| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2012-2016 Mentor Graphics Inc. |
| * |
| * Queued image conversion support, with tiling and rotation. |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/dma-mapping.h> |
| #include <video/imx-ipu-image-convert.h> |
| #include "ipu-prv.h" |
| |
| /* |
| * The IC Resizer has a restriction that the output frame from the |
| * resizer must be 1024 or less in both width (pixels) and height |
| * (lines). |
| * |
| * The image converter attempts to split up a conversion when |
| * the desired output (converted) frame resolution exceeds the |
| * IC resizer limit of 1024 in either dimension. |
| * |
| * If either dimension of the output frame exceeds the limit, the |
| * dimension is split into 1, 2, or 4 equal stripes, for a maximum |
| * of 4*4 or 16 tiles. A conversion is then carried out for each |
| * tile (but taking care to pass the full frame stride length to |
| * the DMA channel's parameter memory!). IDMA double-buffering is used |
| * to convert each tile back-to-back when possible (see note below |
| * when double_buffering boolean is set). |
| * |
| * Note that the input frame must be split up into the same number |
| * of tiles as the output frame: |
| * |
| * +---------+-----+ |
| * +-----+---+ | A | B | |
| * | A | B | | | | |
| * +-----+---+ --> +---------+-----+ |
| * | C | D | | C | D | |
| * +-----+---+ | | | |
| * +---------+-----+ |
| * |
| * Clockwise 90° rotations are handled by first rescaling into a |
| * reusable temporary tile buffer and then rotating with the 8x8 |
| * block rotator, writing to the correct destination: |
| * |
| * +-----+-----+ |
| * | | | |
| * +-----+---+ +---------+ | C | A | |
| * | A | B | | A,B, | | | | | |
| * +-----+---+ --> | C,D | | --> | | | |
| * | C | D | +---------+ +-----+-----+ |
| * +-----+---+ | D | B | |
| * | | | |
| * +-----+-----+ |
| * |
| * If the 8x8 block rotator is used, horizontal or vertical flipping |
| * is done during the rotation step, otherwise flipping is done |
| * during the scaling step. |
| * With rotation or flipping, tile order changes between input and |
| * output image. Tiles are numbered row major from top left to bottom |
| * right for both input and output image. |
| */ |
| |
| #define MAX_STRIPES_W 4 |
| #define MAX_STRIPES_H 4 |
| #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H) |
| |
| #define MIN_W 16 |
| #define MIN_H 8 |
| #define MAX_W 4096 |
| #define MAX_H 4096 |
| |
| enum ipu_image_convert_type { |
| IMAGE_CONVERT_IN = 0, |
| IMAGE_CONVERT_OUT, |
| }; |
| |
| struct ipu_image_convert_dma_buf { |
| void *virt; |
| dma_addr_t phys; |
| unsigned long len; |
| }; |
| |
| struct ipu_image_convert_dma_chan { |
| int in; |
| int out; |
| int rot_in; |
| int rot_out; |
| int vdi_in_p; |
| int vdi_in; |
| int vdi_in_n; |
| }; |
| |
| /* dimensions of one tile */ |
| struct ipu_image_tile { |
| u32 width; |
| u32 height; |
| u32 left; |
| u32 top; |
| /* size and strides are in bytes */ |
| u32 size; |
| u32 stride; |
| u32 rot_stride; |
| /* start Y or packed offset of this tile */ |
| u32 offset; |
| /* offset from start to tile in U plane, for planar formats */ |
| u32 u_off; |
| /* offset from start to tile in V plane, for planar formats */ |
| u32 v_off; |
| }; |
| |
| struct ipu_image_convert_image { |
| struct ipu_image base; |
| enum ipu_image_convert_type type; |
| |
| const struct ipu_image_pixfmt *fmt; |
| unsigned int stride; |
| |
| /* # of rows (horizontal stripes) if dest height is > 1024 */ |
| unsigned int num_rows; |
| /* # of columns (vertical stripes) if dest width is > 1024 */ |
| unsigned int num_cols; |
| |
| struct ipu_image_tile tile[MAX_TILES]; |
| }; |
| |
| struct ipu_image_pixfmt { |
| u32 fourcc; /* V4L2 fourcc */ |
| int bpp; /* total bpp */ |
| int uv_width_dec; /* decimation in width for U/V planes */ |
| int uv_height_dec; /* decimation in height for U/V planes */ |
| bool planar; /* planar format */ |
| bool uv_swapped; /* U and V planes are swapped */ |
| bool uv_packed; /* partial planar (U and V in same plane) */ |
| }; |
| |
| struct ipu_image_convert_ctx; |
| struct ipu_image_convert_chan; |
| struct ipu_image_convert_priv; |
| |
| struct ipu_image_convert_ctx { |
| struct ipu_image_convert_chan *chan; |
| |
| ipu_image_convert_cb_t complete; |
| void *complete_context; |
| |
| /* Source/destination image data and rotation mode */ |
| struct ipu_image_convert_image in; |
| struct ipu_image_convert_image out; |
| struct ipu_ic_csc csc; |
| enum ipu_rotate_mode rot_mode; |
| u32 downsize_coeff_h; |
| u32 downsize_coeff_v; |
| u32 image_resize_coeff_h; |
| u32 image_resize_coeff_v; |
| u32 resize_coeffs_h[MAX_STRIPES_W]; |
| u32 resize_coeffs_v[MAX_STRIPES_H]; |
| |
| /* intermediate buffer for rotation */ |
| struct ipu_image_convert_dma_buf rot_intermediate[2]; |
| |
| /* current buffer number for double buffering */ |
| int cur_buf_num; |
| |
| bool aborting; |
| struct completion aborted; |
| |
| /* can we use double-buffering for this conversion operation? */ |
| bool double_buffering; |
| /* num_rows * num_cols */ |
| unsigned int num_tiles; |
| /* next tile to process */ |
| unsigned int next_tile; |
| /* where to place converted tile in dest image */ |
| unsigned int out_tile_map[MAX_TILES]; |
| |
| struct list_head list; |
| }; |
| |
| struct ipu_image_convert_chan { |
| struct ipu_image_convert_priv *priv; |
| |
| enum ipu_ic_task ic_task; |
| const struct ipu_image_convert_dma_chan *dma_ch; |
| |
| struct ipu_ic *ic; |
| struct ipuv3_channel *in_chan; |
| struct ipuv3_channel *out_chan; |
| struct ipuv3_channel *rotation_in_chan; |
| struct ipuv3_channel *rotation_out_chan; |
| |
| /* the IPU end-of-frame irqs */ |
| int out_eof_irq; |
| int rot_out_eof_irq; |
| |
| spinlock_t irqlock; |
| |
| /* list of convert contexts */ |
| struct list_head ctx_list; |
| /* queue of conversion runs */ |
| struct list_head pending_q; |
| /* queue of completed runs */ |
| struct list_head done_q; |
| |
| /* the current conversion run */ |
| struct ipu_image_convert_run *current_run; |
| }; |
| |
| struct ipu_image_convert_priv { |
| struct ipu_image_convert_chan chan[IC_NUM_TASKS]; |
| struct ipu_soc *ipu; |
| }; |
| |
| static const struct ipu_image_convert_dma_chan |
| image_convert_dma_chan[IC_NUM_TASKS] = { |
| [IC_TASK_VIEWFINDER] = { |
| .in = IPUV3_CHANNEL_MEM_IC_PRP_VF, |
| .out = IPUV3_CHANNEL_IC_PRP_VF_MEM, |
| .rot_in = IPUV3_CHANNEL_MEM_ROT_VF, |
| .rot_out = IPUV3_CHANNEL_ROT_VF_MEM, |
| .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV, |
| .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR, |
| .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT, |
| }, |
| [IC_TASK_POST_PROCESSOR] = { |
| .in = IPUV3_CHANNEL_MEM_IC_PP, |
| .out = IPUV3_CHANNEL_IC_PP_MEM, |
| .rot_in = IPUV3_CHANNEL_MEM_ROT_PP, |
| .rot_out = IPUV3_CHANNEL_ROT_PP_MEM, |
| }, |
| }; |
| |
| static const struct ipu_image_pixfmt image_convert_formats[] = { |
| { |
| .fourcc = V4L2_PIX_FMT_RGB565, |
| .bpp = 16, |
| }, { |
| .fourcc = V4L2_PIX_FMT_RGB24, |
| .bpp = 24, |
| }, { |
| .fourcc = V4L2_PIX_FMT_BGR24, |
| .bpp = 24, |
| }, { |
| .fourcc = V4L2_PIX_FMT_RGB32, |
| .bpp = 32, |
| }, { |
| .fourcc = V4L2_PIX_FMT_BGR32, |
| .bpp = 32, |
| }, { |
| .fourcc = V4L2_PIX_FMT_XRGB32, |
| .bpp = 32, |
| }, { |
| .fourcc = V4L2_PIX_FMT_XBGR32, |
| .bpp = 32, |
| }, { |
| .fourcc = V4L2_PIX_FMT_YUYV, |
| .bpp = 16, |
| .uv_width_dec = 2, |
| .uv_height_dec = 1, |
| }, { |
| .fourcc = V4L2_PIX_FMT_UYVY, |
| .bpp = 16, |
| .uv_width_dec = 2, |
| .uv_height_dec = 1, |
| }, { |
| .fourcc = V4L2_PIX_FMT_YUV420, |
| .bpp = 12, |
| .planar = true, |
| .uv_width_dec = 2, |
| .uv_height_dec = 2, |
| }, { |
| .fourcc = V4L2_PIX_FMT_YVU420, |
| .bpp = 12, |
| .planar = true, |
| .uv_width_dec = 2, |
| .uv_height_dec = 2, |
| .uv_swapped = true, |
| }, { |
| .fourcc = V4L2_PIX_FMT_NV12, |
| .bpp = 12, |
| .planar = true, |
| .uv_width_dec = 2, |
| .uv_height_dec = 2, |
| .uv_packed = true, |
| }, { |
| .fourcc = V4L2_PIX_FMT_YUV422P, |
| .bpp = 16, |
| .planar = true, |
| .uv_width_dec = 2, |
| .uv_height_dec = 1, |
| }, { |
| .fourcc = V4L2_PIX_FMT_NV16, |
| .bpp = 16, |
| .planar = true, |
| .uv_width_dec = 2, |
| .uv_height_dec = 1, |
| .uv_packed = true, |
| }, |
| }; |
| |
| static const struct ipu_image_pixfmt *get_format(u32 fourcc) |
| { |
| const struct ipu_image_pixfmt *ret = NULL; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) { |
| if (image_convert_formats[i].fourcc == fourcc) { |
| ret = &image_convert_formats[i]; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void dump_format(struct ipu_image_convert_ctx *ctx, |
| struct ipu_image_convert_image *ic_image) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| |
| dev_dbg(priv->ipu->dev, |
| "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n", |
| chan->ic_task, ctx, |
| ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input", |
| ic_image->base.pix.width, ic_image->base.pix.height, |
