILE(csr, dir, S_IWUSR); | 
 | 	DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR); | 
 | 	DEBUGFS_ADD_FILE(rfkill, dir, S_IWUSR | S_IRUSR); | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	IWL_ERR(trans, "failed to create the trans debugfs entry\n"); | 
 | 	return -ENOMEM; | 
 | } | 
 | #endif /*CONFIG_IWLWIFI_DEBUGFS */ | 
 |  | 
 | static u32 iwl_trans_pcie_get_cmdlen(struct iwl_trans *trans, void *tfd) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	u32 cmdlen = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < trans_pcie->max_tbs; i++) | 
 | 		cmdlen += iwl_pcie_tfd_tb_get_len(trans, tfd, i); | 
 |  | 
 | 	return cmdlen; | 
 | } | 
 |  | 
 | static u32 iwl_trans_pcie_dump_rbs(struct iwl_trans *trans, | 
 | 				   struct iwl_fw_error_dump_data **data, | 
 | 				   int allocated_rb_nums) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	int max_len = PAGE_SIZE << trans_pcie->rx_page_order; | 
 | 	/* Dump RBs is supported only for pre-9000 devices (1 queue) */ | 
 | 	struct iwl_rxq *rxq = &trans_pcie->rxq[0]; | 
 | 	u32 i, r, j, rb_len = 0; | 
 |  | 
 | 	spin_lock(&rxq->lock); | 
 |  | 
 | 	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF; | 
 |  | 
 | 	for (i = rxq->read, j = 0; | 
 | 	     i != r && j < allocated_rb_nums; | 
 | 	     i = (i + 1) & RX_QUEUE_MASK, j++) { | 
 | 		struct iwl_rx_mem_buffer *rxb = rxq->queue[i]; | 
 | 		struct iwl_fw_error_dump_rb *rb; | 
 |  | 
 | 		dma_unmap_page(trans->dev, rxb->page_dma, max_len, | 
 | 			       DMA_FROM_DEVICE); | 
 |  | 
 | 		rb_len += sizeof(**data) + sizeof(*rb) + max_len; | 
 |  | 
 | 		(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_RB); | 
 | 		(*data)->len = cpu_to_le32(sizeof(*rb) + max_len); | 
 | 		rb = (void *)(*data)->data; | 
 | 		rb->index = cpu_to_le32(i); | 
 | 		memcpy(rb->data, page_address(rxb->page), max_len); | 
 | 		/* remap the page for the free benefit */ | 
 | 		rxb->page_dma = dma_map_page(trans->dev, rxb->page, 0, | 
 | 						     max_len, | 
 | 						     DMA_FROM_DEVICE); | 
 |  | 
 | 		*data = iwl_fw_error_next_data(*data); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&rxq->lock); | 
 |  | 
 | 	return rb_len; | 
 | } | 
 | #define IWL_CSR_TO_DUMP (0x250) | 
 |  | 
 | static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans, | 
 | 				   struct iwl_fw_error_dump_data **data) | 
 | { | 
 | 	u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP; | 
 | 	__le32 *val; | 
 | 	int i; | 
 |  | 
 | 	(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR); | 
 | 	(*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP); | 
 | 	val = (void *)(*data)->data; | 
 |  | 
 | 	for (i = 0; i < IWL_CSR_TO_DUMP; i += 4) | 
 | 		*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); | 
 |  | 
 | 	*data = iwl_fw_error_next_data(*data); | 
 |  | 
 | 	return csr_len; | 
 | } | 
 |  | 
 | static u32 iwl_trans_pcie_fh_regs_dump(struct iwl_trans *trans, | 
 | 				       struct iwl_fw_error_dump_data **data) | 
 | { | 
