blob: 8c7fab6a46bb291399948ffb129f69933e0c2aa5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* abstraction of the spi interface of HopeRf rf69 radio module
*
* Copyright (C) 2016 Wolf-Entwicklungen
* Marcus Wolf <linux@wolf-entwicklungen.de>
*/
#include <linux/types.h>
#include <linux/spi/spi.h>
#include "rf69.h"
#include "rf69_registers.h"
#define F_OSC 32000000 /* in Hz */
#define FIFO_SIZE 66 /* in byte */
/*-------------------------------------------------------------------------*/
u8 rf69_read_reg(struct spi_device *spi, u8 addr)
{
return spi_w8r8(spi, addr);
}
static int rf69_write_reg(struct spi_device *spi, u8 addr, u8 value)
{
char buffer[2];
buffer[0] = addr | WRITE_BIT;
buffer[1] = value;
return spi_write(spi, &buffer, ARRAY_SIZE(buffer));
}
/*-------------------------------------------------------------------------*/
static int rf69_set_bit(struct spi_device *spi, u8 reg, u8 mask)
{
u8 tmp;
tmp = rf69_read_reg(spi, reg);
tmp = tmp | mask;
return rf69_write_reg(spi, reg, tmp);
}
static int rf69_clear_bit(struct spi_device *spi, u8 reg, u8 mask)
{
u8 tmp;
tmp = rf69_read_reg(spi, reg);
tmp = tmp & ~mask;
return rf69_write_reg(spi, reg, tmp);
}
static inline int rf69_read_mod_write(struct spi_device *spi, u8 reg,
u8 mask, u8 value)
{
u8 tmp;
tmp = rf69_read_reg(spi, reg);
tmp = (tmp & ~mask) | value;
return rf69_write_reg(spi, reg, tmp);
}
/*-------------------------------------------------------------------------*/
int rf69_get_version(struct spi_device *spi)
{
return rf69_read_reg(spi, REG_VERSION);
}
int rf69_set_mode(struct spi_device *spi, enum mode mode)
{
static const u8 mode_map[] = {
[transmit] = OPMODE_MODE_TRANSMIT,
[receive] = OPMODE_MODE_RECEIVE,
[synthesizer] = OPMODE_MODE_SYNTHESIZER,
[standby] = OPMODE_MODE_STANDBY,
[mode_sleep] = OPMODE_MODE_SLEEP,
};
if (unlikely(mode >= ARRAY_SIZE(mode_map))) {
dev_dbg(&spi->dev, "set: illegal mode %u\n", mode);
return -EINVAL;
}
return rf69_read_mod_write(spi, REG_OPMODE, MASK_OPMODE_MODE,
mode_map[mode]);
/*
* we are using packet mode, so this check is not really needed
* but waiting for mode ready is necessary when going from sleep
* because the FIFO may not be immediately available from previous mode
* while (_mode == RF69_MODE_SLEEP && (READ_REG(REG_IRQFLAGS1) &
RF_IRQFLAGS1_MODEREADY) == 0x00); // Wait for ModeReady
*/
}
int rf69_set_data_mode(struct spi_device *spi, u8 data_mode)
{
return rf69_read_mod_write(spi, REG_DATAMODUL, MASK_DATAMODUL_MODE,
data_mode);
}
int rf69_set_modulation(struct spi_device *spi, enum modulation modulation)
{
static const u8 modulation_map[] = {
[OOK] = DATAMODUL_MODULATION_TYPE_OOK,
[FSK] = DATAMODUL_MODULATION_TYPE_FSK,
};
if (unlikely(modulation >= ARRAY_SIZE(modulation_map))) {
dev_dbg(&spi->dev, "set: illegal modulation %u\n", modulation);
return -EINVAL;
}
return rf69_read_mod_write(spi, REG_DATAMODUL,