| ic_image->num_cols, ic_image->num_rows, |
| ic_image->fmt->fourcc & 0xff, |
| (ic_image->fmt->fourcc >> 8) & 0xff, |
| (ic_image->fmt->fourcc >> 16) & 0xff, |
| (ic_image->fmt->fourcc >> 24) & 0xff); |
| } |
| |
| int ipu_image_convert_enum_format(int index, u32 *fourcc) |
| { |
| const struct ipu_image_pixfmt *fmt; |
| |
| if (index >= (int)ARRAY_SIZE(image_convert_formats)) |
| return -EINVAL; |
| |
| /* Format found */ |
| fmt = &image_convert_formats[index]; |
| *fourcc = fmt->fourcc; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format); |
| |
| static void free_dma_buf(struct ipu_image_convert_priv *priv, |
| struct ipu_image_convert_dma_buf *buf) |
| { |
| if (buf->virt) |
| dma_free_coherent(priv->ipu->dev, |
| buf->len, buf->virt, buf->phys); |
| buf->virt = NULL; |
| buf->phys = 0; |
| } |
| |
| static int alloc_dma_buf(struct ipu_image_convert_priv *priv, |
| struct ipu_image_convert_dma_buf *buf, |
| int size) |
| { |
| buf->len = PAGE_ALIGN(size); |
| buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys, |
| GFP_DMA | GFP_KERNEL); |
| if (!buf->virt) { |
| dev_err(priv->ipu->dev, "failed to alloc dma buffer\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static inline int num_stripes(int dim) |
| { |
| return (dim - 1) / 1024 + 1; |
| } |
| |
| /* |
| * Calculate downsizing coefficients, which are the same for all tiles, |
| * and bilinear resizing coefficients, which are used to find the best |
| * seam positions. |
| */ |
| static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx, |
| struct ipu_image *in, |
| struct ipu_image *out) |
| { |
| u32 downsized_width = in->rect.width; |
| u32 downsized_height = in->rect.height; |
| u32 downsize_coeff_v = 0; |
| u32 downsize_coeff_h = 0; |
| u32 resized_width = out->rect.width; |
| u32 resized_height = out->rect.height; |
| u32 resize_coeff_h; |
| u32 resize_coeff_v; |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| resized_width = out->rect.height; |
| resized_height = out->rect.width; |
| } |
| |
| /* Do not let invalid input lead to an endless loop below */ |
| if (WARN_ON(resized_width == 0 || resized_height == 0)) |
| return -EINVAL; |
| |
| while (downsized_width > 1024 || |
| downsized_width >= resized_width * 2) { |
| downsized_width >>= 1; |
| downsize_coeff_h++; |
| } |
| |
| while (downsized_height > 1024 || |
| downsized_height >= resized_height * 2) { |
| downsized_height >>= 1; |
| downsize_coeff_v++; |
| } |
| |
| /* |
| * Calculate the bilinear resizing coefficients that could be used if |
| * we were converting with a single tile. The bottom right output pixel |
| * should sample as close as possible to the bottom right input pixel |
| * out of the decimator, but not overshoot it: |
| */ |
| resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1); |
| resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1); |
| |
| dev_dbg(ctx->chan->priv->ipu->dev, |
| "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n", |
| __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v, |
| resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows); |
| |
| if (downsize_coeff_h > 2 || downsize_coeff_v > 2 || |
| resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff) |
| return -EINVAL; |
| |
| ctx->downsize_coeff_h = downsize_coeff_h; |
| ctx->downsize_coeff_v = downsize_coeff_v; |
| ctx->image_resize_coeff_h = resize_coeff_h; |
| ctx->image_resize_coeff_v = resize_coeff_v; |
| |
| return 0; |
| } |
| |
| #define round_closest(x, y) round_down((x) + (y)/2, (y)) |
| |
| /* |
| * Find the best aligned seam position in the inverval [out_start, out_end]. |
| * Rotation and image offsets are out of scope. |
| * |
| * @out_start: start of inverval, must be within 1024 pixels / lines |
| * of out_end |
| * @out_end: end of interval, smaller than or equal to out_edge |
| * @in_edge: input right / bottom edge |
| * @out_edge: output right / bottom edge |
| * @in_align: input alignment, either horizontal 8-byte line start address |
| * alignment, or pixel alignment due to image format |
| * @out_align: output alignment, either horizontal 8-byte line start address |
| * alignment, or pixel alignment due to image format or rotator |
| * block size |
| * @in_burst: horizontal input burst size in case of horizontal flip |
| * @out_burst: horizontal output burst size or rotator block size |
| * @downsize_coeff: downsizing section coefficient |
| * @resize_coeff: main processing section resizing coefficient |
| * @_in_seam: aligned input seam position return value |
| * @_out_seam: aligned output seam position return value |
| */ |
| static void find_best_seam(struct ipu_image_convert_ctx *ctx, |
| unsigned int out_start, |
| unsigned int out_end, |
| unsigned int in_edge, |
| unsigned int out_edge, |
| unsigned int in_align, |
| unsigned int out_align, |
| unsigned int in_burst, |
| unsigned int out_burst, |
| unsigned int downsize_coeff, |
| unsigned int resize_coeff, |
| u32 *_in_seam, |
| u32 *_out_seam) |
| { |
| struct device *dev = ctx->chan->priv->ipu->dev; |
| unsigned int out_pos; |
| /* Input / output seam position candidates */ |
| unsigned int out_seam = 0; |
| unsigned int in_seam = 0; |
| unsigned int min_diff = UINT_MAX; |
| |
| /* |
| * Output tiles must start at a multiple of 8 bytes horizontally and |
| * possibly at an even line horizontally depending on the pixel format. |
| * Only consider output aligned positions for the seam. |
| */ |
| out_start = round_up(out_start, out_align); |
| for (out_pos = out_start; out_pos < out_end; out_pos += out_align) { |
| unsigned int in_pos; |
| unsigned int in_pos_aligned; |
| unsigned int abs_diff; |
| |
| /* |
| * Tiles in the right row / bottom column may not be allowed to |
| * overshoot horizontally / vertically. out_burst may be the |
| * actual DMA burst size, or the rotator block size. |
| */ |
| if ((out_burst > 1) && (out_edge - out_pos) % out_burst) |
| continue; |
| |
| /* |
| * Input sample position, corresponding to out_pos, 19.13 fixed |
| * point. |
| */ |
| in_pos = (out_pos * resize_coeff) << downsize_coeff; |
| /* |
| * The closest input sample position that we could actually |
| * start the input tile at, 19.13 fixed point. |
| */ |
| in_pos_aligned = round_closest(in_pos, 8192U * in_align); |
| |
| if ((in_burst > 1) && |
| (in_edge - in_pos_aligned / 8192U) % in_burst) |
| continue; |
| |
| if (in_pos < in_pos_aligned) |
| abs_diff = in_pos_aligned - in_pos; |
| else |
| abs_diff = in_pos - in_pos_aligned; |
| |
| if (abs_diff < min_diff) { |
| in_seam = in_pos_aligned; |
| out_seam = out_pos; |
| min_diff = abs_diff; |
| } |
| } |
| |
| *_out_seam = out_seam; |
| /* Convert 19.13 fixed point to integer seam position */ |
| *_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U); |
| |
| dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n", |
| __func__, out_seam, out_align, out_start, out_end, |
| *_in_seam, in_align, min_diff / 8192, |
| DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192)); |
| } |
| |
| /* |
| * Tile left edges are required to be aligned to multiples of 8 bytes |
| * by the IDMAC. |
| */ |
| static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt) |
| { |
| if (fmt->planar) |
| return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec; |
| else |
| return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8; |
| } |
| |
| /* |
| * Tile top edge alignment is only limited by chroma subsampling. |
| */ |
| static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt) |
| { |
| return fmt->uv_height_dec > 1 ? 2 : 1; |
| } |
| |
| static inline u32 tile_width_align(enum ipu_image_convert_type type, |
| const struct ipu_image_pixfmt *fmt, |
| enum ipu_rotate_mode rot_mode) |
| { |
| if (type == IMAGE_CONVERT_IN) { |
| /* |
| * The IC burst reads 8 pixels at a time. Reading beyond the |
| * end of the line is usually acceptable. Those pixels are |
| * ignored, unless the IC has to write the scaled line in |
| * reverse. |
| */ |
| return (!ipu_rot_mode_is_irt(rot_mode) && |
| (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2; |
| } |
| |
| /* |
| * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled |
| * formats to guarantee 8-byte aligned line start addresses in the |
| * chroma planes when IRT is used. Align to 8x8 pixel IRT block size |
| * for all other formats. |
| */ |
| return (ipu_rot_mode_is_irt(rot_mode) && |
| fmt->planar && !fmt->uv_packed) ? |
| 8 * fmt->uv_width_dec : 8; |
| } |
| |
| static inline u32 tile_height_align(enum ipu_image_convert_type type, |
| const struct ipu_image_pixfmt *fmt, |
| enum ipu_rotate_mode rot_mode) |
| { |
| if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode)) |
| return 2; |
| |
| /* |
| * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled |
| * formats to guarantee 8-byte aligned line start addresses in the |
| * chroma planes when IRT is used. Align to 8x8 pixel IRT block size |
| * for all other formats. |
| */ |
| return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8; |