 | 	u32 fh_regs_len = FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND; | 
 | 	unsigned long flags; | 
 | 	__le32 *val; | 
 | 	int i; | 
 |  | 
 | 	if (!iwl_trans_grab_nic_access(trans, &flags)) | 
 | 		return 0; | 
 |  | 
 | 	(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FH_REGS); | 
 | 	(*data)->len = cpu_to_le32(fh_regs_len); | 
 | 	val = (void *)(*data)->data; | 
 |  | 
 | 	if (!trans->cfg->gen2) | 
 | 		for (i = FH_MEM_LOWER_BOUND; i < FH_MEM_UPPER_BOUND; | 
 | 		     i += sizeof(u32)) | 
 | 			*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); | 
 | 	else | 
 | 		for (i = FH_MEM_LOWER_BOUND_GEN2; i < FH_MEM_UPPER_BOUND_GEN2; | 
 | 		     i += sizeof(u32)) | 
 | 			*val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans, | 
 | 								      i)); | 
 |  | 
 | 	iwl_trans_release_nic_access(trans, &flags); | 
 |  | 
 | 	*data = iwl_fw_error_next_data(*data); | 
 |  | 
 | 	return sizeof(**data) + fh_regs_len; | 
 | } | 
 |  | 
 | static u32 | 
 | iwl_trans_pci_dump_marbh_monitor(struct iwl_trans *trans, | 
 | 				 struct iwl_fw_error_dump_fw_mon *fw_mon_data, | 
 | 				 u32 monitor_len) | 
 | { | 
 | 	u32 buf_size_in_dwords = (monitor_len >> 2); | 
 | 	u32 *buffer = (u32 *)fw_mon_data->data; | 
 | 	unsigned long flags; | 
 | 	u32 i; | 
 |  | 
 | 	if (!iwl_trans_grab_nic_access(trans, &flags)) | 
 | 		return 0; | 
 |  | 
 | 	iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x1); | 
 | 	for (i = 0; i < buf_size_in_dwords; i++) | 
 | 		buffer[i] = iwl_read_prph_no_grab(trans, | 
 | 				MON_DMARB_RD_DATA_ADDR); | 
 | 	iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x0); | 
 |  | 
 | 	iwl_trans_release_nic_access(trans, &flags); | 
 |  | 
 | 	return monitor_len; | 
 | } | 
 |  | 
 | static u32 | 
 | iwl_trans_pcie_dump_monitor(struct iwl_trans *trans, | 
 | 			    struct iwl_fw_error_dump_data **data, | 
 | 			    u32 monitor_len) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	u32 len = 0; | 
 |  | 
 | 	if ((trans_pcie->fw_mon_page && | 
 | 	     trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) || | 
 | 	    trans->dbg_dest_tlv) { | 
 | 		struct iwl_fw_error_dump_fw_mon *fw_mon_data; | 
 | 		u32 base, write_ptr, wrap_cnt; | 
 |  | 
 | 		/* If there was a dest TLV - use the values from there */ | 
 | 		if (trans->dbg_dest_tlv) { | 
 | 			write_ptr = | 
 | 				le32_to_cpu(trans->dbg_dest_tlv->write_ptr_reg); | 
 | 			wrap_cnt = le32_to_cpu(trans->dbg_dest_tlv->wrap_count); | 
 | 			base = le32_to_cpu(trans->dbg_dest_tlv->base_reg); | 
 | 		} else { | 
 | 			base = MON_BUFF_BASE_ADDR; | 
 | 			write_ptr = MON_BUFF_WRPTR; | 
 | 			wrap_cnt = MON_BUFF_CYCLE_CNT; | 
 | 		} | 
 |  | 
 | 		(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR); | 
 | 		fw_mon_data = (void *)(*data)->data; | 
 | 		fw_mon_data->fw_mon_wr_ptr = | 
 | 			cpu_to_le32(iwl_read_prph(trans, write_ptr)); | 
 | 		fw_mon_data->fw_mon_cycle_cnt = | 
 | 			cpu_to_le32(iwl_read_prph(trans, wrap_cnt)); | 
 | 		fw_mon_data->fw_mon_base_ptr = | 
 | 			cpu_to_le32(iwl_read_prph(trans, base)); | 
