| // SPDX-License-Identifier: GPL-2.0-only |
| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2005-2013 Solarflare Communications Inc. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/tcp.h> |
| #include <linux/ip.h> |
| #include <linux/in.h> |
| #include <linux/ipv6.h> |
| #include <linux/slab.h> |
| #include <net/ipv6.h> |
| #include <linux/if_ether.h> |
| #include <linux/highmem.h> |
| #include <linux/cache.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "io.h" |
| #include "nic.h" |
| #include "tx.h" |
| #include "tx_common.h" |
| #include "workarounds.h" |
| #include "ef10_regs.h" |
| |
| #ifdef EFX_USE_PIO |
| |
| #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES) |
| unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF; |
| |
| #endif /* EFX_USE_PIO */ |
| |
| static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue, |
| struct efx_tx_buffer *buffer) |
| { |
| unsigned int index = efx_tx_queue_get_insert_index(tx_queue); |
| struct efx_buffer *page_buf = |
| &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)]; |
| unsigned int offset = |
| ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); |
| |
| if (unlikely(!page_buf->addr) && |
| efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, |
| GFP_ATOMIC)) |
| return NULL; |
| buffer->dma_addr = page_buf->dma_addr + offset; |
| buffer->unmap_len = 0; |
| return (u8 *)page_buf->addr + offset; |
| } |
| |
| u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue, |
| struct efx_tx_buffer *buffer, size_t len) |
| { |
| if (len > EFX_TX_CB_SIZE) |
| return NULL; |
| return efx_tx_get_copy_buffer(tx_queue, buffer); |
| } |
| |
| static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1) |
| { |
| /* We need to consider both queues that the net core sees as one */ |
| struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1); |
| struct efx_nic *efx = txq1->efx; |
| unsigned int fill_level; |
| |
| fill_level = max(txq1->insert_count - txq1->old_read_count, |
| txq2->insert_count - txq2->old_read_count); |
| if (likely(fill_level < efx->txq_stop_thresh)) |
| return; |
| |
| /* We used the stale old_read_count above, which gives us a |
| * pessimistic estimate of the fill level (which may even |
| * validly be >= efx->txq_entries). Now try again using |
| * read_count (more likely to be a cache miss). |
| * |
| * If we read read_count and then conditionally stop the |
| * queue, it is possible for the completion path to race with |
| * us and complete all outstanding descriptors in the middle, |
| * after which there will be no more completions to wake it. |
| * Therefore we stop the queue first, then read read_count |
| * (with a memory barrier to ensure the ordering), then |
| * restart the queue if the fill level turns out to be low |
| * enough. |
| */ |
| netif_tx_stop_queue(txq1->core_txq); |
| smp_mb(); |
| txq1->old_read_count = READ_ONCE(txq1->read_count); |
| txq2->old_read_count = READ_ONCE(txq2->read_count); |
| |
| fill_level = max(txq1->insert_count - txq1->old_read_count, |
| txq2->insert_count - txq2->old_read_count); |
| EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries); |
| if (likely(fill_level < efx->txq_stop_thresh)) { |
| smp_mb(); |
| if (likely(!efx->loopback_selftest)) |
| netif_tx_start_queue(txq1->core_txq); |
| } |
| } |
| |
| static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue, |
| struct sk_buff *skb) |
| { |
| unsigned int copy_len = skb->len; |
| struct efx_tx_buffer *buffer; |
| u8 *copy_buffer; |
| int rc; |
| |
| EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE); |
| |
| buffer = efx_tx_queue_get_insert_buffer(tx_queue); |
| |
| copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer); |
| if (unlikely(!copy_buffer)) |
| return -ENOMEM; |
| |
| rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); |
| EFX_WARN_ON_PARANOID(rc); |
| buffer->len = copy_len; |
| |
| buffer->skb = skb; |
| buffer->flags = EFX_TX_BUF_SKB; |
| |
| ++tx_queue->insert_count; |
| return rc; |
| } |
| |
| #ifdef EFX_USE_PIO |
| |
| struct efx_short_copy_buffer { |
| int used; |
| u8 buf[L1_CACHE_BYTES]; |
| }; |
| |
| /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned. |
| * Advances piobuf pointer. Leaves additional data in the copy buffer. |
| */ |
| static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf, |
| u8 *data, int len, |
| struct efx_short_copy_buffer *copy_buf) |
| { |
| int block_len = len & ~(sizeof(copy_buf->buf) - 1); |
| |
| __iowrite64_copy(*piobuf, data, block_len >> 3); |