| } |
| |
| /* |
| * Fill in left position and width and for all tiles in an input column, and |
| * for all corresponding output tiles. If the 90° rotator is used, the output |
| * tiles are in a row, and output tile top position and height are set. |
| */ |
| static void fill_tile_column(struct ipu_image_convert_ctx *ctx, |
| unsigned int col, |
| struct ipu_image_convert_image *in, |
| unsigned int in_left, unsigned int in_width, |
| struct ipu_image_convert_image *out, |
| unsigned int out_left, unsigned int out_width) |
| { |
| unsigned int row, tile_idx; |
| struct ipu_image_tile *in_tile, *out_tile; |
| |
| for (row = 0; row < in->num_rows; row++) { |
| tile_idx = in->num_cols * row + col; |
| in_tile = &in->tile[tile_idx]; |
| out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; |
| |
| in_tile->left = in_left; |
| in_tile->width = in_width; |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| out_tile->top = out_left; |
| out_tile->height = out_width; |
| } else { |
| out_tile->left = out_left; |
| out_tile->width = out_width; |
| } |
| } |
| } |
| |
| /* |
| * Fill in top position and height and for all tiles in an input row, and |
| * for all corresponding output tiles. If the 90° rotator is used, the output |
| * tiles are in a column, and output tile left position and width are set. |
| */ |
| static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row, |
| struct ipu_image_convert_image *in, |
| unsigned int in_top, unsigned int in_height, |
| struct ipu_image_convert_image *out, |
| unsigned int out_top, unsigned int out_height) |
| { |
| unsigned int col, tile_idx; |
| struct ipu_image_tile *in_tile, *out_tile; |
| |
| for (col = 0; col < in->num_cols; col++) { |
| tile_idx = in->num_cols * row + col; |
| in_tile = &in->tile[tile_idx]; |
| out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; |
| |
| in_tile->top = in_top; |
| in_tile->height = in_height; |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| out_tile->left = out_top; |
| out_tile->width = out_height; |
| } else { |
| out_tile->top = out_top; |
| out_tile->height = out_height; |
| } |
| } |
| } |
| |
| /* |
| * Find the best horizontal and vertical seam positions to split into tiles. |
| * Minimize the fractional part of the input sampling position for the |
| * top / left pixels of each tile. |
| */ |
| static void find_seams(struct ipu_image_convert_ctx *ctx, |
| struct ipu_image_convert_image *in, |
| struct ipu_image_convert_image *out) |
| { |
| struct device *dev = ctx->chan->priv->ipu->dev; |
| unsigned int resized_width = out->base.rect.width; |
| unsigned int resized_height = out->base.rect.height; |
| unsigned int col; |
| unsigned int row; |
| unsigned int in_left_align = tile_left_align(in->fmt); |
| unsigned int in_top_align = tile_top_align(in->fmt); |
| unsigned int out_left_align = tile_left_align(out->fmt); |
| unsigned int out_top_align = tile_top_align(out->fmt); |
| unsigned int out_width_align = tile_width_align(out->type, out->fmt, |
| ctx->rot_mode); |
| unsigned int out_height_align = tile_height_align(out->type, out->fmt, |
| ctx->rot_mode); |
| unsigned int in_right = in->base.rect.width; |
| unsigned int in_bottom = in->base.rect.height; |
| unsigned int out_right = out->base.rect.width; |
| unsigned int out_bottom = out->base.rect.height; |
| unsigned int flipped_out_left; |
| unsigned int flipped_out_top; |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| /* Switch width/height and align top left to IRT block size */ |
| resized_width = out->base.rect.height; |
| resized_height = out->base.rect.width; |
| out_left_align = out_height_align; |
| out_top_align = out_width_align; |
| out_width_align = out_left_align; |
| out_height_align = out_top_align; |
| out_right = out->base.rect.height; |
| out_bottom = out->base.rect.width; |
| } |
| |
| for (col = in->num_cols - 1; col > 0; col--) { |
| bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) || |
| !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); |
| bool allow_out_overshoot = (col < in->num_cols - 1) && |
| !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); |
| unsigned int out_start; |
| unsigned int out_end; |
| unsigned int in_left; |
| unsigned int out_left; |
| |
| /* |
| * Align input width to burst length if the scaling step flips |
| * horizontally. |
| */ |
| |
| /* Start within 1024 pixels of the right edge */ |
| out_start = max_t(int, 0, out_right - 1024); |
| /* End before having to add more columns to the left */ |
| out_end = min_t(unsigned int, out_right, col * 1024); |
| |
| find_best_seam(ctx, out_start, out_end, |
| in_right, out_right, |
| in_left_align, out_left_align, |
| allow_in_overshoot ? 1 : 8 /* burst length */, |
| allow_out_overshoot ? 1 : out_width_align, |
| ctx->downsize_coeff_h, ctx->image_resize_coeff_h, |
| &in_left, &out_left); |
| |
| if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) |
| flipped_out_left = resized_width - out_right; |
| else |
| flipped_out_left = out_left; |
| |
| fill_tile_column(ctx, col, in, in_left, in_right - in_left, |
| out, flipped_out_left, out_right - out_left); |
| |
| dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col, |
| in_left, in_right - in_left, |
| flipped_out_left, out_right - out_left); |
| |
| in_right = in_left; |
| out_right = out_left; |
| } |
| |
| flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ? |
| resized_width - out_right : 0; |
| |
| fill_tile_column(ctx, 0, in, 0, in_right, |
| out, flipped_out_left, out_right); |
| |
| dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__, |
| in_right, flipped_out_left, out_right); |
| |
| for (row = in->num_rows - 1; row > 0; row--) { |
| bool allow_overshoot = row < in->num_rows - 1; |
| unsigned int out_start; |
| unsigned int out_end; |
| unsigned int in_top; |
| unsigned int out_top; |
| |
| /* Start within 1024 lines of the bottom edge */ |
| out_start = max_t(int, 0, out_bottom - 1024); |
| /* End before having to add more rows above */ |
| out_end = min_t(unsigned int, out_bottom, row * 1024); |
| |
| find_best_seam(ctx, out_start, out_end, |
| in_bottom, out_bottom, |
| in_top_align, out_top_align, |
| 1, allow_overshoot ? 1 : out_height_align, |
| ctx->downsize_coeff_v, ctx->image_resize_coeff_v, |
| &in_top, &out_top); |
| |
| if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ |
| ipu_rot_mode_is_irt(ctx->rot_mode)) |
| flipped_out_top = resized_height - out_bottom; |
| else |
| flipped_out_top = out_top; |
| |
| fill_tile_row(ctx, row, in, in_top, in_bottom - in_top, |
| out, flipped_out_top, out_bottom - out_top); |
| |
| dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row, |
| in_top, in_bottom - in_top, |
| flipped_out_top, out_bottom - out_top); |
| |
| in_bottom = in_top; |
| out_bottom = out_top; |
| } |
| |
| if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ |
| ipu_rot_mode_is_irt(ctx->rot_mode)) |
| flipped_out_top = resized_height - out_bottom; |
| else |
| flipped_out_top = 0; |
| |
| fill_tile_row(ctx, 0, in, 0, in_bottom, |
| out, flipped_out_top, out_bottom); |
| |
| dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__, |
| in_bottom, flipped_out_top, out_bottom); |
| } |
| |
| static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx, |
| struct ipu_image_convert_image *image) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| unsigned int i; |
| |
| for (i = 0; i < ctx->num_tiles; i++) { |
| struct ipu_image_tile *tile; |
| const unsigned int row = i / image->num_cols; |
| const unsigned int col = i % image->num_cols; |
| |
| if (image->type == IMAGE_CONVERT_OUT) |
| tile = &image->tile[ctx->out_tile_map[i]]; |
| else |
| tile = &image->tile[i]; |
| |
| tile->size = ((tile->height * image->fmt->bpp) >> 3) * |
| tile->width; |
| |
| if (image->fmt->planar) { |
| tile->stride = tile->width; |
| tile->rot_stride = tile->height; |
| } else { |
| tile->stride = |
| (image->fmt->bpp * tile->width) >> 3; |
| tile->rot_stride = |
| (image->fmt->bpp * tile->height) >> 3; |
| } |
| |
| dev_dbg(priv->ipu->dev, |
| "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n", |
| chan->ic_task, ctx, |
| image->type == IMAGE_CONVERT_IN ? "Input" : "Output", |
| row, col, |
| tile->width, tile->height, tile->left, tile->top); |
| } |
| } |
| |
| /* |
| * Use the rotation transformation to find the tile coordinates |
| * (row, col) of a tile in the destination frame that corresponds |
| * to the given tile coordinates of a source frame. The destination |
| * coordinate is then converted to a tile index. |
| */ |
| static int transform_tile_index(struct ipu_image_convert_ctx *ctx, |
| int src_row, int src_col) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| struct ipu_image_convert_image *s_image = &ctx->in; |
| struct ipu_image_convert_image *d_image = &ctx->out; |
| int dst_row, dst_col; |
| |
| /* with no rotation it's a 1:1 mapping */ |
| if (ctx->rot_mode == IPU_ROTATE_NONE) |
| return src_row * s_image->num_cols + src_col; |