 |  | 
 | 		len += sizeof(**data) + sizeof(*fw_mon_data); | 
 | 		if (trans_pcie->fw_mon_page) { | 
 | 			/* | 
 | 			 * The firmware is now asserted, it won't write anything | 
 | 			 * to the buffer. CPU can take ownership to fetch the | 
 | 			 * data. The buffer will be handed back to the device | 
 | 			 * before the firmware will be restarted. | 
 | 			 */ | 
 | 			dma_sync_single_for_cpu(trans->dev, | 
 | 						trans_pcie->fw_mon_phys, | 
 | 						trans_pcie->fw_mon_size, | 
 | 						DMA_FROM_DEVICE); | 
 | 			memcpy(fw_mon_data->data, | 
 | 			       page_address(trans_pcie->fw_mon_page), | 
 | 			       trans_pcie->fw_mon_size); | 
 |  | 
 | 			monitor_len = trans_pcie->fw_mon_size; | 
 | 		} else if (trans->dbg_dest_tlv->monitor_mode == SMEM_MODE) { | 
 | 			/* | 
 | 			 * Update pointers to reflect actual values after | 
 | 			 * shifting | 
 | 			 */ | 
 | 			base = iwl_read_prph(trans, base) << | 
 | 			       trans->dbg_dest_tlv->base_shift; | 
 | 			iwl_trans_read_mem(trans, base, fw_mon_data->data, | 
 | 					   monitor_len / sizeof(u32)); | 
 | 		} else if (trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) { | 
 | 			monitor_len = | 
 | 				iwl_trans_pci_dump_marbh_monitor(trans, | 
 | 								 fw_mon_data, | 
 | 								 monitor_len); | 
 | 		} else { | 
 | 			/* Didn't match anything - output no monitor data */ | 
 | 			monitor_len = 0; | 
 | 		} | 
 |  | 
 | 		len += monitor_len; | 
 | 		(*data)->len = cpu_to_le32(monitor_len + sizeof(*fw_mon_data)); | 
 | 	} | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | static struct iwl_trans_dump_data | 
 | *iwl_trans_pcie_dump_data(struct iwl_trans *trans, | 
 | 			  const struct iwl_fw_dbg_trigger_tlv *trigger) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 | 	struct iwl_fw_error_dump_data *data; | 
 | 	struct iwl_txq *cmdq = trans_pcie->txq[trans_pcie->cmd_queue]; | 
 | 	struct iwl_fw_error_dump_txcmd *txcmd; | 
 | 	struct iwl_trans_dump_data *dump_data; | 
 | 	u32 len, num_rbs; | 
 | 	u32 monitor_len; | 
 | 	int i, ptr; | 
 | 	bool dump_rbs = test_bit(STATUS_FW_ERROR, &trans->status) && | 
 | 			!trans->cfg->mq_rx_supported; | 
 |  | 
 | 	/* transport dump header */ | 
 | 	len = sizeof(*dump_data); | 
 |  | 
 | 	/* host commands */ | 
 | 	len += sizeof(*data) + | 
 | 		cmdq->n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE); | 
 |  | 
 | 	/* FW monitor */ | 
 | 	if (trans_pcie->fw_mon_page) { | 
 | 		len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) + | 
 | 		       trans_pcie->fw_mon_size; | 
 | 		monitor_len = trans_pcie->fw_mon_size; | 
 | 	} else if (trans->dbg_dest_tlv) { | 
 | 		u32 base, end; | 
 |  | 
 | 		base = le32_to_cpu(trans->dbg_dest_tlv->base_reg); | 
 | 		end = le32_to_cpu(trans->dbg_dest_tlv->end_reg); | 
 |  | 
 | 		base = iwl_read_prph(trans, base) << | 
 | 		       trans->dbg_dest_tlv->base_shift; | 
 | 		end = iwl_read_prph(trans, end) << | 
 | 		      trans->dbg_dest_tlv->end_shift; | 
 |  | 
 | 		/* Make "end" point to the actual end */ | 
