| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_da_format.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_error.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dir2_priv.h" |
| #include "xfs_ioctl.h" |
| #include "xfs_trace.h" |
| #include "xfs_log.h" |
| #include "xfs_icache.h" |
| #include "xfs_pnfs.h" |
| #include "xfs_iomap.h" |
| #include "xfs_reflink.h" |
| |
| #include <linux/dcache.h> |
| #include <linux/falloc.h> |
| #include <linux/pagevec.h> |
| #include <linux/backing-dev.h> |
| |
| static const struct vm_operations_struct xfs_file_vm_ops; |
| |
| /* |
| * Clear the specified ranges to zero through either the pagecache or DAX. |
| * Holes and unwritten extents will be left as-is as they already are zeroed. |
| */ |
| int |
| xfs_zero_range( |
| struct xfs_inode *ip, |
| xfs_off_t pos, |
| xfs_off_t count, |
| bool *did_zero) |
| { |
| return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops); |
| } |
| |
| int |
| xfs_update_prealloc_flags( |
| struct xfs_inode *ip, |
| enum xfs_prealloc_flags flags) |
| { |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, |
| 0, 0, 0, &tp); |
| if (error) |
| return error; |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| |
| if (!(flags & XFS_PREALLOC_INVISIBLE)) { |
| VFS_I(ip)->i_mode &= ~S_ISUID; |
| if (VFS_I(ip)->i_mode & S_IXGRP) |
| VFS_I(ip)->i_mode &= ~S_ISGID; |
| xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| } |
| |
| if (flags & XFS_PREALLOC_SET) |
| ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; |
| if (flags & XFS_PREALLOC_CLEAR) |
| ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; |
| |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| if (flags & XFS_PREALLOC_SYNC) |
| xfs_trans_set_sync(tp); |
| return xfs_trans_commit(tp); |
| } |
| |
| /* |
| * Fsync operations on directories are much simpler than on regular files, |
| * as there is no file data to flush, and thus also no need for explicit |
| * cache flush operations, and there are no non-transaction metadata updates |
| * on directories either. |
| */ |
| STATIC int |
| xfs_dir_fsync( |
| struct file *file, |
| loff_t start, |
| loff_t end, |
| int datasync) |
| { |
| struct xfs_inode *ip = XFS_I(file->f_mapping->host); |
| struct xfs_mount *mp = ip->i_mount; |
| xfs_lsn_t lsn = 0; |
| |
| trace_xfs_dir_fsync(ip); |
| |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| if (xfs_ipincount(ip)) |
| lsn = ip->i_itemp->ili_last_lsn; |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| |
| if (!lsn) |
| return 0; |
| return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); |
| } |
| |
| STATIC int |
| xfs_file_fsync( |
| struct file *file, |
| loff_t start, |
| loff_t end, |
| int datasync) |
| { |
| struct inode *inode = file->f_mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| int error = 0; |
| int log_flushed = 0; |
| xfs_lsn_t lsn = 0; |
| |
| trace_xfs_file_fsync(ip); |
| |
| error = filemap_write_and_wait_range(inode->i_mapping, start, end); |
| if (error) |
| return error; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| xfs_iflags_clear(ip, XFS_ITRUNCATED); |
| |
| /* |
| * If we have an RT and/or log subvolume we need to make sure to flush |
| * the write cache the device used for file data first. This is to |
| * ensure newly written file data make it to disk before logging the new |
| * inode size in case of an extending write. |
| */ |
| if (XFS_IS_REALTIME_INODE(ip)) |
| xfs_blkdev_issue_flush(mp->m_rtdev_targp); |
| else if (mp->m_logdev_targp != mp->m_ddev_targp) |
| xfs_blkdev_issue_flush(mp->m_ddev_targp); |
| |
| /* |
| * All metadata updates are logged, which means that we just have to |
| * flush the log up to the latest LSN that touched the inode. If we have |
| * concurrent fsync/fdatasync() calls, we need them to all block on the |
| * log force before we clear the ili_fsync_fields field. This ensures |
| * that we don't get a racing sync operation that does not wait for the |
| * metadata to hit the journal before returning. If we race with |
| * clearing the ili_fsync_fields, then all that will happen is the log |
| * force will do nothing as the lsn will already be on disk. We can't |
| * race with setting ili_fsync_fields because that is done under |
| * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared |
| * until after the ili_fsync_fields is cleared. |
| */ |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| if (xfs_ipincount(ip)) { |