| |
| /* |
| * before doing the transform, first we have to translate |
| * source row,col for an origin in the center of s_image |
| */ |
| src_row = src_row * 2 - (s_image->num_rows - 1); |
| src_col = src_col * 2 - (s_image->num_cols - 1); |
| |
| /* do the rotation transform */ |
| if (ctx->rot_mode & IPU_ROT_BIT_90) { |
| dst_col = -src_row; |
| dst_row = src_col; |
| } else { |
| dst_col = src_col; |
| dst_row = src_row; |
| } |
| |
| /* apply flip */ |
| if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) |
| dst_col = -dst_col; |
| if (ctx->rot_mode & IPU_ROT_BIT_VFLIP) |
| dst_row = -dst_row; |
| |
| dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n", |
| chan->ic_task, ctx, src_col, src_row, dst_col, dst_row); |
| |
| /* |
| * finally translate dest row,col using an origin in upper |
| * left of d_image |
| */ |
| dst_row += d_image->num_rows - 1; |
| dst_col += d_image->num_cols - 1; |
| dst_row /= 2; |
| dst_col /= 2; |
| |
| return dst_row * d_image->num_cols + dst_col; |
| } |
| |
| /* |
| * Fill the out_tile_map[] with transformed destination tile indeces. |
| */ |
| static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx) |
| { |
| struct ipu_image_convert_image *s_image = &ctx->in; |
| unsigned int row, col, tile = 0; |
| |
| for (row = 0; row < s_image->num_rows; row++) { |
| for (col = 0; col < s_image->num_cols; col++) { |
| ctx->out_tile_map[tile] = |
| transform_tile_index(ctx, row, col); |
| tile++; |
| } |
| } |
| } |
| |
| static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx, |
| struct ipu_image_convert_image *image) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| const struct ipu_image_pixfmt *fmt = image->fmt; |
| unsigned int row, col, tile = 0; |
| u32 H, top, y_stride, uv_stride; |
| u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp; |
| u32 y_row_off, y_col_off, y_off; |
| u32 y_size, uv_size; |
| |
| /* setup some convenience vars */ |
| H = image->base.pix.height; |
| |
| y_stride = image->stride; |
| uv_stride = y_stride / fmt->uv_width_dec; |
| if (fmt->uv_packed) |
| uv_stride *= 2; |
| |
| y_size = H * y_stride; |
| uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec); |
| |
| for (row = 0; row < image->num_rows; row++) { |
| top = image->tile[tile].top; |
| y_row_off = top * y_stride; |
| uv_row_off = (top * uv_stride) / fmt->uv_height_dec; |
| |
| for (col = 0; col < image->num_cols; col++) { |
| y_col_off = image->tile[tile].left; |
| uv_col_off = y_col_off / fmt->uv_width_dec; |
| if (fmt->uv_packed) |
| uv_col_off *= 2; |
| |
| y_off = y_row_off + y_col_off; |
| uv_off = uv_row_off + uv_col_off; |
| |
| u_off = y_size - y_off + uv_off; |
| v_off = (fmt->uv_packed) ? 0 : u_off + uv_size; |
| if (fmt->uv_swapped) { |
| tmp = u_off; |
| u_off = v_off; |
| v_off = tmp; |
| } |
| |
| image->tile[tile].offset = y_off; |
| image->tile[tile].u_off = u_off; |
| image->tile[tile++].v_off = v_off; |
| |
| if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) { |
| dev_err(priv->ipu->dev, |
| "task %u: ctx %p: %s@[%d,%d]: " |
| "y_off %08x, u_off %08x, v_off %08x\n", |
| chan->ic_task, ctx, |
| image->type == IMAGE_CONVERT_IN ? |
| "Input" : "Output", row, col, |
| y_off, u_off, v_off); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx, |
| struct ipu_image_convert_image *image) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| const struct ipu_image_pixfmt *fmt = image->fmt; |
| unsigned int row, col, tile = 0; |
| u32 bpp, stride, offset; |
| u32 row_off, col_off; |
| |
| /* setup some convenience vars */ |
| stride = image->stride; |
| bpp = fmt->bpp; |
| |
| for (row = 0; row < image->num_rows; row++) { |
| row_off = image->tile[tile].top * stride; |
| |
| for (col = 0; col < image->num_cols; col++) { |
| col_off = (image->tile[tile].left * bpp) >> 3; |
| |
| offset = row_off + col_off; |
| |
| image->tile[tile].offset = offset; |
| image->tile[tile].u_off = 0; |
| image->tile[tile++].v_off = 0; |
| |
| if (offset & 0x7) { |
| dev_err(priv->ipu->dev, |
| "task %u: ctx %p: %s@[%d,%d]: " |
| "phys %08x\n", |
| chan->ic_task, ctx, |
| image->type == IMAGE_CONVERT_IN ? |
| "Input" : "Output", row, col, |
| row_off + col_off); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx, |
| struct ipu_image_convert_image *image) |
| { |
| if (image->fmt->planar) |
| return calc_tile_offsets_planar(ctx, image); |
| |
| return calc_tile_offsets_packed(ctx, image); |
| } |
| |
| /* |
| * Calculate the resizing ratio for the IC main processing section given input |
| * size, fixed downsizing coefficient, and output size. |
| * Either round to closest for the next tile's first pixel to minimize seams |
| * and distortion (for all but right column / bottom row), or round down to |
| * avoid sampling beyond the edges of the input image for this tile's last |
| * pixel. |
| * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff. |
| */ |
| static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff, |
| u32 output_size, bool allow_overshoot) |
| { |
| u32 downsized = input_size >> downsize_coeff; |
| |
| if (allow_overshoot) |
| return DIV_ROUND_CLOSEST(8192 * downsized, output_size); |
| else |
| return 8192 * (downsized - 1) / (output_size - 1); |
| } |
| |
| /* |
| * Slightly modify resize coefficients per tile to hide the bilinear |
| * interpolator reset at tile borders, shifting the right / bottom edge |
| * by up to a half input pixel. This removes noticeable seams between |
| * tiles at higher upscaling factors. |
| */ |
| static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| struct ipu_image_tile *in_tile, *out_tile; |
| unsigned int col, row, tile_idx; |
| unsigned int last_output; |
| |
| for (col = 0; col < ctx->in.num_cols; col++) { |
| bool closest = (col < ctx->in.num_cols - 1) && |
| !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); |
| u32 resized_width; |
| u32 resize_coeff_h; |
| |
| tile_idx = col; |
| in_tile = &ctx->in.tile[tile_idx]; |
| out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) |
| resized_width = out_tile->height; |
| else |
| resized_width = out_tile->width; |
| |
| resize_coeff_h = calc_resize_coeff(in_tile->width, |
| ctx->downsize_coeff_h, |
| resized_width, closest); |
| |
| dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n", |
| __func__, col, resize_coeff_h); |
| |
| |
| for (row = 0; row < ctx->in.num_rows; row++) { |
| tile_idx = row * ctx->in.num_cols + col; |
| in_tile = &ctx->in.tile[tile_idx]; |
| out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; |
| |
| /* |
| * With the horizontal scaling factor known, round up |
| * resized width (output width or height) to burst size. |
| */ |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) |
| out_tile->height = round_up(resized_width, 8); |
| else |
| out_tile->width = round_up(resized_width, 8); |
| |
| /* |
| * Calculate input width from the last accessed input |
| * pixel given resized width and scaling coefficients. |
| * Round up to burst size. |
| */ |
| last_output = round_up(resized_width, 8) - 1; |
| if (closest) |
| last_output++; |
| in_tile->width = round_up( |
| (DIV_ROUND_UP(last_output * resize_coeff_h, |
| 8192) + 1) |
| << ctx->downsize_coeff_h, 8); |
| } |
| |
| ctx->resize_coeffs_h[col] = resize_coeff_h; |
| } |
| |
| for (row = 0; row < ctx->in.num_rows; row++) { |
| bool closest = (row < ctx->in.num_rows - 1) && |
| !(ctx->rot_mode & IPU_ROT_BIT_VFLIP); |
| u32 resized_height; |
| u32 resize_coeff_v; |
| |
| tile_idx = row * ctx->in.num_cols; |
| in_tile = &ctx->in.tile[tile_idx]; |
| out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) |
| resized_height = out_tile->width; |
| else |
| resized_height = out_tile->height; |
| |
| resize_coeff_v = calc_resize_coeff(in_tile->height, |
| ctx->downsize_coeff_v, |
| resized_height, closest); |
| |
| dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n", |
| __func__, row, resize_coeff_v); |
| |
| for (col = 0; col < ctx->in.num_cols; col++) { |
| tile_idx = row * ctx->in.num_cols + col; |
| in_tile = &ctx->in.tile[tile_idx]; |
| out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; |
| |
| /* |
| * With the vertical scaling factor known, round up |
| * resized height (output width or height) to IDMAC |
| * limitations. |
| */ |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) |
| out_tile->width = round_up(resized_height, 2); |
| else |
| out_tile->height = round_up(resized_height, 2); |
| |
| /* |
| * Calculate input width from the last accessed input |
| * pixel given resized height and scaling coefficients. |
| * Align to IDMAC restrictions. |
| */ |
| last_output = round_up(resized_height, 2) - 1; |
| if (closest) |
| last_output++; |
| in_tile->height = round_up( |
| (DIV_ROUND_UP(last_output * resize_coeff_v, |
| 8192) + 1) |
| << ctx->downsize_coeff_v, 2); |
| } |
| |
| ctx->resize_coeffs_v[row] = resize_coeff_v; |
| } |
| } |
| |
| /* |
| * return the number of runs in given queue (pending_q or done_q) |