MASK_DATAMODUL_MODULATION_TYPE,
modulation_map[modulation]);
}
static enum modulation rf69_get_modulation(struct spi_device *spi)
{
u8 modulation_reg;
modulation_reg = rf69_read_reg(spi, REG_DATAMODUL);
switch (modulation_reg & MASK_DATAMODUL_MODULATION_TYPE) {
case DATAMODUL_MODULATION_TYPE_OOK:
return OOK;
case DATAMODUL_MODULATION_TYPE_FSK:
return FSK;
default:
return UNDEF;
}
}
int rf69_set_modulation_shaping(struct spi_device *spi,
enum mod_shaping mod_shaping)
{
switch (rf69_get_modulation(spi)) {
case FSK:
switch (mod_shaping) {
case SHAPING_OFF:
return rf69_read_mod_write(spi, REG_DATAMODUL,
MASK_DATAMODUL_MODULATION_SHAPE,
DATAMODUL_MODULATION_SHAPE_NONE);
case SHAPING_1_0:
return rf69_read_mod_write(spi, REG_DATAMODUL,
MASK_DATAMODUL_MODULATION_SHAPE,
DATAMODUL_MODULATION_SHAPE_1_0);
case SHAPING_0_5:
return rf69_read_mod_write(spi, REG_DATAMODUL,
MASK_DATAMODUL_MODULATION_SHAPE,
DATAMODUL_MODULATION_SHAPE_0_5);
case SHAPING_0_3:
return rf69_read_mod_write(spi, REG_DATAMODUL,
MASK_DATAMODUL_MODULATION_SHAPE,
DATAMODUL_MODULATION_SHAPE_0_3);
default:
dev_dbg(&spi->dev, "set: illegal mod shaping for FSK %u\n", mod_shaping);
return -EINVAL;
}
case OOK:
switch (mod_shaping) {
case SHAPING_OFF:
return rf69_read_mod_write(spi, REG_DATAMODUL,
MASK_DATAMODUL_MODULATION_SHAPE,
DATAMODUL_MODULATION_SHAPE_NONE);
case SHAPING_BR:
return rf69_read_mod_write(spi, REG_DATAMODUL,
MASK_DATAMODUL_MODULATION_SHAPE,
DATAMODUL_MODULATION_SHAPE_BR);
case SHAPING_2BR:
return rf69_read_mod_write(spi, REG_DATAMODUL,
MASK_DATAMODUL_MODULATION_SHAPE,
DATAMODUL_MODULATION_SHAPE_2BR);
default:
dev_dbg(&spi->dev, "set: illegal mod shaping for OOK %u\n", mod_shaping);
return -EINVAL;
}
default:
dev_dbg(&spi->dev, "set: modulation undefined\n");
return -EINVAL;
}
}
int rf69_set_bit_rate(struct spi_device *spi, u16 bit_rate)
{
int retval;
u32 bit_rate_reg;
u8 msb;
u8 lsb;
enum modulation mod;
// check if modulation is configured
mod = rf69_get_modulation(spi);
if (mod == UNDEF) {
dev_dbg(&spi->dev, "setBitRate: modulation is undefined\n");
return -EINVAL;
}
// check input value
if (bit_rate < 1200 || (mod == OOK && bit_rate > 32768)) {
dev_dbg(&spi->dev, "setBitRate: illegal input param\n");
return -EINVAL;
}
// calculate reg settings
bit_rate_reg = (F_OSC / bit_rate);
msb = (bit_rate_reg & 0xff00) >> 8;
lsb = (bit_rate_reg & 0xff);
// transmit to RF 69
retval = rf69_write_reg(spi, REG_BITRATE_MSB, msb);
if (retval)
return retval;
retval = rf69_write_reg(spi, REG_BITRATE_LSB, lsb);
if (retval)
return retval;
return 0;
}
int rf69_set_deviation(struct spi_device *spi, u32 deviation)
{
int retval;
u64 f_reg;
u64 f_step;
u32 bit_rate_reg;
u32 bit_rate;
u8 msb;
u8 lsb;
u64 factor = 1000000; // to improve precision of calculation
// calculate bit rate
bit_rate_reg = rf69_read_reg(spi, REG_BITRATE_MSB) << 8;