| if (!datasync || |
| (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) |
| lsn = ip->i_itemp->ili_last_lsn; |
| } |
| |
| if (lsn) { |
| error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); |
| ip->i_itemp->ili_fsync_fields = 0; |
| } |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| |
| /* |
| * If we only have a single device, and the log force about was |
| * a no-op we might have to flush the data device cache here. |
| * This can only happen for fdatasync/O_DSYNC if we were overwriting |
| * an already allocated file and thus do not have any metadata to |
| * commit. |
| */ |
| if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && |
| mp->m_logdev_targp == mp->m_ddev_targp) |
| xfs_blkdev_issue_flush(mp->m_ddev_targp); |
| |
| return error; |
| } |
| |
| STATIC ssize_t |
| xfs_file_dio_aio_read( |
| struct kiocb *iocb, |
| struct iov_iter *to) |
| { |
| struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| size_t count = iov_iter_count(to); |
| ssize_t ret; |
| |
| trace_xfs_file_direct_read(ip, count, iocb->ki_pos); |
| |
| if (!count) |
| return 0; /* skip atime */ |
| |
| file_accessed(iocb->ki_filp); |
| |
| xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| |
| return ret; |
| } |
| |
| static noinline ssize_t |
| xfs_file_dax_read( |
| struct kiocb *iocb, |
| struct iov_iter *to) |
| { |
| struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); |
| size_t count = iov_iter_count(to); |
| ssize_t ret = 0; |
| |
| trace_xfs_file_dax_read(ip, count, iocb->ki_pos); |
| |
| if (!count) |
| return 0; /* skip atime */ |
| |
| xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| |
| file_accessed(iocb->ki_filp); |
| return ret; |
| } |
| |
| STATIC ssize_t |
| xfs_file_buffered_aio_read( |
| struct kiocb *iocb, |
| struct iov_iter *to) |
| { |
| struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| ssize_t ret; |
| |
| trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); |
| |
| xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| ret = generic_file_read_iter(iocb, to); |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| |
| return ret; |
| } |
| |
| STATIC ssize_t |
| xfs_file_read_iter( |
| struct kiocb *iocb, |
| struct iov_iter *to) |
| { |
| struct inode *inode = file_inode(iocb->ki_filp); |
| struct xfs_mount *mp = XFS_I(inode)->i_mount; |
| ssize_t ret = 0; |
| |
| XFS_STATS_INC(mp, xs_read_calls); |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| if (IS_DAX(inode)) |
| ret = xfs_file_dax_read(iocb, to); |
| else if (iocb->ki_flags & IOCB_DIRECT) |
| ret = xfs_file_dio_aio_read(iocb, to); |
| else |
| ret = xfs_file_buffered_aio_read(iocb, to); |
| |
| if (ret > 0) |
| XFS_STATS_ADD(mp, xs_read_bytes, ret); |
| return ret; |
| } |
| |
| /* |
| * Zero any on disk space between the current EOF and the new, larger EOF. |
| * |
| * This handles the normal case of zeroing the remainder of the last block in |
| * the file and the unusual case of zeroing blocks out beyond the size of the |
| * file. This second case only happens with fixed size extents and when the |
| * system crashes before the inode size was updated but after blocks were |
| * allocated. |
| * |
| * Expects the iolock to be held exclusive, and will take the ilock internally. |
| */ |
| int /* error (positive) */ |
| xfs_zero_eof( |
| struct xfs_inode *ip, |
| xfs_off_t offset, /* starting I/O offset */ |
| xfs_fsize_t isize, /* current inode size */ |
| bool *did_zeroing) |
| { |
| ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); |
| ASSERT(offset > isize); |
| |
| trace_xfs_zero_eof(ip, isize, offset - isize); |
| return xfs_zero_range(ip, isize, offset - isize, did_zeroing); |
| } |
| |
| /* |
| * Common pre-write limit and setup checks. |
| * |
| * Called with the iolocked held either shared and exclusive according to |
| * @iolock, and returns with it held. Might upgrade the iolock to exclusive |
| * if called for a direct write beyond i_size. |
| */ |
| STATIC ssize_t |
| xfs_file_aio_write_checks( |
| struct kiocb *iocb, |
| struct iov_iter *from, |
| int *iolock) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| ssize_t error = 0; |
| size_t count = iov_iter_count(from); |
| bool drained_dio = false; |
| |
| restart: |
| error = generic_write_checks(iocb, from); |
| if (error <= 0) |
| return error; |
| |
| error = xfs_break_layouts(inode, iolock); |
| if (error) |
| return error; |
| |
| /* |