| * for this context. hold irqlock when calling. |
| */ |
| static int get_run_count(struct ipu_image_convert_ctx *ctx, |
| struct list_head *q) |
| { |
| struct ipu_image_convert_run *run; |
| int count = 0; |
| |
| lockdep_assert_held(&ctx->chan->irqlock); |
| |
| list_for_each_entry(run, q, list) { |
| if (run->ctx == ctx) |
| count++; |
| } |
| |
| return count; |
| } |
| |
| static void convert_stop(struct ipu_image_convert_run *run) |
| { |
| struct ipu_image_convert_ctx *ctx = run->ctx; |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| |
| dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n", |
| __func__, chan->ic_task, ctx, run); |
| |
| /* disable IC tasks and the channels */ |
| ipu_ic_task_disable(chan->ic); |
| ipu_idmac_disable_channel(chan->in_chan); |
| ipu_idmac_disable_channel(chan->out_chan); |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| ipu_idmac_disable_channel(chan->rotation_in_chan); |
| ipu_idmac_disable_channel(chan->rotation_out_chan); |
| ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan); |
| } |
| |
| ipu_ic_disable(chan->ic); |
| } |
| |
| static void init_idmac_channel(struct ipu_image_convert_ctx *ctx, |
| struct ipuv3_channel *channel, |
| struct ipu_image_convert_image *image, |
| enum ipu_rotate_mode rot_mode, |
| bool rot_swap_width_height, |
| unsigned int tile) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| unsigned int burst_size; |
| u32 width, height, stride; |
| dma_addr_t addr0, addr1 = 0; |
| struct ipu_image tile_image; |
| unsigned int tile_idx[2]; |
| |
| if (image->type == IMAGE_CONVERT_OUT) { |
| tile_idx[0] = ctx->out_tile_map[tile]; |
| tile_idx[1] = ctx->out_tile_map[1]; |
| } else { |
| tile_idx[0] = tile; |
| tile_idx[1] = 1; |
| } |
| |
| if (rot_swap_width_height) { |
| width = image->tile[tile_idx[0]].height; |
| height = image->tile[tile_idx[0]].width; |
| stride = image->tile[tile_idx[0]].rot_stride; |
| addr0 = ctx->rot_intermediate[0].phys; |
| if (ctx->double_buffering) |
| addr1 = ctx->rot_intermediate[1].phys; |
| } else { |
| width = image->tile[tile_idx[0]].width; |
| height = image->tile[tile_idx[0]].height; |
| stride = image->stride; |
| addr0 = image->base.phys0 + |
| image->tile[tile_idx[0]].offset; |
| if (ctx->double_buffering) |
| addr1 = image->base.phys0 + |
| image->tile[tile_idx[1]].offset; |
| } |
| |
| ipu_cpmem_zero(channel); |
| |
| memset(&tile_image, 0, sizeof(tile_image)); |
| tile_image.pix.width = tile_image.rect.width = width; |
| tile_image.pix.height = tile_image.rect.height = height; |
| tile_image.pix.bytesperline = stride; |
| tile_image.pix.pixelformat = image->fmt->fourcc; |
| tile_image.phys0 = addr0; |
| tile_image.phys1 = addr1; |
| if (image->fmt->planar && !rot_swap_width_height) { |
| tile_image.u_offset = image->tile[tile_idx[0]].u_off; |
| tile_image.v_offset = image->tile[tile_idx[0]].v_off; |
| } |
| |
| ipu_cpmem_set_image(channel, &tile_image); |
| |
| if (rot_mode) |
| ipu_cpmem_set_rotation(channel, rot_mode); |
| |
| /* |
| * Skip writing U and V components to odd rows in the output |
| * channels for planar 4:2:0. |
| */ |
| if ((channel == chan->out_chan || |
| channel == chan->rotation_out_chan) && |
| image->fmt->planar && image->fmt->uv_height_dec == 2) |
| ipu_cpmem_skip_odd_chroma_rows(channel); |
| |
| if (channel == chan->rotation_in_chan || |
| channel == chan->rotation_out_chan) { |
| burst_size = 8; |
| ipu_cpmem_set_block_mode(channel); |
| } else |
| burst_size = (width % 16) ? 8 : 16; |
| |
| ipu_cpmem_set_burstsize(channel, burst_size); |
| |
| ipu_ic_task_idma_init(chan->ic, channel, width, height, |
| burst_size, rot_mode); |
| |
| /* |
| * Setting a non-zero AXI ID collides with the PRG AXI snooping, so |
| * only do this when there is no PRG present. |
| */ |
| if (!channel->ipu->prg_priv) |
| ipu_cpmem_set_axi_id(channel, 1); |
| |
| ipu_idmac_set_double_buffer(channel, ctx->double_buffering); |
| } |
| |
| static int convert_start(struct ipu_image_convert_run *run, unsigned int tile) |
| { |
| struct ipu_image_convert_ctx *ctx = run->ctx; |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| struct ipu_image_convert_image *s_image = &ctx->in; |
| struct ipu_image_convert_image *d_image = &ctx->out; |
| unsigned int dst_tile = ctx->out_tile_map[tile]; |
| unsigned int dest_width, dest_height; |
| unsigned int col, row; |
| u32 rsc; |
| int ret; |
| |
| dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n", |
| __func__, chan->ic_task, ctx, run, tile, dst_tile); |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| /* swap width/height for resizer */ |
| dest_width = d_image->tile[dst_tile].height; |
| dest_height = d_image->tile[dst_tile].width; |
| } else { |
| dest_width = d_image->tile[dst_tile].width; |
| dest_height = d_image->tile[dst_tile].height; |
| } |
| |
| row = tile / s_image->num_cols; |
| col = tile % s_image->num_cols; |
| |
| rsc = (ctx->downsize_coeff_v << 30) | |
| (ctx->resize_coeffs_v[row] << 16) | |
| (ctx->downsize_coeff_h << 14) | |
| (ctx->resize_coeffs_h[col]); |
| |
| dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n", |
| __func__, s_image->tile[tile].width, |
| s_image->tile[tile].height, dest_width, dest_height, rsc); |
| |
| /* setup the IC resizer and CSC */ |
| ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc, |
| s_image->tile[tile].width, |
| s_image->tile[tile].height, |
| dest_width, |
| dest_height, |
| rsc); |
| if (ret) { |
| dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret); |
| return ret; |
| } |
| |
| /* init the source MEM-->IC PP IDMAC channel */ |
| init_idmac_channel(ctx, chan->in_chan, s_image, |
| IPU_ROTATE_NONE, false, tile); |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| /* init the IC PP-->MEM IDMAC channel */ |
| init_idmac_channel(ctx, chan->out_chan, d_image, |
| IPU_ROTATE_NONE, true, tile); |
| |
| /* init the MEM-->IC PP ROT IDMAC channel */ |
| init_idmac_channel(ctx, chan->rotation_in_chan, d_image, |
| ctx->rot_mode, true, tile); |
| |
| /* init the destination IC PP ROT-->MEM IDMAC channel */ |
| init_idmac_channel(ctx, chan->rotation_out_chan, d_image, |
| IPU_ROTATE_NONE, false, tile); |
| |
| /* now link IC PP-->MEM to MEM-->IC PP ROT */ |
| ipu_idmac_link(chan->out_chan, chan->rotation_in_chan); |
| } else { |
| /* init the destination IC PP-->MEM IDMAC channel */ |
| init_idmac_channel(ctx, chan->out_chan, d_image, |
| ctx->rot_mode, false, tile); |
| } |
| |
| /* enable the IC */ |
| ipu_ic_enable(chan->ic); |
| |
| /* set buffers ready */ |
| ipu_idmac_select_buffer(chan->in_chan, 0); |
| ipu_idmac_select_buffer(chan->out_chan, 0); |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) |
| ipu_idmac_select_buffer(chan->rotation_out_chan, 0); |
| if (ctx->double_buffering) { |
| ipu_idmac_select_buffer(chan->in_chan, 1); |
| ipu_idmac_select_buffer(chan->out_chan, 1); |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) |
| ipu_idmac_select_buffer(chan->rotation_out_chan, 1); |
| } |
| |
| /* enable the channels! */ |
| ipu_idmac_enable_channel(chan->in_chan); |
| ipu_idmac_enable_channel(chan->out_chan); |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| ipu_idmac_enable_channel(chan->rotation_in_chan); |
| ipu_idmac_enable_channel(chan->rotation_out_chan); |
| } |
| |
| ipu_ic_task_enable(chan->ic); |
| |
| ipu_cpmem_dump(chan->in_chan); |
| ipu_cpmem_dump(chan->out_chan); |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| ipu_cpmem_dump(chan->rotation_in_chan); |
| ipu_cpmem_dump(chan->rotation_out_chan); |
| } |
| |
| ipu_dump(priv->ipu); |
| |
| return 0; |
| } |
| |
| /* hold irqlock when calling */ |
| static int do_run(struct ipu_image_convert_run *run) |
| { |
| struct ipu_image_convert_ctx *ctx = run->ctx; |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| |
| lockdep_assert_held(&chan->irqlock); |
| |
| ctx->in.base.phys0 = run->in_phys; |
| ctx->out.base.phys0 = run->out_phys; |
| |
| ctx->cur_buf_num = 0; |
| ctx->next_tile = 1; |
| |
| /* remove run from pending_q and set as current */ |
| list_del(&run->list); |
| chan->current_run = run; |
| |
| return convert_start(run, 0); |
| } |
| |
| /* hold irqlock when calling */ |
| static void run_next(struct ipu_image_convert_chan *chan) |
| { |
| struct ipu_image_convert_priv *priv = chan->priv; |
| struct ipu_image_convert_run *run, *tmp; |
| int ret; |
| |
| lockdep_assert_held(&chan->irqlock); |
| |
| list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { |
| /* skip contexts that are aborting */ |
| if (run->ctx->aborting) { |
| dev_dbg(priv->ipu->dev, |
| "%s: task %u: skipping aborting ctx %p run %p\n", |
| __func__, chan->ic_task, run->ctx, run); |
| continue; |
| } |
| |
| ret = do_run(run); |
| if (!ret) |
| break; |
| |
| /* |
| * something went wrong with start, add the run |
| * to done q and continue to the next run in the |
| * pending q. |
| */ |
| run->status = ret; |
| list_add_tail(&run->list, &chan->done_q); |
| chan->current_run = NULL; |
| } |
| } |
| |