| *piobuf += block_len; |
| len -= block_len; |
| |
| if (len) { |
| data += block_len; |
| BUG_ON(copy_buf->used); |
| BUG_ON(len > sizeof(copy_buf->buf)); |
| memcpy(copy_buf->buf, data, len); |
| copy_buf->used = len; |
| } |
| } |
| |
| /* Copy to PIO, respecting dword alignment, popping data from copy buffer first. |
| * Advances piobuf pointer. Leaves additional data in the copy buffer. |
| */ |
| static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf, |
| u8 *data, int len, |
| struct efx_short_copy_buffer *copy_buf) |
| { |
| if (copy_buf->used) { |
| /* if the copy buffer is partially full, fill it up and write */ |
| int copy_to_buf = |
| min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len); |
| |
| memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf); |
| copy_buf->used += copy_to_buf; |
| |
| /* if we didn't fill it up then we're done for now */ |
| if (copy_buf->used < sizeof(copy_buf->buf)) |
| return; |
| |
| __iowrite64_copy(*piobuf, copy_buf->buf, |
| sizeof(copy_buf->buf) >> 3); |
| *piobuf += sizeof(copy_buf->buf); |
| data += copy_to_buf; |
| len -= copy_to_buf; |
| copy_buf->used = 0; |
| } |
| |
| efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf); |
| } |
| |
| static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf, |
| struct efx_short_copy_buffer *copy_buf) |
| { |
| /* if there's anything in it, write the whole buffer, including junk */ |
| if (copy_buf->used) |
| __iowrite64_copy(piobuf, copy_buf->buf, |
| sizeof(copy_buf->buf) >> 3); |
| } |
| |
| /* Traverse skb structure and copy fragments in to PIO buffer. |
| * Advances piobuf pointer. |
| */ |
| static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb, |
| u8 __iomem **piobuf, |
| struct efx_short_copy_buffer *copy_buf) |
| { |
| int i; |
| |
| efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb), |
| copy_buf); |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) { |
| skb_frag_t *f = &skb_shinfo(skb)->frags[i]; |
| u8 *vaddr; |
| |
| vaddr = kmap_atomic(skb_frag_page(f)); |
| |
| efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f), |
| skb_frag_size(f), copy_buf); |
| kunmap_atomic(vaddr); |
| } |
| |
| EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list); |
| } |
| |
| static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, |
| struct sk_buff *skb) |
| { |
| struct efx_tx_buffer *buffer = |
| efx_tx_queue_get_insert_buffer(tx_queue); |
| u8 __iomem *piobuf = tx_queue->piobuf; |
| |
| /* Copy to PIO buffer. Ensure the writes are padded to the end |
| * of a cache line, as this is required for write-combining to be |
| * effective on at least x86. |
| */ |
| |
| if (skb_shinfo(skb)->nr_frags) { |
| /* The size of the copy buffer will ensure all writes |
| * are the size of a cache line. |
| */ |
| struct efx_short_copy_buffer copy_buf; |
| |
| copy_buf.used = 0; |
| |
| efx_skb_copy_bits_to_pio(tx_queue->efx, skb, |
| &piobuf, ©_buf); |
| efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf); |
| } else { |
| /* Pad the write to the size of a cache line. |
| * We can do this because we know the skb_shared_info struct is |
| * after the source, and the destination buffer is big enough. |
| */ |
| BUILD_BUG_ON(L1_CACHE_BYTES > |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); |
| __iowrite64_copy(tx_queue->piobuf, skb->data, |
| ALIGN(skb->len, L1_CACHE_BYTES) >> 3); |
| } |
| |
| buffer->skb = skb; |
| buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION; |
| |
| EFX_POPULATE_QWORD_5(buffer->option, |
| ESF_DZ_TX_DESC_IS_OPT, 1, |
| ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO, |
| ESF_DZ_TX_PIO_CONT, 0, |
| ESF_DZ_TX_PIO_BYTE_CNT, skb->len, |
| ESF_DZ_TX_PIO_BUF_ADDR, |
| tx_queue->piobuf_offset); |
| ++tx_queue->insert_count; |
| return 0; |
| } |
| #endif /* EFX_USE_PIO */ |
| |
| /* |
| * Fallback to software TSO. |
| * |
| * This is used if we are unable to send a GSO packet through hardware TSO. |
| * This should only ever happen due to per-queue restrictions - unsupported |
| * packets should first be filtered by the feature flags. |
| * |
| * Returns 0 on success, error code otherwise. |
| */ |
| static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, |
| struct sk_buff *skb) |
| { |
| struct sk_buff *segments, *next; |
| |
| segments = skb_gso_segment(skb, 0); |
| if (IS_ERR(segments)) |
| return PTR_ERR(segments); |
| |
| dev_consume_skb_any(skb); |
| skb = segments; |
| |
| skb_list_walk_safe(skb, skb, next) { |