bit_rate_reg |= rf69_read_reg(spi, REG_BITRATE_LSB);
bit_rate = F_OSC / bit_rate_reg;
/*
* frequency deviation must exceed 600 Hz but not exceed
* 500kHz when taking bitrate dependency into consideration
* to ensure proper modulation
*/
if (deviation < 600 || (deviation + (bit_rate / 2)) > 500000) {
dev_dbg(&spi->dev,
"set_deviation: illegal input param: %u\n", deviation);
return -EINVAL;
}
// calculat f step
f_step = F_OSC * factor;
do_div(f_step, 524288); // 524288 = 2^19
// calculate register settings
f_reg = deviation * factor;
do_div(f_reg, f_step);
msb = (f_reg & 0xff00) >> 8;
lsb = (f_reg & 0xff);
// check msb
if (msb & ~FDEVMASB_MASK) {
dev_dbg(&spi->dev, "set_deviation: err in calc of msb\n");
return -EINVAL;
}
// write to chip
retval = rf69_write_reg(spi, REG_FDEV_MSB, msb);
if (retval)
return retval;
retval = rf69_write_reg(spi, REG_FDEV_LSB, lsb);
if (retval)
return retval;
return 0;
}
int rf69_set_frequency(struct spi_device *spi, u32 frequency)
{
int retval;
u32 f_max;
u64 f_reg;
u64 f_step;
u8 msb;
u8 mid;
u8 lsb;
u64 factor = 1000000; // to improve precision of calculation
// calculat f step
f_step = F_OSC * factor;
do_div(f_step, 524288); // 524288 = 2^19
// check input value
f_max = div_u64(f_step * 8388608, factor);
if (frequency > f_max) {
dev_dbg(&spi->dev, "setFrequency: illegal input param\n");
return -EINVAL;
}
// calculate reg settings
f_reg = frequency * factor;
do_div(f_reg, f_step);
msb = (f_reg & 0xff0000) >> 16;
mid = (f_reg & 0xff00) >> 8;
lsb = (f_reg & 0xff);
// write to chip
retval = rf69_write_reg(spi, REG_FRF_MSB, msb);
if (retval)
return retval;
retval = rf69_write_reg(spi, REG_FRF_MID, mid);
if (retval)
return retval;
retval = rf69_write_reg(spi, REG_FRF_LSB, lsb);
if (retval)
return retval;
return 0;
}
int rf69_enable_amplifier(struct spi_device *spi, u8 amplifier_mask)
{
return rf69_set_bit(spi, REG_PALEVEL, amplifier_mask);
}
int rf69_disable_amplifier(struct spi_device *spi, u8 amplifier_mask)
{
return rf69_clear_bit(spi, REG_PALEVEL, amplifier_mask);
}
int rf69_set_output_power_level(struct spi_device *spi, u8 power_level)
{
u8 pa_level, ocp, test_pa1, test_pa2;
bool pa0, pa1, pa2, high_power;
u8 min_power_level;
// check register pa_level
pa_level = rf69_read_reg(spi, REG_PALEVEL);
pa0 = pa_level & MASK_PALEVEL_PA0;
pa1 = pa_level & MASK_PALEVEL_PA1;
pa2 = pa_level & MASK_PALEVEL_PA2;
// check high power mode
ocp = rf69_read_reg(spi, REG_OCP);
test_pa1 = rf69_read_reg(spi, REG_TESTPA1);
test_pa2 = rf69_read_reg(spi, REG_TESTPA2);
high_power = (ocp == 0x0f) && (test_pa1 == 0x5d) && (test_pa2 == 0x7c);
if (pa0 && !pa1 && !pa2) {
power_level += 18;
min_power_level = 0;
} else if (!pa0 && pa1 && !pa2) {
power_level += 18;
min_power_level = 16;
} else if (!pa0 && pa1 && pa2) {
if (high_power)
power_level += 11;
else
power_level += 14;
min_power_level = 16;
} else {