| static void empty_done_q(struct ipu_image_convert_chan *chan) |
| { |
| struct ipu_image_convert_priv *priv = chan->priv; |
| struct ipu_image_convert_run *run; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->irqlock, flags); |
| |
| while (!list_empty(&chan->done_q)) { |
| run = list_entry(chan->done_q.next, |
| struct ipu_image_convert_run, |
| list); |
| |
| list_del(&run->list); |
| |
| dev_dbg(priv->ipu->dev, |
| "%s: task %u: completing ctx %p run %p with %d\n", |
| __func__, chan->ic_task, run->ctx, run, run->status); |
| |
| /* call the completion callback and free the run */ |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| run->ctx->complete(run, run->ctx->complete_context); |
| spin_lock_irqsave(&chan->irqlock, flags); |
| } |
| |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| } |
| |
| /* |
| * the bottom half thread clears out the done_q, calling the |
| * completion handler for each. |
| */ |
| static irqreturn_t do_bh(int irq, void *dev_id) |
| { |
| struct ipu_image_convert_chan *chan = dev_id; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| struct ipu_image_convert_ctx *ctx; |
| unsigned long flags; |
| |
| dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__, |
| chan->ic_task); |
| |
| empty_done_q(chan); |
| |
| spin_lock_irqsave(&chan->irqlock, flags); |
| |
| /* |
| * the done_q is cleared out, signal any contexts |
| * that are aborting that abort can complete. |
| */ |
| list_for_each_entry(ctx, &chan->ctx_list, list) { |
| if (ctx->aborting) { |
| dev_dbg(priv->ipu->dev, |
| "%s: task %u: signaling abort for ctx %p\n", |
| __func__, chan->ic_task, ctx); |
| complete_all(&ctx->aborted); |
| } |
| } |
| |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| |
| dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__, |
| chan->ic_task); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx) |
| { |
| unsigned int cur_tile = ctx->next_tile - 1; |
| unsigned int next_tile = ctx->next_tile; |
| |
| if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] != |
| ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] || |
| ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] != |
| ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] || |
| ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width || |
| ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height || |
| ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width || |
| ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height) |
| return true; |
| |
| return false; |
| } |
| |
| /* hold irqlock when calling */ |
| static irqreturn_t do_irq(struct ipu_image_convert_run *run) |
| { |
| struct ipu_image_convert_ctx *ctx = run->ctx; |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_tile *src_tile, *dst_tile; |
| struct ipu_image_convert_image *s_image = &ctx->in; |
| struct ipu_image_convert_image *d_image = &ctx->out; |
| struct ipuv3_channel *outch; |
| unsigned int dst_idx; |
| |
| lockdep_assert_held(&chan->irqlock); |
| |
| outch = ipu_rot_mode_is_irt(ctx->rot_mode) ? |
| chan->rotation_out_chan : chan->out_chan; |
| |
| /* |
| * It is difficult to stop the channel DMA before the channels |
| * enter the paused state. Without double-buffering the channels |
| * are always in a paused state when the EOF irq occurs, so it |
| * is safe to stop the channels now. For double-buffering we |
| * just ignore the abort until the operation completes, when it |
| * is safe to shut down. |
| */ |
| if (ctx->aborting && !ctx->double_buffering) { |
| convert_stop(run); |
| run->status = -EIO; |
| goto done; |
| } |
| |
| if (ctx->next_tile == ctx->num_tiles) { |
| /* |
| * the conversion is complete |
| */ |
| convert_stop(run); |
| run->status = 0; |
| goto done; |
| } |
| |
| /* |
| * not done, place the next tile buffers. |
| */ |
| if (!ctx->double_buffering) { |
| if (ic_settings_changed(ctx)) { |
| convert_stop(run); |
| convert_start(run, ctx->next_tile); |
| } else { |
| src_tile = &s_image->tile[ctx->next_tile]; |
| dst_idx = ctx->out_tile_map[ctx->next_tile]; |
| dst_tile = &d_image->tile[dst_idx]; |
| |
| ipu_cpmem_set_buffer(chan->in_chan, 0, |
| s_image->base.phys0 + |
| src_tile->offset); |
| ipu_cpmem_set_buffer(outch, 0, |
| d_image->base.phys0 + |
| dst_tile->offset); |
| if (s_image->fmt->planar) |
| ipu_cpmem_set_uv_offset(chan->in_chan, |
| src_tile->u_off, |
| src_tile->v_off); |
| if (d_image->fmt->planar) |
| ipu_cpmem_set_uv_offset(outch, |
| dst_tile->u_off, |
| dst_tile->v_off); |
| |
| ipu_idmac_select_buffer(chan->in_chan, 0); |
| ipu_idmac_select_buffer(outch, 0); |
| } |
| } else if (ctx->next_tile < ctx->num_tiles - 1) { |
| |
| src_tile = &s_image->tile[ctx->next_tile + 1]; |
| dst_idx = ctx->out_tile_map[ctx->next_tile + 1]; |
| dst_tile = &d_image->tile[dst_idx]; |
| |
| ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num, |
| s_image->base.phys0 + src_tile->offset); |
| ipu_cpmem_set_buffer(outch, ctx->cur_buf_num, |
| d_image->base.phys0 + dst_tile->offset); |
| |
| ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num); |
| ipu_idmac_select_buffer(outch, ctx->cur_buf_num); |
| |
| ctx->cur_buf_num ^= 1; |
| } |
| |
| ctx->next_tile++; |
| return IRQ_HANDLED; |
| done: |
| list_add_tail(&run->list, &chan->done_q); |
| chan->current_run = NULL; |
| run_next(chan); |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static irqreturn_t norotate_irq(int irq, void *data) |
| { |
| struct ipu_image_convert_chan *chan = data; |
| struct ipu_image_convert_ctx *ctx; |
| struct ipu_image_convert_run *run; |
| unsigned long flags; |
| irqreturn_t ret; |
| |
| spin_lock_irqsave(&chan->irqlock, flags); |
| |
| /* get current run and its context */ |
| run = chan->current_run; |
| if (!run) { |
| ret = IRQ_NONE; |
| goto out; |
| } |
| |
| ctx = run->ctx; |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| /* this is a rotation operation, just ignore */ |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| ret = do_irq(run); |
| out: |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| return ret; |
| } |
| |
| static irqreturn_t rotate_irq(int irq, void *data) |
| { |
| struct ipu_image_convert_chan *chan = data; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| struct ipu_image_convert_ctx *ctx; |
| struct ipu_image_convert_run *run; |
| unsigned long flags; |
| irqreturn_t ret; |
| |
| spin_lock_irqsave(&chan->irqlock, flags); |
| |
| /* get current run and its context */ |
| run = chan->current_run; |
| if (!run) { |
| ret = IRQ_NONE; |
| goto out; |
| } |
| |
| ctx = run->ctx; |
| |
| if (!ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| /* this was NOT a rotation operation, shouldn't happen */ |
| dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n"); |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| ret = do_irq(run); |
| out: |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| return ret; |
| } |
| |
| /* |
| * try to force the completion of runs for this ctx. Called when |
| * abort wait times out in ipu_image_convert_abort(). |
| */ |
| static void force_abort(struct ipu_image_convert_ctx *ctx) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_run *run; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->irqlock, flags); |
| |
| run = chan->current_run; |
| if (run && run->ctx == ctx) { |
| convert_stop(run); |
| run->status = -EIO; |
| list_add_tail(&run->list, &chan->done_q); |
| chan->current_run = NULL; |
| run_next(chan); |
| } |
| |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| |
| empty_done_q(chan); |
| } |
| |
| static void release_ipu_resources(struct ipu_image_convert_chan *chan) |
| { |
| if (chan->out_eof_irq >= 0) |
| free_irq(chan->out_eof_irq, chan); |
| if (chan->rot_out_eof_irq >= 0) |
| free_irq(chan->rot_out_eof_irq, chan); |
| |
| if (!IS_ERR_OR_NULL(chan->in_chan)) |
| ipu_idmac_put(chan->in_chan); |
| if (!IS_ERR_OR_NULL(chan->out_chan)) |
| ipu_idmac_put(chan->out_chan); |
| if (!IS_ERR_OR_NULL(chan->rotation_in_chan)) |
| ipu_idmac_put(chan->rotation_in_chan); |
| if (!IS_ERR_OR_NULL(chan->rotation_out_chan)) |
| ipu_idmac_put(chan->rotation_out_chan); |
| if (!IS_ERR_OR_NULL(chan->ic)) |
| ipu_ic_put(chan->ic); |
| |
| chan->in_chan = chan->out_chan = chan->rotation_in_chan = |
| chan->rotation_out_chan = NULL; |
| chan->out_eof_irq = chan->rot_out_eof_irq = -1; |
| } |
| |
| static int get_ipu_resources(struct ipu_image_convert_chan *chan) |
| { |
| const struct ipu_image_convert_dma_chan *dma = chan->dma_ch; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| int ret; |
| |
| /* get IC */ |
| chan->ic = ipu_ic_get(priv->ipu, chan->ic_task); |
| if (IS_ERR(chan->ic)) { |
| dev_err(priv->ipu->dev, "could not acquire IC\n"); |
| ret = PTR_ERR(chan->ic); |
| goto err; |
| } |
| |
| /* get IDMAC channels */ |
| chan->in_chan = ipu_idmac_get(priv->ipu, dma->in); |
| chan->out_chan = ipu_idmac_get(priv->ipu, dma->out); |
| if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) { |