 | 		if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000 || | 
 | 		    trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) | 
 | 			end += (1 << trans->dbg_dest_tlv->end_shift); | 
 | 		monitor_len = end - base; | 
 | 		len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) + | 
 | 		       monitor_len; | 
 | 	} else { | 
 | 		monitor_len = 0; | 
 | 	} | 
 |  | 
 | 	if (trigger && (trigger->mode & IWL_FW_DBG_TRIGGER_MONITOR_ONLY)) { | 
 | 		dump_data = vzalloc(len); | 
 | 		if (!dump_data) | 
 | 			return NULL; | 
 |  | 
 | 		data = (void *)dump_data->data; | 
 | 		len = iwl_trans_pcie_dump_monitor(trans, &data, monitor_len); | 
 | 		dump_data->len = len; | 
 |  | 
 | 		return dump_data; | 
 | 	} | 
 |  | 
 | 	/* CSR registers */ | 
 | 	len += sizeof(*data) + IWL_CSR_TO_DUMP; | 
 |  | 
 | 	/* FH registers */ | 
 | 	if (trans->cfg->gen2) | 
 | 		len += sizeof(*data) + | 
 | 		       (FH_MEM_UPPER_BOUND_GEN2 - FH_MEM_LOWER_BOUND_GEN2); | 
 | 	else | 
 | 		len += sizeof(*data) + | 
 | 		       (FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND); | 
 |  | 
 | 	if (dump_rbs) { | 
 | 		/* Dump RBs is supported only for pre-9000 devices (1 queue) */ | 
 | 		struct iwl_rxq *rxq = &trans_pcie->rxq[0]; | 
 | 		/* RBs */ | 
 | 		num_rbs = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) | 
 | 				      & 0x0FFF; | 
 | 		num_rbs = (num_rbs - rxq->read) & RX_QUEUE_MASK; | 
 | 		len += num_rbs * (sizeof(*data) + | 
 | 				  sizeof(struct iwl_fw_error_dump_rb) + | 
 | 				  (PAGE_SIZE << trans_pcie->rx_page_order)); | 
 | 	} | 
 |  | 
 | 	/* Paged memory for gen2 HW */ | 
 | 	if (trans->cfg->gen2) | 
 | 		for (i = 0; i < trans_pcie->init_dram.paging_cnt; i++) | 
 | 			len += sizeof(*data) + | 
 | 			       sizeof(struct iwl_fw_error_dump_paging) + | 
 | 			       trans_pcie->init_dram.paging[i].size; | 
 |  | 
 | 	dump_data = vzalloc(len); | 
 | 	if (!dump_data) | 
 | 		return NULL; | 
 |  | 
 | 	len = 0; | 
 | 	data = (void *)dump_data->data; | 
 | 	data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD); | 
 | 	txcmd = (void *)data->data; | 
 | 	spin_lock_bh(&cmdq->lock); | 
 | 	ptr = cmdq->write_ptr; | 
 | 	for (i = 0; i < cmdq->n_window; i++) { | 
 | 		u8 idx = iwl_pcie_get_cmd_index(cmdq, ptr); | 
 | 		u32 caplen, cmdlen; | 
 |  | 
 | 		cmdlen = iwl_trans_pcie_get_cmdlen(trans, cmdq->tfds + | 
 | 						   trans_pcie->tfd_size * ptr); | 
 | 		caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen); | 
 |  | 
 | 		if (cmdlen) { | 
 | 			len += sizeof(*txcmd) + caplen; | 
 | 			txcmd->cmdlen = cpu_to_le32(cmdlen); | 
 | 			txcmd->caplen = cpu_to_le32(caplen); | 
 | 			memcpy(txcmd->data, cmdq->entries[idx].cmd, caplen); | 
 | 			txcmd = (void *)((u8 *)txcmd->data + caplen); | 
 | 		} | 
 |  | 
 | 		ptr = iwl_queue_dec_wrap(ptr); | 
 | 	} | 
 | 	spin_unlock_bh(&cmdq->lock); | 
 |  | 
 | 	data->len = cpu_to_le32(len); | 
 | 	len += sizeof(*data); | 
 | 	data = iwl_fw_error_next_data(data); | 
 |  | 
 | 	len += iwl_trans_pcie_dump_csr(trans, &data); | 