| skb_mark_not_on_list(skb); |
| efx_enqueue_skb(tx_queue, skb); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Add a socket buffer to a TX queue |
| * |
| * This maps all fragments of a socket buffer for DMA and adds them to |
| * the TX queue. The queue's insert pointer will be incremented by |
| * the number of fragments in the socket buffer. |
| * |
| * If any DMA mapping fails, any mapped fragments will be unmapped, |
| * the queue's insert pointer will be restored to its original value. |
| * |
| * This function is split out from efx_hard_start_xmit to allow the |
| * loopback test to direct packets via specific TX queues. |
| * |
| * Returns NETDEV_TX_OK. |
| * You must hold netif_tx_lock() to call this function. |
| */ |
| netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) |
| { |
| unsigned int old_insert_count = tx_queue->insert_count; |
| bool xmit_more = netdev_xmit_more(); |
| bool data_mapped = false; |
| unsigned int segments; |
| unsigned int skb_len; |
| int rc; |
| |
| skb_len = skb->len; |
| segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0; |
| if (segments == 1) |
| segments = 0; /* Don't use TSO for a single segment. */ |
| |
| /* Handle TSO first - it's *possible* (although unlikely) that we might |
| * be passed a packet to segment that's smaller than the copybreak/PIO |
| * size limit. |
| */ |
| if (segments) { |
| EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso); |
| rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped); |
| if (rc == -EINVAL) { |
| rc = efx_tx_tso_fallback(tx_queue, skb); |
| tx_queue->tso_fallbacks++; |
| if (rc == 0) |
| return 0; |
| } |
| if (rc) |
| goto err; |
| #ifdef EFX_USE_PIO |
| } else if (skb_len <= efx_piobuf_size && !xmit_more && |
| efx_nic_may_tx_pio(tx_queue)) { |
| /* Use PIO for short packets with an empty queue. */ |
| if (efx_enqueue_skb_pio(tx_queue, skb)) |
| goto err; |
| tx_queue->pio_packets++; |
| data_mapped = true; |
| #endif |
| } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) { |
| /* Pad short packets or coalesce short fragmented packets. */ |
| if (efx_enqueue_skb_copy(tx_queue, skb)) |
| goto err; |
| tx_queue->cb_packets++; |
| data_mapped = true; |
| } |
| |
| /* Map for DMA and create descriptors if we haven't done so already. */ |
| if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments))) |
| goto err; |
| |
| efx_tx_maybe_stop_queue(tx_queue); |
| |
| /* Pass off to hardware */ |
| if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) { |
| struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue); |
| |
| /* There could be packets left on the partner queue if |
| * xmit_more was set. If we do not push those they |
| * could be left for a long time and cause a netdev watchdog. |
| */ |
| if (txq2->xmit_more_available) |
| efx_nic_push_buffers(txq2); |
| |
| efx_nic_push_buffers(tx_queue); |
| } else { |
| tx_queue->xmit_more_available = xmit_more; |
| } |
| |
| if (segments) { |
| tx_queue->tso_bursts++; |
| tx_queue->tso_packets += segments; |
| tx_queue->tx_packets += segments; |
| } else { |
| tx_queue->tx_packets++; |
| } |
| |
| return NETDEV_TX_OK; |
| |
| |
| err: |
| efx_enqueue_unwind(tx_queue, old_insert_count); |
| dev_kfree_skb_any(skb); |
| |
| /* If we're not expecting another transmit and we had something to push |
| * on this queue or a partner queue then we need to push here to get the |
| * previous packets out. |
| */ |
| if (!xmit_more) { |
| struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue); |
| |
| if (txq2->xmit_more_available) |
| efx_nic_push_buffers(txq2); |
| |
| efx_nic_push_buffers(tx_queue); |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static void efx_xdp_return_frames(int n, struct xdp_frame **xdpfs) |
| { |
| int i; |
| |
| for (i = 0; i < n; i++) |
| xdp_return_frame_rx_napi(xdpfs[i]); |
| } |
| |
| /* Transmit a packet from an XDP buffer |
| * |
| * Returns number of packets sent on success, error code otherwise. |
| * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC |
| * (for XDP redirect). |
| */ |
| int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs, |
| bool flush) |
| { |
| struct efx_tx_buffer *tx_buffer; |
| struct efx_tx_queue *tx_queue; |
| struct xdp_frame *xdpf; |
| dma_addr_t dma_addr; |
| unsigned int len; |
| int space; |
| int cpu; |
| int i; |
| |
| cpu = raw_smp_processor_id(); |
| |
| if (!efx->xdp_tx_queue_count || |
| unlikely(cpu >= efx->xdp_tx_queue_count)) |
| return -EINVAL; |
| |