| dev_err(priv->ipu->dev, "could not acquire idmac channels\n"); |
| ret = -EBUSY; |
| goto err; |
| } |
| |
| chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in); |
| chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out); |
| if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) { |
| dev_err(priv->ipu->dev, |
| "could not acquire idmac rotation channels\n"); |
| ret = -EBUSY; |
| goto err; |
| } |
| |
| /* acquire the EOF interrupts */ |
| chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu, |
| chan->out_chan, |
| IPU_IRQ_EOF); |
| |
| ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh, |
| 0, "ipu-ic", chan); |
| if (ret < 0) { |
| dev_err(priv->ipu->dev, "could not acquire irq %d\n", |
| chan->out_eof_irq); |
| chan->out_eof_irq = -1; |
| goto err; |
| } |
| |
| chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu, |
| chan->rotation_out_chan, |
| IPU_IRQ_EOF); |
| |
| ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh, |
| 0, "ipu-ic", chan); |
| if (ret < 0) { |
| dev_err(priv->ipu->dev, "could not acquire irq %d\n", |
| chan->rot_out_eof_irq); |
| chan->rot_out_eof_irq = -1; |
| goto err; |
| } |
| |
| return 0; |
| err: |
| release_ipu_resources(chan); |
| return ret; |
| } |
| |
| static int fill_image(struct ipu_image_convert_ctx *ctx, |
| struct ipu_image_convert_image *ic_image, |
| struct ipu_image *image, |
| enum ipu_image_convert_type type) |
| { |
| struct ipu_image_convert_priv *priv = ctx->chan->priv; |
| |
| ic_image->base = *image; |
| ic_image->type = type; |
| |
| ic_image->fmt = get_format(image->pix.pixelformat); |
| if (!ic_image->fmt) { |
| dev_err(priv->ipu->dev, "pixelformat not supported for %s\n", |
| type == IMAGE_CONVERT_OUT ? "Output" : "Input"); |
| return -EINVAL; |
| } |
| |
| if (ic_image->fmt->planar) |
| ic_image->stride = ic_image->base.pix.width; |
| else |
| ic_image->stride = ic_image->base.pix.bytesperline; |
| |
| return 0; |
| } |
| |
| /* borrowed from drivers/media/v4l2-core/v4l2-common.c */ |
| static unsigned int clamp_align(unsigned int x, unsigned int min, |
| unsigned int max, unsigned int align) |
| { |
| /* Bits that must be zero to be aligned */ |
| unsigned int mask = ~((1 << align) - 1); |
| |
| /* Clamp to aligned min and max */ |
| x = clamp(x, (min + ~mask) & mask, max & mask); |
| |
| /* Round to nearest aligned value */ |
| if (align) |
| x = (x + (1 << (align - 1))) & mask; |
| |
| return x; |
| } |
| |
| /* Adjusts input/output images to IPU restrictions */ |
| void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out, |
| enum ipu_rotate_mode rot_mode) |
| { |
| const struct ipu_image_pixfmt *infmt, *outfmt; |
| u32 w_align_out, h_align_out; |
| u32 w_align_in, h_align_in; |
| |
| infmt = get_format(in->pix.pixelformat); |
| outfmt = get_format(out->pix.pixelformat); |
| |
| /* set some default pixel formats if needed */ |
| if (!infmt) { |
| in->pix.pixelformat = V4L2_PIX_FMT_RGB24; |
| infmt = get_format(V4L2_PIX_FMT_RGB24); |
| } |
| if (!outfmt) { |
| out->pix.pixelformat = V4L2_PIX_FMT_RGB24; |
| outfmt = get_format(V4L2_PIX_FMT_RGB24); |
| } |
| |
| /* image converter does not handle fields */ |
| in->pix.field = out->pix.field = V4L2_FIELD_NONE; |
| |
| /* resizer cannot downsize more than 4:1 */ |
| if (ipu_rot_mode_is_irt(rot_mode)) { |
| out->pix.height = max_t(__u32, out->pix.height, |
| in->pix.width / 4); |
| out->pix.width = max_t(__u32, out->pix.width, |
| in->pix.height / 4); |
| } else { |
| out->pix.width = max_t(__u32, out->pix.width, |
| in->pix.width / 4); |
| out->pix.height = max_t(__u32, out->pix.height, |
| in->pix.height / 4); |
| } |
| |
| /* align input width/height */ |
| w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt, |
| rot_mode)); |
| h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt, |
| rot_mode)); |
| in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, |
| w_align_in); |
| in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, |
| h_align_in); |
| |
| /* align output width/height */ |
| w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt, |
| rot_mode)); |
| h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt, |
| rot_mode)); |
| out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, |
| w_align_out); |
| out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, |
| h_align_out); |
| |
| /* set input/output strides and image sizes */ |
| in->pix.bytesperline = infmt->planar ? |
| clamp_align(in->pix.width, 2 << w_align_in, MAX_W, |
| w_align_in) : |
| clamp_align((in->pix.width * infmt->bpp) >> 3, |
| ((2 << w_align_in) * infmt->bpp) >> 3, |
| (MAX_W * infmt->bpp) >> 3, |
| w_align_in); |
| in->pix.sizeimage = infmt->planar ? |
| (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 : |
| in->pix.height * in->pix.bytesperline; |
| out->pix.bytesperline = outfmt->planar ? out->pix.width : |
| (out->pix.width * outfmt->bpp) >> 3; |
| out->pix.sizeimage = outfmt->planar ? |
| (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 : |
| out->pix.height * out->pix.bytesperline; |
| } |
| EXPORT_SYMBOL_GPL(ipu_image_convert_adjust); |
| |
| /* |
| * this is used by ipu_image_convert_prepare() to verify set input and |
| * output images are valid before starting the conversion. Clients can |
| * also call it before calling ipu_image_convert_prepare(). |
| */ |
| int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out, |
| enum ipu_rotate_mode rot_mode) |
| { |
| struct ipu_image testin, testout; |
| |
| testin = *in; |
| testout = *out; |
| |
| ipu_image_convert_adjust(&testin, &testout, rot_mode); |
| |
| if (testin.pix.width != in->pix.width || |
| testin.pix.height != in->pix.height || |
| testout.pix.width != out->pix.width || |
| testout.pix.height != out->pix.height) |
| return -EINVAL; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(ipu_image_convert_verify); |
| |
| /* |
| * Call ipu_image_convert_prepare() to prepare for the conversion of |
| * given images and rotation mode. Returns a new conversion context. |
| */ |
| struct ipu_image_convert_ctx * |
| ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task, |
| struct ipu_image *in, struct ipu_image *out, |
| enum ipu_rotate_mode rot_mode, |
| ipu_image_convert_cb_t complete, |
| void *complete_context) |
| { |
| struct ipu_image_convert_priv *priv = ipu->image_convert_priv; |
| struct ipu_image_convert_image *s_image, *d_image; |
| struct ipu_image_convert_chan *chan; |
| struct ipu_image_convert_ctx *ctx; |
| unsigned long flags; |
| unsigned int i; |
| bool get_res; |
| int ret; |
| |
| if (!in || !out || !complete || |
| (ic_task != IC_TASK_VIEWFINDER && |
| ic_task != IC_TASK_POST_PROCESSOR)) |
| return ERR_PTR(-EINVAL); |
| |
| /* verify the in/out images before continuing */ |
| ret = ipu_image_convert_verify(in, out, rot_mode); |
| if (ret) { |
| dev_err(priv->ipu->dev, "%s: in/out formats invalid\n", |
| __func__); |
| return ERR_PTR(ret); |
| } |
| |
| chan = &priv->chan[ic_task]; |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return ERR_PTR(-ENOMEM); |
| |
| dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__, |
| chan->ic_task, ctx); |
| |
| ctx->chan = chan; |
| init_completion(&ctx->aborted); |
| |
| s_image = &ctx->in; |
| d_image = &ctx->out; |
| |
| /* set tiling and rotation */ |
| d_image->num_rows = num_stripes(out->pix.height); |
| d_image->num_cols = num_stripes(out->pix.width); |
| if (ipu_rot_mode_is_irt(rot_mode)) { |
| s_image->num_rows = d_image->num_cols; |
| s_image->num_cols = d_image->num_rows; |
| } else { |
| s_image->num_rows = d_image->num_rows; |
| s_image->num_cols = d_image->num_cols; |
| } |
| |
| ctx->num_tiles = d_image->num_cols * d_image->num_rows; |
| ctx->rot_mode = rot_mode; |
| |
| ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN); |
| if (ret) |
| goto out_free; |
| ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT); |
| if (ret) |
| goto out_free; |
| |
| ret = calc_image_resize_coefficients(ctx, in, out); |
| if (ret) |
| goto out_free; |
| |
| calc_out_tile_map(ctx); |
| |
| find_seams(ctx, s_image, d_image); |
| |
| calc_tile_dimensions(ctx, s_image); |
| ret = calc_tile_offsets(ctx, s_image); |
| if (ret) |
| goto out_free; |
| |
| calc_tile_dimensions(ctx, d_image); |
| ret = calc_tile_offsets(ctx, d_image); |
| if (ret) |
| goto out_free; |
| |
| calc_tile_resize_coefficients(ctx); |
| |
| ret = ipu_ic_calc_csc(&ctx->csc, |
| s_image->base.pix.ycbcr_enc, |
| s_image->base.pix.quantization, |
| ipu_pixelformat_to_colorspace(s_image->fmt->fourcc), |
| d_image->base.pix.ycbcr_enc, |
| d_image->base.pix.quantization, |
| ipu_pixelformat_to_colorspace(d_image->fmt->fourcc)); |
| if (ret) |
| goto out_free; |
| |
| dump_format(ctx, s_image); |
| dump_format(ctx, d_image); |
| |
| ctx->complete = complete; |
| ctx->complete_context = complete_context; |
| |
| /* |
| * Can we use double-buffering for this operation? If there is |
| * only one tile (the whole image can be converted in a single |
| * operation) there's no point in using double-buffering. Also, |