 | 	len += iwl_trans_pcie_fh_regs_dump(trans, &data); | 
 | 	if (dump_rbs) | 
 | 		len += iwl_trans_pcie_dump_rbs(trans, &data, num_rbs); | 
 |  | 
 | 	/* Paged memory for gen2 HW */ | 
 | 	if (trans->cfg->gen2) { | 
 | 		for (i = 0; i < trans_pcie->init_dram.paging_cnt; i++) { | 
 | 			struct iwl_fw_error_dump_paging *paging; | 
 | 			dma_addr_t addr = | 
 | 				trans_pcie->init_dram.paging[i].physical; | 
 | 			u32 page_len = trans_pcie->init_dram.paging[i].size; | 
 |  | 
 | 			data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PAGING); | 
 | 			data->len = cpu_to_le32(sizeof(*paging) + page_len); | 
 | 			paging = (void *)data->data; | 
 | 			paging->index = cpu_to_le32(i); | 
 | 			dma_sync_single_for_cpu(trans->dev, addr, page_len, | 
 | 						DMA_BIDIRECTIONAL); | 
 | 			memcpy(paging->data, | 
 | 			       trans_pcie->init_dram.paging[i].block, page_len); | 
 | 			data = iwl_fw_error_next_data(data); | 
 |  | 
 | 			len += sizeof(*data) + sizeof(*paging) + page_len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	len += iwl_trans_pcie_dump_monitor(trans, &data, monitor_len); | 
 |  | 
 | 	dump_data->len = len; | 
 |  | 
 | 	return dump_data; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int iwl_trans_pcie_suspend(struct iwl_trans *trans) | 
 | { | 
 | 	if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 && | 
 | 	    (trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3)) | 
 | 		return iwl_pci_fw_enter_d0i3(trans); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void iwl_trans_pcie_resume(struct iwl_trans *trans) | 
 | { | 
 | 	if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 && | 
 | 	    (trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3)) | 
 | 		iwl_pci_fw_exit_d0i3(trans); | 
 | } | 
 | #endif /* CONFIG_PM_SLEEP */ | 
 |  | 
 | #define IWL_TRANS_COMMON_OPS						\ | 
 | 	.op_mode_leave = iwl_trans_pcie_op_mode_leave,			\ | 
 | 	.write8 = iwl_trans_pcie_write8,				\ | 
 | 	.write32 = iwl_trans_pcie_write32,				\ | 
 | 	.read32 = iwl_trans_pcie_read32,				\ | 
 | 	.read_prph = iwl_trans_pcie_read_prph,				\ | 
 | 	.write_prph = iwl_trans_pcie_write_prph,			\ | 
 | 	.read_mem = iwl_trans_pcie_read_mem,				\ | 
 | 	.write_mem = iwl_trans_pcie_write_mem,				\ | 
 | 	.configure = iwl_trans_pcie_configure,				\ | 
 | 	.set_pmi = iwl_trans_pcie_set_pmi,				\ | 
 | 	.grab_nic_access = iwl_trans_pcie_grab_nic_access,		\ | 
 | 	.release_nic_access = iwl_trans_pcie_release_nic_access,	\ | 
 | 	.set_bits_mask = iwl_trans_pcie_set_bits_mask,			\ | 
 | 	.ref = iwl_trans_pcie_ref,					\ | 
 | 	.unref = iwl_trans_pcie_unref,					\ | 
 | 	.dump_data = iwl_trans_pcie_dump_data,				\ | 
 | 	.d3_suspend = iwl_trans_pcie_d3_suspend,			\ | 
 | 	.d3_resume = iwl_trans_pcie_d3_resume | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | #define IWL_TRANS_PM_OPS						\ | 
 | 	.suspend = iwl_trans_pcie_suspend,				\ | 
 | 	.resume = iwl_trans_pcie_resume, | 
 | #else | 
 | #define IWL_TRANS_PM_OPS | 
 | #endif /* CONFIG_PM_SLEEP */ | 