goto failed;
}
// check input value
if (power_level > 0x1f)
goto failed;
if (power_level < min_power_level)
goto failed;
// write value
return rf69_read_mod_write(spi, REG_PALEVEL, MASK_PALEVEL_OUTPUT_POWER,
power_level);
failed:
dev_dbg(&spi->dev, "set: illegal power level %u\n", power_level);
return -EINVAL;
}
int rf69_set_pa_ramp(struct spi_device *spi, enum pa_ramp pa_ramp)
{
static const u8 pa_ramp_map[] = {
[ramp3400] = PARAMP_3400,
[ramp2000] = PARAMP_2000,
[ramp1000] = PARAMP_1000,
[ramp500] = PARAMP_500,
[ramp250] = PARAMP_250,
[ramp125] = PARAMP_125,
[ramp100] = PARAMP_100,
[ramp62] = PARAMP_62,
[ramp50] = PARAMP_50,
[ramp40] = PARAMP_40,
[ramp31] = PARAMP_31,
[ramp25] = PARAMP_25,
[ramp20] = PARAMP_20,
[ramp15] = PARAMP_15,
[ramp10] = PARAMP_10,
};
if (unlikely(pa_ramp >= ARRAY_SIZE(pa_ramp_map))) {
dev_dbg(&spi->dev, "set: illegal pa_ramp %u\n", pa_ramp);
return -EINVAL;
}
return rf69_write_reg(spi, REG_PARAMP, pa_ramp_map[pa_ramp]);
}
int rf69_set_antenna_impedance(struct spi_device *spi,
enum antenna_impedance antenna_impedance)
{
switch (antenna_impedance) {
case fifty_ohm:
return rf69_clear_bit(spi, REG_LNA, MASK_LNA_ZIN);
case two_hundred_ohm:
return rf69_set_bit(spi, REG_LNA, MASK_LNA_ZIN);
default:
dev_dbg(&spi->dev, "set: illegal antenna impedance %u\n", antenna_impedance);
return -EINVAL;
}
}
int rf69_set_lna_gain(struct spi_device *spi, enum lna_gain lna_gain)
{
static const u8 lna_gain_map[] = {
[automatic] = LNA_GAIN_AUTO,
[max] = LNA_GAIN_MAX,
[max_minus_6] = LNA_GAIN_MAX_MINUS_6,
[max_minus_12] = LNA_GAIN_MAX_MINUS_12,
[max_minus_24] = LNA_GAIN_MAX_MINUS_24,
[max_minus_36] = LNA_GAIN_MAX_MINUS_36,
[max_minus_48] = LNA_GAIN_MAX_MINUS_48,
};
if (unlikely(lna_gain >= ARRAY_SIZE(lna_gain_map))) {
dev_dbg(&spi->dev, "set: illegal lna gain %u\n", lna_gain);
return -EINVAL;
}
return rf69_read_mod_write(spi, REG_LNA, MASK_LNA_GAIN,
lna_gain_map[lna_gain]);
}
static int rf69_set_bandwidth_intern(struct spi_device *spi, u8 reg,
enum mantisse mantisse, u8 exponent)
{
u8 bandwidth;
// check value for mantisse and exponent
if (exponent > 7) {
dev_dbg(&spi->dev, "set: illegal bandwidth exponent %u\n", exponent);
return -EINVAL;
}
if (mantisse != mantisse16 &&
mantisse != mantisse20 &&
mantisse != mantisse24) {
dev_dbg(&spi->dev, "set: illegal bandwidth mantisse %u\n", mantisse);
return -EINVAL;
}
// read old value
bandwidth = rf69_read_reg(spi, reg);
// "delete" mantisse and exponent = just keep the DCC setting
bandwidth = bandwidth & MASK_BW_DCC_FREQ;
// add new mantisse
switch (mantisse) {
case mantisse16:
bandwidth = bandwidth | BW_MANT_16;
break;
case mantisse20:
bandwidth = bandwidth | BW_MANT_20;
break;
case mantisse24:
bandwidth = bandwidth | BW_MANT_24;
break;
}
// add new exponent
bandwidth = bandwidth | exponent;
// write back
return rf69_write_reg(spi, reg, bandwidth);
}