| * the IPU's IDMAC channels allow only a single U and V plane |
| * offset shared between both buffers, but these offsets change |
| * for every tile, and therefore would have to be updated for |
| * each buffer which is not possible. So double-buffering is |
| * impossible when either the source or destination images are |
| * a planar format (YUV420, YUV422P, etc.). Further, differently |
| * sized tiles or different resizing coefficients per tile |
| * prevent double-buffering as well. |
| */ |
| ctx->double_buffering = (ctx->num_tiles > 1 && |
| !s_image->fmt->planar && |
| !d_image->fmt->planar); |
| for (i = 1; i < ctx->num_tiles; i++) { |
| if (ctx->in.tile[i].width != ctx->in.tile[0].width || |
| ctx->in.tile[i].height != ctx->in.tile[0].height || |
| ctx->out.tile[i].width != ctx->out.tile[0].width || |
| ctx->out.tile[i].height != ctx->out.tile[0].height) { |
| ctx->double_buffering = false; |
| break; |
| } |
| } |
| for (i = 1; i < ctx->in.num_cols; i++) { |
| if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) { |
| ctx->double_buffering = false; |
| break; |
| } |
| } |
| for (i = 1; i < ctx->in.num_rows; i++) { |
| if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) { |
| ctx->double_buffering = false; |
| break; |
| } |
| } |
| |
| if (ipu_rot_mode_is_irt(ctx->rot_mode)) { |
| unsigned long intermediate_size = d_image->tile[0].size; |
| |
| for (i = 1; i < ctx->num_tiles; i++) { |
| if (d_image->tile[i].size > intermediate_size) |
| intermediate_size = d_image->tile[i].size; |
| } |
| |
| ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0], |
| intermediate_size); |
| if (ret) |
| goto out_free; |
| if (ctx->double_buffering) { |
| ret = alloc_dma_buf(priv, |
| &ctx->rot_intermediate[1], |
| intermediate_size); |
| if (ret) |
| goto out_free_dmabuf0; |
| } |
| } |
| |
| spin_lock_irqsave(&chan->irqlock, flags); |
| |
| get_res = list_empty(&chan->ctx_list); |
| |
| list_add_tail(&ctx->list, &chan->ctx_list); |
| |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| |
| if (get_res) { |
| ret = get_ipu_resources(chan); |
| if (ret) |
| goto out_free_dmabuf1; |
| } |
| |
| return ctx; |
| |
| out_free_dmabuf1: |
| free_dma_buf(priv, &ctx->rot_intermediate[1]); |
| spin_lock_irqsave(&chan->irqlock, flags); |
| list_del(&ctx->list); |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| out_free_dmabuf0: |
| free_dma_buf(priv, &ctx->rot_intermediate[0]); |
| out_free: |
| kfree(ctx); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL_GPL(ipu_image_convert_prepare); |
| |
| /* |
| * Carry out a single image conversion run. Only the physaddr's of the input |
| * and output image buffers are needed. The conversion context must have |
| * been created previously with ipu_image_convert_prepare(). |
| */ |
| int ipu_image_convert_queue(struct ipu_image_convert_run *run) |
| { |
| struct ipu_image_convert_chan *chan; |
| struct ipu_image_convert_priv *priv; |
| struct ipu_image_convert_ctx *ctx; |
| unsigned long flags; |
| int ret = 0; |
| |
| if (!run || !run->ctx || !run->in_phys || !run->out_phys) |
| return -EINVAL; |
| |
| ctx = run->ctx; |
| chan = ctx->chan; |
| priv = chan->priv; |
| |
| dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__, |
| chan->ic_task, ctx, run); |
| |
| INIT_LIST_HEAD(&run->list); |
| |
| spin_lock_irqsave(&chan->irqlock, flags); |
| |
| if (ctx->aborting) { |
| ret = -EIO; |
| goto unlock; |
| } |
| |
| list_add_tail(&run->list, &chan->pending_q); |
| |
| if (!chan->current_run) { |
| ret = do_run(run); |
| if (ret) |
| chan->current_run = NULL; |
| } |
| unlock: |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(ipu_image_convert_queue); |
| |
| /* Abort any active or pending conversions for this context */ |
| static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| struct ipu_image_convert_run *run, *active_run, *tmp; |
| unsigned long flags; |
| int run_count, ret; |
| |
| spin_lock_irqsave(&chan->irqlock, flags); |
| |
| /* move all remaining pending runs in this context to done_q */ |
| list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { |
| if (run->ctx != ctx) |
| continue; |
| run->status = -EIO; |
| list_move_tail(&run->list, &chan->done_q); |
| } |
| |
| run_count = get_run_count(ctx, &chan->done_q); |
| active_run = (chan->current_run && chan->current_run->ctx == ctx) ? |
| chan->current_run : NULL; |
| |
| if (active_run) |
| reinit_completion(&ctx->aborted); |
| |
| ctx->aborting = true; |
| |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| |
| if (!run_count && !active_run) { |
| dev_dbg(priv->ipu->dev, |
| "%s: task %u: no abort needed for ctx %p\n", |
| __func__, chan->ic_task, ctx); |
| return; |
| } |
| |
| if (!active_run) { |
| empty_done_q(chan); |
| return; |
| } |
| |
| dev_dbg(priv->ipu->dev, |
| "%s: task %u: wait for completion: %d runs\n", |
| __func__, chan->ic_task, run_count); |
| |
| ret = wait_for_completion_timeout(&ctx->aborted, |
| msecs_to_jiffies(10000)); |
| if (ret == 0) { |
| dev_warn(priv->ipu->dev, "%s: timeout\n", __func__); |
| force_abort(ctx); |
| } |
| } |
| |
| void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) |
| { |
| __ipu_image_convert_abort(ctx); |
| ctx->aborting = false; |
| } |
| EXPORT_SYMBOL_GPL(ipu_image_convert_abort); |
| |
| /* Unprepare image conversion context */ |
| void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx) |
| { |
| struct ipu_image_convert_chan *chan = ctx->chan; |
| struct ipu_image_convert_priv *priv = chan->priv; |
| unsigned long flags; |
| bool put_res; |
| |
| /* make sure no runs are hanging around */ |
| __ipu_image_convert_abort(ctx); |
| |
| dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__, |
| chan->ic_task, ctx); |
| |
| spin_lock_irqsave(&chan->irqlock, flags); |
| |
| list_del(&ctx->list); |
| |
| put_res = list_empty(&chan->ctx_list); |
| |
| spin_unlock_irqrestore(&chan->irqlock, flags); |
| |
| if (put_res) |
| release_ipu_resources(chan); |
| |
| free_dma_buf(priv, &ctx->rot_intermediate[1]); |
| free_dma_buf(priv, &ctx->rot_intermediate[0]); |
| |
| kfree(ctx); |
| } |
| EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare); |
| |
| /* |
| * "Canned" asynchronous single image conversion. Allocates and returns |
| * a new conversion run. On successful return the caller must free the |
| * run and call ipu_image_convert_unprepare() after conversion completes. |
| */ |
| struct ipu_image_convert_run * |
| ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task, |
| struct ipu_image *in, struct ipu_image *out, |
| enum ipu_rotate_mode rot_mode, |
| ipu_image_convert_cb_t complete, |
| void *complete_context) |
| { |
| struct ipu_image_convert_ctx *ctx; |
| struct ipu_image_convert_run *run; |
| int ret; |
| |
| ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode, |
| complete, complete_context); |
| if (IS_ERR(ctx)) |
| return ERR_CAST(ctx); |
| |
| run = kzalloc(sizeof(*run), GFP_KERNEL); |
| if (!run) { |
| ipu_image_convert_unprepare(ctx); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| run->ctx = ctx; |
| run->in_phys = in->phys0; |
| run->out_phys = out->phys0; |
| |
| ret = ipu_image_convert_queue(run); |
| if (ret) { |
| ipu_image_convert_unprepare(ctx); |
| kfree(run); |
| return ERR_PTR(ret); |
| } |
| |
| return run; |
| } |
| EXPORT_SYMBOL_GPL(ipu_image_convert); |
| |
| /* "Canned" synchronous single image conversion */ |
| static void image_convert_sync_complete(struct ipu_image_convert_run *run, |
| void *data) |
| { |
| struct completion *comp = data; |
| |
| complete(comp); |
| } |
| |
| int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task, |
| struct ipu_image *in, struct ipu_image *out, |
| enum ipu_rotate_mode rot_mode) |
| { |
| struct ipu_image_convert_run *run; |
| struct completion comp; |
| int ret; |
| |
| init_completion(&comp); |
| |
| run = ipu_image_convert(ipu, ic_task, in, out, rot_mode, |
| image_convert_sync_complete, &comp); |
| if (IS_ERR(run)) |
| return PTR_ERR(run); |
| |
| ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000)); |
| ret = (ret == 0) ? -ETIMEDOUT : 0; |
| |
| ipu_image_convert_unprepare(run->ctx); |
| kfree(run); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(ipu_image_convert_sync); |
| |
| int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev) |
| { |
| struct ipu_image_convert_priv *priv; |
| int i; |
| |
| priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| ipu->image_convert_priv = priv; |
| priv->ipu = ipu; |
| |
| for (i = 0; i < IC_NUM_TASKS; i++) { |
| struct ipu_image_convert_chan *chan = &priv->chan[i]; |
| |
| chan->ic_task = i; |
| chan->priv = priv; |
| chan->dma_ch = &image_convert_dma_chan[i]; |
| chan->out_eof_irq = -1; |
| chan->rot_out_eof_irq = -1; |
| |
| spin_lock_init(&chan->irqlock); |
| INIT_LIST_HEAD(&chan->ctx_list); |
| INIT_LIST_HEAD(&chan->pending_q); |
| INIT_LIST_HEAD(&chan->done_q); |
| } |
| |
| return 0; |
| } |
| |
| void ipu_image_convert_exit(struct ipu_soc *ipu) |
| { |
| } |