 |  | 
 | static const struct iwl_trans_ops trans_ops_pcie = { | 
 | 	IWL_TRANS_COMMON_OPS, | 
 | 	IWL_TRANS_PM_OPS | 
 | 	.start_hw = iwl_trans_pcie_start_hw, | 
 | 	.fw_alive = iwl_trans_pcie_fw_alive, | 
 | 	.start_fw = iwl_trans_pcie_start_fw, | 
 | 	.stop_device = iwl_trans_pcie_stop_device, | 
 |  | 
 | 	.send_cmd = iwl_trans_pcie_send_hcmd, | 
 |  | 
 | 	.tx = iwl_trans_pcie_tx, | 
 | 	.reclaim = iwl_trans_pcie_reclaim, | 
 |  | 
 | 	.txq_disable = iwl_trans_pcie_txq_disable, | 
 | 	.txq_enable = iwl_trans_pcie_txq_enable, | 
 |  | 
 | 	.txq_set_shared_mode = iwl_trans_pcie_txq_set_shared_mode, | 
 |  | 
 | 	.wait_tx_queues_empty = iwl_trans_pcie_wait_txqs_empty, | 
 |  | 
 | 	.freeze_txq_timer = iwl_trans_pcie_freeze_txq_timer, | 
 | 	.block_txq_ptrs = iwl_trans_pcie_block_txq_ptrs, | 
 | }; | 
 |  | 
 | static const struct iwl_trans_ops trans_ops_pcie_gen2 = { | 
 | 	IWL_TRANS_COMMON_OPS, | 
 | 	IWL_TRANS_PM_OPS | 
 | 	.start_hw = iwl_trans_pcie_start_hw, | 
 | 	.fw_alive = iwl_trans_pcie_gen2_fw_alive, | 
 | 	.start_fw = iwl_trans_pcie_gen2_start_fw, | 
 | 	.stop_device = iwl_trans_pcie_gen2_stop_device, | 
 |  | 
 | 	.send_cmd = iwl_trans_pcie_gen2_send_hcmd, | 
 |  | 
 | 	.tx = iwl_trans_pcie_gen2_tx, | 
 | 	.reclaim = iwl_trans_pcie_reclaim, | 
 |  | 
 | 	.txq_alloc = iwl_trans_pcie_dyn_txq_alloc, | 
 | 	.txq_free = iwl_trans_pcie_dyn_txq_free, | 
 | 	.wait_txq_empty = iwl_trans_pcie_wait_txq_empty, | 
 | }; | 
 |  | 
 | struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev, | 
 | 				       const struct pci_device_id *ent, | 
 | 				       const struct iwl_cfg *cfg) | 
 | { | 
 | 	struct iwl_trans_pcie *trans_pcie; | 
 | 	struct iwl_trans *trans; | 
 | 	int ret, addr_size; | 
 |  | 
 | 	ret = pcim_enable_device(pdev); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	if (cfg->gen2) | 
 | 		trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie), | 
 | 					&pdev->dev, cfg, &trans_ops_pcie_gen2); | 
 | 	else | 
 | 		trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie), | 
 | 					&pdev->dev, cfg, &trans_ops_pcie); | 
 | 	if (!trans) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
 |  | 
 | 	trans_pcie->trans = trans; | 
 | 	trans_pcie->opmode_down = true; | 
 | 	spin_lock_init(&trans_pcie->irq_lock); | 
 | 	spin_lock_init(&trans_pcie->reg_lock); | 
 | 	mutex_init(&trans_pcie->mutex); | 
 | 	init_waitqueue_head(&trans_pcie->ucode_write_waitq); | 
 | 	trans_pcie->tso_hdr_page = alloc_percpu(struct iwl_tso_hdr_page); | 
 | 	if (!trans_pcie->tso_hdr_page) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_no_pci; | 
 | 	} | 
 |  | 
 |  | 
 | 	if (!cfg->base_params->pcie_l1_allowed) { | 
 | 		/* | 
 | 		 * W/A - seems to solve weird behavior. We need to remove this | 
 | 		 * if we don't want to stay in L1 all the time. This wastes a | 
 | 		 * lot of power. | 
 | 		 */ | 
 | 		pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | | 
 | 				       PCIE_LINK_STATE_L1 | | 
 | 				       PCIE_LINK_STATE_CLKPM); | 
 | 	} | 
 |  | 