| * For changing security info in file_remove_privs() we need i_rwsem |
| * exclusively. |
| */ |
| if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { |
| xfs_iunlock(ip, *iolock); |
| *iolock = XFS_IOLOCK_EXCL; |
| xfs_ilock(ip, *iolock); |
| goto restart; |
| } |
| /* |
| * If the offset is beyond the size of the file, we need to zero any |
| * blocks that fall between the existing EOF and the start of this |
| * write. If zeroing is needed and we are currently holding the |
| * iolock shared, we need to update it to exclusive which implies |
| * having to redo all checks before. |
| * |
| * We need to serialise against EOF updates that occur in IO |
| * completions here. We want to make sure that nobody is changing the |
| * size while we do this check until we have placed an IO barrier (i.e. |
| * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. |
| * The spinlock effectively forms a memory barrier once we have the |
| * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value |
| * and hence be able to correctly determine if we need to run zeroing. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| if (iocb->ki_pos > i_size_read(inode)) { |
| bool zero = false; |
| |
| spin_unlock(&ip->i_flags_lock); |
| if (!drained_dio) { |
| if (*iolock == XFS_IOLOCK_SHARED) { |
| xfs_iunlock(ip, *iolock); |
| *iolock = XFS_IOLOCK_EXCL; |
| xfs_ilock(ip, *iolock); |
| iov_iter_reexpand(from, count); |
| } |
| /* |
| * We now have an IO submission barrier in place, but |
| * AIO can do EOF updates during IO completion and hence |
| * we now need to wait for all of them to drain. Non-AIO |
| * DIO will have drained before we are given the |
| * XFS_IOLOCK_EXCL, and so for most cases this wait is a |
| * no-op. |
| */ |
| inode_dio_wait(inode); |
| drained_dio = true; |
| goto restart; |
| } |
| error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); |
| if (error) |
| return error; |
| } else |
| spin_unlock(&ip->i_flags_lock); |
| |
| /* |
| * Updating the timestamps will grab the ilock again from |
| * xfs_fs_dirty_inode, so we have to call it after dropping the |
| * lock above. Eventually we should look into a way to avoid |
| * the pointless lock roundtrip. |
| */ |
| if (likely(!(file->f_mode & FMODE_NOCMTIME))) { |
| error = file_update_time(file); |
| if (error) |
| return error; |
| } |
| |
| /* |
| * If we're writing the file then make sure to clear the setuid and |
| * setgid bits if the process is not being run by root. This keeps |
| * people from modifying setuid and setgid binaries. |
| */ |
| if (!IS_NOSEC(inode)) |
| return file_remove_privs(file); |
| return 0; |
| } |
| |
| static int |
| xfs_dio_write_end_io( |
| struct kiocb *iocb, |
| ssize_t size, |
| unsigned flags) |
| { |
| struct inode *inode = file_inode(iocb->ki_filp); |
| struct xfs_inode *ip = XFS_I(inode); |
| loff_t offset = iocb->ki_pos; |
| bool update_size = false; |
| int error = 0; |
| |
| trace_xfs_end_io_direct_write(ip, offset, size); |
| |
| if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| return -EIO; |
| |
| if (size <= 0) |
| return size; |
| |
| /* |
| * We need to update the in-core inode size here so that we don't end up |
| * with the on-disk inode size being outside the in-core inode size. We |
| * have no other method of updating EOF for AIO, so always do it here |
| * if necessary. |
| * |
| * We need to lock the test/set EOF update as we can be racing with |
| * other IO completions here to update the EOF. Failing to serialise |
| * here can result in EOF moving backwards and Bad Things Happen when |
| * that occurs. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| if (offset + size > i_size_read(inode)) { |
| i_size_write(inode, offset + size); |
| update_size = true; |
| } |
| spin_unlock(&ip->i_flags_lock); |
| |
| if (flags & IOMAP_DIO_COW) { |
| error = xfs_reflink_end_cow(ip, offset, size); |
| if (error) |
| return error; |
| } |
| |
| if (flags & IOMAP_DIO_UNWRITTEN) |
| error = xfs_iomap_write_unwritten(ip, offset, size); |
| else if (update_size) |
| error = xfs_setfilesize(ip, offset, size); |
| |
| return error; |
| } |
| |
| /* |
| * xfs_file_dio_aio_write - handle direct IO writes |
| * |
| * Lock the inode appropriately to prepare for and issue a direct IO write. |
| * By separating it from the buffered write path we remove all the tricky to |
| * follow locking changes and looping. |
| * |
| * If there are cached pages or we're extending the file, we need IOLOCK_EXCL |