| tx_queue = efx->xdp_tx_queues[cpu]; |
| if (unlikely(!tx_queue)) |
| return -EINVAL; |
| |
| if (unlikely(n && !xdpfs)) |
| return -EINVAL; |
| |
| if (!n) |
| return 0; |
| |
| /* Check for available space. We should never need multiple |
| * descriptors per frame. |
| */ |
| space = efx->txq_entries + |
| tx_queue->read_count - tx_queue->insert_count; |
| |
| for (i = 0; i < n; i++) { |
| xdpf = xdpfs[i]; |
| |
| if (i >= space) |
| break; |
| |
| /* We'll want a descriptor for this tx. */ |
| prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue)); |
| |
| len = xdpf->len; |
| |
| /* Map for DMA. */ |
| dma_addr = dma_map_single(&efx->pci_dev->dev, |
| xdpf->data, len, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(&efx->pci_dev->dev, dma_addr)) |
| break; |
| |
| /* Create descriptor and set up for unmapping DMA. */ |
| tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len); |
| tx_buffer->xdpf = xdpf; |
| tx_buffer->flags = EFX_TX_BUF_XDP | |
| EFX_TX_BUF_MAP_SINGLE; |
| tx_buffer->dma_offset = 0; |
| tx_buffer->unmap_len = len; |
| tx_queue->tx_packets++; |
| } |
| |
| /* Pass mapped frames to hardware. */ |
| if (flush && i > 0) |
| efx_nic_push_buffers(tx_queue); |
| |
| if (i == 0) |
| return -EIO; |
| |
| efx_xdp_return_frames(n - i, xdpfs + i); |
| |
| return i; |
| } |
| |
| /* Initiate a packet transmission. We use one channel per CPU |
| * (sharing when we have more CPUs than channels). On Falcon, the TX |
| * completion events will be directed back to the CPU that transmitted |
| * the packet, which should be cache-efficient. |
| * |
| * Context: non-blocking. |
| * Note that returning anything other than NETDEV_TX_OK will cause the |
| * OS to free the skb. |
| */ |
| netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, |
| struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_tx_queue *tx_queue; |
| unsigned index, type; |
| |
| EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); |
| |
| /* PTP "event" packet */ |
| if (unlikely(efx_xmit_with_hwtstamp(skb)) && |
| unlikely(efx_ptp_is_ptp_tx(efx, skb))) { |
| return efx_ptp_tx(efx, skb); |
| } |
| |
| index = skb_get_queue_mapping(skb); |
| type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; |
| if (index >= efx->n_tx_channels) { |
| index -= efx->n_tx_channels; |
| type |= EFX_TXQ_TYPE_HIGHPRI; |
| } |
| tx_queue = efx_get_tx_queue(efx, index, type); |
| |
| return efx_enqueue_skb(tx_queue, skb); |
| } |
| |
| void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| |
| /* Must be inverse of queue lookup in efx_hard_start_xmit() */ |
| tx_queue->core_txq = |
| netdev_get_tx_queue(efx->net_dev, |
| tx_queue->queue / EFX_TXQ_TYPES + |
| ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? |
| efx->n_tx_channels : 0)); |
| } |
| |
| int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type, |
| void *type_data) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct tc_mqprio_qopt *mqprio = type_data; |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| unsigned tc, num_tc; |
| int rc; |
| |
| if (type != TC_SETUP_QDISC_MQPRIO) |
| return -EOPNOTSUPP; |
| |
| num_tc = mqprio->num_tc; |
| |
| if (num_tc > EFX_MAX_TX_TC) |
| return -EINVAL; |
| |
| mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; |
| |
| if (num_tc == net_dev->num_tc) |
| return 0; |
| |
| for (tc = 0; tc < num_tc; tc++) { |
| net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; |
| net_dev->tc_to_txq[tc].count = efx->n_tx_channels; |
| } |
| |
| if (num_tc > net_dev->num_tc) { |
| /* Initialise high-priority queues as necessary */ |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_possible_channel_tx_queue(tx_queue, |
| channel) { |
| if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) |
| continue; |
| if (!tx_queue->buffer) { |
| rc = efx_probe_tx_queue(tx_queue); |
| if (rc) |
| return rc; |
| } |
| if (!tx_queue->initialised) |
| efx_init_tx_queue(tx_queue); |
| efx_init_tx_queue_core_txq(tx_queue); |
| } |
| } |
| } else { |
| /* Reduce number of classes before number of queues */ |
| net_dev->num_tc = num_tc; |
| } |
| |
| rc = netif_set_real_num_tx_queues(net_dev, |
| max_t(int, num_tc, 1) * |
| efx->n_tx_channels); |
| if (rc) |
| return rc; |
| |
| /* Do not destroy high-priority queues when they become |
| * unused. We would have to flush them first, and it is |
| * fairly difficult to flush a subset of TX queues. Leave |
| * it to efx_fini_channels(). |
| */ |
| |
| net_dev->num_tc = num_tc; |
| return 0; |
| } |