 | 	if (cfg->use_tfh) { | 
 | 		addr_size = 64; | 
 | 		trans_pcie->max_tbs = IWL_TFH_NUM_TBS; | 
 | 		trans_pcie->tfd_size = sizeof(struct iwl_tfh_tfd); | 
 | 	} else { | 
 | 		addr_size = 36; | 
 | 		trans_pcie->max_tbs = IWL_NUM_OF_TBS; | 
 | 		trans_pcie->tfd_size = sizeof(struct iwl_tfd); | 
 | 	} | 
 | 	trans->max_skb_frags = IWL_PCIE_MAX_FRAGS(trans_pcie); | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(addr_size)); | 
 | 	if (!ret) | 
 | 		ret = pci_set_consistent_dma_mask(pdev, | 
 | 						  DMA_BIT_MASK(addr_size)); | 
 | 	if (ret) { | 
 | 		ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | 
 | 		if (!ret) | 
 | 			ret = pci_set_consistent_dma_mask(pdev, | 
 | 							  DMA_BIT_MASK(32)); | 
 | 		/* both attempts failed: */ | 
 | 		if (ret) { | 
 | 			dev_err(&pdev->dev, "No suitable DMA available\n"); | 
 | 			goto out_no_pci; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = pcim_iomap_regions_request_all(pdev, BIT(0), DRV_NAME); | 
 | 	if (ret) { | 
 | 		dev_err(&pdev->dev, "pcim_iomap_regions_request_all failed\n"); | 
 | 		goto out_no_pci; | 
 | 	} | 
 |  | 
 | 	trans_pcie->hw_base = pcim_iomap_table(pdev)[0]; | 
 | 	if (!trans_pcie->hw_base) { | 
 | 		dev_err(&pdev->dev, "pcim_iomap_table failed\n"); | 
 | 		ret = -ENODEV; | 
 | 		goto out_no_pci; | 
 | 	} | 
 |  | 
 | 	/* We disable the RETRY_TIMEOUT register (0x41) to keep | 
 | 	 * PCI Tx retries from interfering with C3 CPU state */ | 
 | 	pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00); | 
 |  | 
 | 	trans_pcie->pci_dev = pdev; | 
 | 	iwl_disable_interrupts(trans); | 
 |  | 
 | 	trans->hw_rev = iwl_read32(trans, CSR_HW_REV); | 
 | 	/* | 
 | 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have | 
 | 	 * changed, and now the revision step also includes bit 0-1 (no more | 
 | 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it | 
 | 	 * in the old format. | 
 | 	 */ | 
 | 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		trans->hw_rev = (trans->hw_rev & 0xfff0) | | 
 | 				(CSR_HW_REV_STEP(trans->hw_rev << 2) << 2); | 
 |  | 
 | 		ret = iwl_pcie_prepare_card_hw(trans); | 
 | 		if (ret) { | 
 | 			IWL_WARN(trans, "Exit HW not ready\n"); | 
 | 			goto out_no_pci; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * in-order to recognize C step driver should read chip version | 
 | 		 * id located at the AUX bus MISC address space. | 
 | 		 */ | 
 | 		iwl_set_bit(trans, CSR_GP_CNTRL, | 
 | 			    CSR_GP_CNTRL_REG_FLAG_INIT_DONE); | 
 | 		udelay(2); | 
 |  | 
 | 		ret = iwl_poll_bit(trans, CSR_GP_CNTRL, | 
 | 				   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, | 
 | 				   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, | 
 | 				   25000); | 
 | 		if (ret < 0) { | 
 | 			IWL_DEBUG_INFO(trans, "Failed to wake up the nic\n"); | 
 | 			goto out_no_pci; | 
 | 		} | 
 |  | 
 | 		if (iwl_trans_grab_nic_access(trans, &flags)) { | 
 | 			u32 hw_step; | 
 |  | 
 | 			hw_step = iwl_read_prph_no_grab(trans, WFPM_CTRL_REG); | 
 | 			hw_step |= ENABLE_WFPM; | 