| * until we're sure the bytes at the new EOF have been zeroed and/or the cached |
| * pages are flushed out. |
| * |
| * In most cases the direct IO writes will be done holding IOLOCK_SHARED |
| * allowing them to be done in parallel with reads and other direct IO writes. |
| * However, if the IO is not aligned to filesystem blocks, the direct IO layer |
| * needs to do sub-block zeroing and that requires serialisation against other |
| * direct IOs to the same block. In this case we need to serialise the |
| * submission of the unaligned IOs so that we don't get racing block zeroing in |
| * the dio layer. To avoid the problem with aio, we also need to wait for |
| * outstanding IOs to complete so that unwritten extent conversion is completed |
| * before we try to map the overlapping block. This is currently implemented by |
| * hitting it with a big hammer (i.e. inode_dio_wait()). |
| * |
| * Returns with locks held indicated by @iolock and errors indicated by |
| * negative return values. |
| */ |
| STATIC ssize_t |
| xfs_file_dio_aio_write( |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| struct file *file = iocb->ki_filp; |
| struct address_space *mapping = file->f_mapping; |
| struct inode *inode = mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| ssize_t ret = 0; |
| int unaligned_io = 0; |
| int iolock; |
| size_t count = iov_iter_count(from); |
| struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? |
| mp->m_rtdev_targp : mp->m_ddev_targp; |
| |
| /* DIO must be aligned to device logical sector size */ |
| if ((iocb->ki_pos | count) & target->bt_logical_sectormask) |
| return -EINVAL; |
| |
| /* |
| * Don't take the exclusive iolock here unless the I/O is unaligned to |
| * the file system block size. We don't need to consider the EOF |
| * extension case here because xfs_file_aio_write_checks() will relock |
| * the inode as necessary for EOF zeroing cases and fill out the new |
| * inode size as appropriate. |
| */ |
| if ((iocb->ki_pos & mp->m_blockmask) || |
| ((iocb->ki_pos + count) & mp->m_blockmask)) { |
| unaligned_io = 1; |
| |
| /* |
| * We can't properly handle unaligned direct I/O to reflink |
| * files yet, as we can't unshare a partial block. |
| */ |
| if (xfs_is_reflink_inode(ip)) { |
| trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); |
| return -EREMCHG; |
| } |
| iolock = XFS_IOLOCK_EXCL; |
| } else { |
| iolock = XFS_IOLOCK_SHARED; |
| } |
| |
| xfs_ilock(ip, iolock); |
| |
| ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
| if (ret) |
| goto out; |
| count = iov_iter_count(from); |
| |
| /* |
| * If we are doing unaligned IO, wait for all other IO to drain, |
| * otherwise demote the lock if we had to take the exclusive lock |
| * for other reasons in xfs_file_aio_write_checks. |
| */ |
| if (unaligned_io) |
| inode_dio_wait(inode); |
| else if (iolock == XFS_IOLOCK_EXCL) { |
| xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); |
| iolock = XFS_IOLOCK_SHARED; |
| } |
| |
| trace_xfs_file_direct_write(ip, count, iocb->ki_pos); |
| ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); |
| out: |
| xfs_iunlock(ip, iolock); |
| |
| /* |
| * No fallback to buffered IO on errors for XFS, direct IO will either |
| * complete fully or fail. |
| */ |
| ASSERT(ret < 0 || ret == count); |
| return ret; |
| } |
| |
| static noinline ssize_t |
| xfs_file_dax_write( |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| struct inode *inode = iocb->ki_filp->f_mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| int iolock = XFS_IOLOCK_EXCL; |
| ssize_t ret, error = 0; |
| size_t count; |
| loff_t pos; |
| |
| xfs_ilock(ip, iolock); |
| ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
| if (ret) |
| goto out; |
| |
| pos = iocb->ki_pos; |
| count = iov_iter_count(from); |
| |
| trace_xfs_file_dax_write(ip, count, pos); |
| ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); |
| if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { |
| i_size_write(inode, iocb->ki_pos); |
| error = xfs_setfilesize(ip, pos, ret); |
| } |
| out: |
| xfs_iunlock(ip, iolock); |
| return error ? error : ret; |
| } |
| |
| STATIC ssize_t |
| xfs_file_buffered_aio_write( |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| struct file *file = iocb->ki_filp; |
| struct address_space *mapping = file->f_mapping; |
| struct inode *inode = mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| ssize_t ret; |