int rf69_set_bandwidth(struct spi_device *spi, enum mantisse mantisse,
u8 exponent)
{
return rf69_set_bandwidth_intern(spi, REG_RXBW, mantisse, exponent);
}
int rf69_set_bandwidth_during_afc(struct spi_device *spi,
enum mantisse mantisse,
u8 exponent)
{
return rf69_set_bandwidth_intern(spi, REG_AFCBW, mantisse, exponent);
}
int rf69_set_ook_threshold_dec(struct spi_device *spi,
enum threshold_decrement threshold_decrement)
{
static const u8 td_map[] = {
[dec_every8th] = OOKPEAK_THRESHDEC_EVERY_8TH,
[dec_every4th] = OOKPEAK_THRESHDEC_EVERY_4TH,
[dec_every2nd] = OOKPEAK_THRESHDEC_EVERY_2ND,
[dec_once] = OOKPEAK_THRESHDEC_ONCE,
[dec_twice] = OOKPEAK_THRESHDEC_TWICE,
[dec_4times] = OOKPEAK_THRESHDEC_4_TIMES,
[dec_8times] = OOKPEAK_THRESHDEC_8_TIMES,
[dec_16times] = OOKPEAK_THRESHDEC_16_TIMES,
};
if (unlikely(threshold_decrement >= ARRAY_SIZE(td_map))) {
dev_dbg(&spi->dev, "set: illegal OOK threshold decrement %u\n",
threshold_decrement);
return -EINVAL;
}
return rf69_read_mod_write(spi, REG_OOKPEAK, MASK_OOKPEAK_THRESDEC,
td_map[threshold_decrement]);
}
int rf69_set_dio_mapping(struct spi_device *spi, u8 dio_number, u8 value)
{
u8 mask;
u8 shift;
u8 dio_addr;
u8 dio_value;
switch (dio_number) {
case 0:
mask = MASK_DIO0;
shift = SHIFT_DIO0;
dio_addr = REG_DIOMAPPING1;
break;
case 1:
mask = MASK_DIO1;
shift = SHIFT_DIO1;
dio_addr = REG_DIOMAPPING1;
break;
case 2:
mask = MASK_DIO2;
shift = SHIFT_DIO2;
dio_addr = REG_DIOMAPPING1;
break;
case 3:
mask = MASK_DIO3;
shift = SHIFT_DIO3;
dio_addr = REG_DIOMAPPING1;
break;
case 4:
mask = MASK_DIO4;
shift = SHIFT_DIO4;
dio_addr = REG_DIOMAPPING2;
break;
case 5:
mask = MASK_DIO5;
shift = SHIFT_DIO5;
dio_addr = REG_DIOMAPPING2;
break;
default:
dev_dbg(&spi->dev, "set: illegal dio number %u\n", dio_number);
return -EINVAL;
}
// read reg
dio_value = rf69_read_reg(spi, dio_addr);
// delete old value
dio_value = dio_value & ~mask;
// add new value
dio_value = dio_value | value << shift;
// write back
return rf69_write_reg(spi, dio_addr, dio_value);
}
int rf69_set_rssi_threshold(struct spi_device *spi, u8 threshold)
{
/* no value check needed - u8 exactly matches register size */
return rf69_write_reg(spi, REG_RSSITHRESH, threshold);
}
int rf69_set_preamble_length(struct spi_device *spi, u16 preamble_length)
{
int retval;
u8 msb, lsb;
/* no value check needed - u16 exactly matches register size */
/* calculate reg settings */
msb = (preamble_length & 0xff00) >> 8;
lsb = (preamble_length & 0xff);
/* transmit to chip */
retval = rf69_write_reg(spi, REG_PREAMBLE_MSB, msb);
if (retval)
return retval;
return rf69_write_reg(spi, REG_PREAMBLE_LSB, lsb);
}
int rf69_enable_sync(struct spi_device *spi)
{
return rf69_set_bit(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_SYNC_ON);
}
int rf69_disable_sync(struct spi_device *spi)
{
return rf69_clear_bit(spi, REG_SYNC_CONFIG, MASK_SYNC_CONFIG_SYNC_ON);