 | 			iwl_write_prph_no_grab(trans, WFPM_CTRL_REG, hw_step); | 
 | 			hw_step = iwl_read_prph_no_grab(trans, AUX_MISC_REG); | 
 | 			hw_step = (hw_step >> HW_STEP_LOCATION_BITS) & 0xF; | 
 | 			if (hw_step == 0x3) | 
 | 				trans->hw_rev = (trans->hw_rev & 0xFFFFFFF3) | | 
 | 						(SILICON_C_STEP << 2); | 
 | 			iwl_trans_release_nic_access(trans, &flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * 9000-series integrated A-step has a problem with suspend/resume | 
 | 	 * and sometimes even causes the whole platform to get stuck. This | 
 | 	 * workaround makes the hardware not go into the problematic state. | 
 | 	 */ | 
 | 	if (trans->cfg->integrated && | 
 | 	    trans->cfg->device_family == IWL_DEVICE_FAMILY_9000 && | 
 | 	    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_A_STEP) | 
 | 		iwl_set_bit(trans, CSR_HOST_CHICKEN, | 
 | 			    CSR_HOST_CHICKEN_PM_IDLE_SRC_DIS_SB_PME); | 
 |  | 
 | #if IS_ENABLED(CONFIG_IWLMVM) | 
 | 	trans->hw_rf_id = iwl_read32(trans, CSR_HW_RF_ID); | 
 | 	if (trans->hw_rf_id == CSR_HW_RF_ID_TYPE_HR) { | 
 | 		u32 hw_status; | 
 |  | 
 | 		hw_status = iwl_read_prph(trans, UMAG_GEN_HW_STATUS); | 
 | 		if (hw_status & UMAG_GEN_HW_IS_FPGA) | 
 | 			trans->cfg = &iwla000_2ax_cfg_qnj_hr_f0; | 
 | 		else | 
 | 			trans->cfg = &iwla000_2ac_cfg_hr; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	iwl_pcie_set_interrupt_capa(pdev, trans); | 
 | 	trans->hw_id = (pdev->device << 16) + pdev->subsystem_device; | 
 | 	snprintf(trans->hw_id_str, sizeof(trans->hw_id_str), | 
 | 		 "PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device); | 
 |  | 
 | 	/* Initialize the wait queue for commands */ | 
 | 	init_waitqueue_head(&trans_pcie->wait_command_queue); | 
 |  | 
 | 	init_waitqueue_head(&trans_pcie->d0i3_waitq); | 
 |  | 
 | 	if (trans_pcie->msix_enabled) { | 
 | 		ret = iwl_pcie_init_msix_handler(pdev, trans_pcie); | 
 | 		if (ret) | 
 | 			goto out_no_pci; | 
 | 	 } else { | 
 | 		ret = iwl_pcie_alloc_ict(trans); | 
 | 		if (ret) | 
 | 			goto out_no_pci; | 
 |  | 
 | 		ret = devm_request_threaded_irq(&pdev->dev, pdev->irq, | 
 | 						iwl_pcie_isr, | 
 | 						iwl_pcie_irq_handler, | 
 | 						IRQF_SHARED, DRV_NAME, trans); | 
 | 		if (ret) { | 
 | 			IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq); | 
 | 			goto out_free_ict; | 
 | 		} | 
 | 		trans_pcie->inta_mask = CSR_INI_SET_MASK; | 
 | 	 } | 
 |  | 
 | 	trans_pcie->rba.alloc_wq = alloc_workqueue("rb_allocator", | 
 | 						   WQ_HIGHPRI | WQ_UNBOUND, 1); | 
 | 	INIT_WORK(&trans_pcie->rba.rx_alloc, iwl_pcie_rx_allocator_work); | 
 |  | 
 | #ifdef CONFIG_IWLWIFI_PCIE_RTPM | 
 | 	trans->runtime_pm_mode = IWL_PLAT_PM_MODE_D0I3; | 
 | #else | 
 | 	trans->runtime_pm_mode = IWL_PLAT_PM_MODE_DISABLED; | 
 | #endif /* CONFIG_IWLWIFI_PCIE_RTPM */ | 
 |  | 
 | 	return trans; | 
 |  | 
 | out_free_ict: | 
 | 	iwl_pcie_free_ict(trans); | 
 | out_no_pci: | 
 | 	free_percpu(trans_pcie->tso_hdr_page); | 
 | 	iwl_trans_free(trans); | 
 | 	return ERR_PTR(ret); | 
 | } |