}
int rf69_set_fifo_fill_condition(struct spi_device *spi,
enum fifo_fill_condition fifo_fill_condition)
{
switch (fifo_fill_condition) {
case always:
return rf69_set_bit(spi, REG_SYNC_CONFIG,
MASK_SYNC_CONFIG_FIFO_FILL_CONDITION);
case after_sync_interrupt:
return rf69_clear_bit(spi, REG_SYNC_CONFIG,
MASK_SYNC_CONFIG_FIFO_FILL_CONDITION);
default:
dev_dbg(&spi->dev, "set: illegal fifo fill condition %u\n", fifo_fill_condition);
return -EINVAL;
}
}
int rf69_set_sync_size(struct spi_device *spi, u8 sync_size)
{
// check input value
if (sync_size > 0x07) {
dev_dbg(&spi->dev, "set: illegal sync size %u\n", sync_size);
return -EINVAL;
}
// write value
return rf69_read_mod_write(spi, REG_SYNC_CONFIG,
MASK_SYNC_CONFIG_SYNC_SIZE,
(sync_size << 3));
}
int rf69_set_sync_values(struct spi_device *spi, u8 sync_values[8])
{
int retval = 0;
retval += rf69_write_reg(spi, REG_SYNCVALUE1, sync_values[0]);
retval += rf69_write_reg(spi, REG_SYNCVALUE2, sync_values[1]);
retval += rf69_write_reg(spi, REG_SYNCVALUE3, sync_values[2]);
retval += rf69_write_reg(spi, REG_SYNCVALUE4, sync_values[3]);
retval += rf69_write_reg(spi, REG_SYNCVALUE5, sync_values[4]);
retval += rf69_write_reg(spi, REG_SYNCVALUE6, sync_values[5]);
retval += rf69_write_reg(spi, REG_SYNCVALUE7, sync_values[6]);
retval += rf69_write_reg(spi, REG_SYNCVALUE8, sync_values[7]);
return retval;
}
int rf69_set_packet_format(struct spi_device *spi,
enum packet_format packet_format)
{
switch (packet_format) {
case packet_length_var:
return rf69_set_bit(spi, REG_PACKETCONFIG1,
MASK_PACKETCONFIG1_PACKET_FORMAT_VARIABLE);
case packet_length_fix:
return rf69_clear_bit(spi, REG_PACKETCONFIG1,
MASK_PACKETCONFIG1_PACKET_FORMAT_VARIABLE);
default:
dev_dbg(&spi->dev, "set: illegal packet format %u\n", packet_format);
return -EINVAL;
}
}
int rf69_enable_crc(struct spi_device *spi)
{
return rf69_set_bit(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_CRC_ON);
}
int rf69_disable_crc(struct spi_device *spi)
{
return rf69_clear_bit(spi, REG_PACKETCONFIG1, MASK_PACKETCONFIG1_CRC_ON);
}
int rf69_set_address_filtering(struct spi_device *spi,
enum address_filtering address_filtering)
{
static const u8 af_map[] = {
[filtering_off] = PACKETCONFIG1_ADDRESSFILTERING_OFF,
[node_address] = PACKETCONFIG1_ADDRESSFILTERING_NODE,
[node_or_broadcast_address] =
PACKETCONFIG1_ADDRESSFILTERING_NODEBROADCAST,
};
if (unlikely(address_filtering >= ARRAY_SIZE(af_map))) {
dev_dbg(&spi->dev, "set: illegal address filtering %u\n", address_filtering);
return -EINVAL;
}
return rf69_read_mod_write(spi, REG_PACKETCONFIG1,
MASK_PACKETCONFIG1_ADDRESSFILTERING,
af_map[address_filtering]);
}
int rf69_set_payload_length(struct spi_device *spi, u8 payload_length)
{
return rf69_write_reg(spi, REG_PAYLOAD_LENGTH, payload_length);
}
int rf69_set_node_address(struct spi_device *spi, u8 node_address)
{
return rf69_write_reg(spi, REG_NODEADRS, node_address);
}
int rf69_set_broadcast_address(struct spi_device *spi, u8 broadcast_address)
{
return rf69_write_reg(spi, REG_BROADCASTADRS, broadcast_address);
}
int rf69_set_tx_start_condition(struct spi_device *spi,
enum tx_start_condition tx_start_condition)
{
switch (tx_start_condition) {
case fifo_level:
return rf69_clear_bit(spi, REG_FIFO_THRESH,
MASK_FIFO_THRESH_TXSTART);
case fifo_not_empty:
return rf69_set_bit(spi, REG_FIFO_THRESH,
MASK_FIFO_THRESH_TXSTART);
default:
dev_dbg(&spi->dev, "set: illegal tx start condition %u\n", tx_start_condition);
return -EINVAL;
}
}
int rf69_set_fifo_threshold(struct spi_device *spi, u8 threshold)
{
int retval;
/* check input value */
if (threshold & ~MASK_FIFO_THRESH_VALUE) {
dev_dbg(&spi->dev, "set: illegal fifo threshold %u\n", threshold);
return -EINVAL;
}
/* write value */
retval = rf69_read_mod_write(spi, REG_FIFO_THRESH,
MASK_FIFO_THRESH_VALUE,
threshold);
if (retval)
return retval;
/*
* access the fifo to activate new threshold
* retval (mis-) used as buffer here
*/
return rf69_read_fifo(spi, (u8 *)&retval, 1);
}
int rf69_set_dagc(struct spi_device *spi, enum dagc dagc)
{
static const u8 dagc_map[] = {
[normal_mode] = DAGC_NORMAL,
[improve] = DAGC_IMPROVED_LOWBETA0,
[improve_for_low_modulation_index] = DAGC_IMPROVED_LOWBETA1,
};
if (unlikely(dagc >= ARRAY_SIZE(dagc_map))) {
dev_dbg(&spi->dev, "set: illegal dagc %u\n", dagc);
return -EINVAL;
}
return rf69_write_reg(spi, REG_TESTDAGC, dagc_map[dagc]);
}
/*-------------------------------------------------------------------------*/
int rf69_read_fifo(struct spi_device *spi, u8 *buffer, unsigned int size)
{
int i;
struct spi_transfer transfer;
u8 local_buffer[FIFO_SIZE + 1] = {};
int retval;
if (size > FIFO_SIZE) {
dev_dbg(&spi->dev,
"read fifo: passed in buffer bigger then internal buffer\n");
return -EMSGSIZE;
}
/* prepare a bidirectional transfer */
local_buffer[0] = REG_FIFO;
memset(&transfer, 0, sizeof(transfer));
transfer.tx_buf = local_buffer;
transfer.rx_buf = local_buffer;
transfer.len = size + 1;
retval = spi_sync_transfer(spi, &transfer, 1);
/* print content read from fifo for debugging purposes */
for (i = 0; i < size; i++)
dev_dbg(&spi->dev, "%d - 0x%x\n", i, local_buffer[i + 1]);
memcpy(buffer, &local_buffer[1], size);
return retval;
}
int rf69_write_fifo(struct spi_device *spi, u8 *buffer, unsigned int size)
{
int i;
u8 local_buffer[FIFO_SIZE + 1];
if (size > FIFO_SIZE) {
dev_dbg(&spi->dev,
"write fifo: passed in buffer bigger then internal buffer\n");
return -EMSGSIZE;
}
local_buffer[0] = REG_FIFO | WRITE_BIT;
memcpy(&local_buffer[1], buffer, size);
/* print content written from fifo for debugging purposes */
for (i = 0; i < size; i++)
dev_dbg(&spi->dev, "%d - 0x%x\n", i, buffer[i]);
return spi_write(spi, local_buffer, size + 1);
}