| int enospc = 0; |
| int iolock; |
| |
| write_retry: |
| iolock = XFS_IOLOCK_EXCL; |
| xfs_ilock(ip, iolock); |
| |
| ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
| if (ret) |
| goto out; |
| |
| /* We can write back this queue in page reclaim */ |
| current->backing_dev_info = inode_to_bdi(inode); |
| |
| trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); |
| ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); |
| if (likely(ret >= 0)) |
| iocb->ki_pos += ret; |
| |
| /* |
| * If we hit a space limit, try to free up some lingering preallocated |
| * space before returning an error. In the case of ENOSPC, first try to |
| * write back all dirty inodes to free up some of the excess reserved |
| * metadata space. This reduces the chances that the eofblocks scan |
| * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this |
| * also behaves as a filter to prevent too many eofblocks scans from |
| * running at the same time. |
| */ |
| if (ret == -EDQUOT && !enospc) { |
| xfs_iunlock(ip, iolock); |
| enospc = xfs_inode_free_quota_eofblocks(ip); |
| if (enospc) |
| goto write_retry; |
| enospc = xfs_inode_free_quota_cowblocks(ip); |
| if (enospc) |
| goto write_retry; |
| iolock = 0; |
| } else if (ret == -ENOSPC && !enospc) { |
| struct xfs_eofblocks eofb = {0}; |
| |
| enospc = 1; |
| xfs_flush_inodes(ip->i_mount); |
| |
| xfs_iunlock(ip, iolock); |
| eofb.eof_flags = XFS_EOF_FLAGS_SYNC; |
| xfs_icache_free_eofblocks(ip->i_mount, &eofb); |
| goto write_retry; |
| } |
| |
| current->backing_dev_info = NULL; |
| out: |
| if (iolock) |
| xfs_iunlock(ip, iolock); |
| return ret; |
| } |
| |
| STATIC ssize_t |
| xfs_file_write_iter( |
| struct kiocb *iocb, |
| struct iov_iter *from) |
| { |
| struct file *file = iocb->ki_filp; |
| struct address_space *mapping = file->f_mapping; |
| struct inode *inode = mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| ssize_t ret; |
| size_t ocount = iov_iter_count(from); |
| |
| XFS_STATS_INC(ip->i_mount, xs_write_calls); |
| |
| if (ocount == 0) |
| return 0; |
| |
| if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| return -EIO; |
| |
| if (IS_DAX(inode)) |
| ret = xfs_file_dax_write(iocb, from); |
| else if (iocb->ki_flags & IOCB_DIRECT) { |
| /* |
| * Allow a directio write to fall back to a buffered |
| * write *only* in the case that we're doing a reflink |
| * CoW. In all other directio scenarios we do not |
| * allow an operation to fall back to buffered mode. |
| */ |
| ret = xfs_file_dio_aio_write(iocb, from); |
| if (ret == -EREMCHG) |
| goto buffered; |
| } else { |
| buffered: |
| ret = xfs_file_buffered_aio_write(iocb, from); |
| } |
| |
| if (ret > 0) { |
| XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); |
| |
| /* Handle various SYNC-type writes */ |
| ret = generic_write_sync(iocb, ret); |
| } |
| return ret; |
| } |
| |
| #define XFS_FALLOC_FL_SUPPORTED \ |
| (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ |
| FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ |
| FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) |
| |
| STATIC long |
| xfs_file_fallocate( |
| struct file *file, |
| int mode, |
| loff_t offset, |
| loff_t len) |
| { |
| struct inode *inode = file_inode(file); |
| struct xfs_inode *ip = XFS_I(inode); |
| long error; |
| enum xfs_prealloc_flags flags = 0; |
| uint iolock = XFS_IOLOCK_EXCL; |
| loff_t new_size = 0; |
| bool do_file_insert = 0; |
| |
| if (!S_ISREG(inode->i_mode)) |
| return -EINVAL; |
| if (mode & ~XFS_FALLOC_FL_SUPPORTED) |
| return -EOPNOTSUPP; |
| |
| xfs_ilock(ip, iolock); |
| error = xfs_break_layouts(inode, &iolock); |
| if (error) |
| goto out_unlock; |
| |
| xfs_ilock(ip, XFS_MMAPLOCK_EXCL); |
| iolock |= XFS_MMAPLOCK_EXCL; |
| |
| if (mode & FALLOC_FL_PUNCH_HOLE) { |
| error = xfs_free_file_space(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { |
| unsigned blksize_mask = (1 << inode->i_blkbits) - 1; |
| |
| if (offset & blksize_mask || len & blksize_mask) { |
| error = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* |
| * There is no need to overlap collapse range with EOF, |
| * in which case it is effectively a truncate operation |
| */ |
| if (offset + len >= i_size_read(inode)) { |
| error = -EINVAL; |
| goto out_unlock; |
| } |
| |
| new_size = i_size_read(inode) - len; |
| |
| error = xfs_collapse_file_space(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| } else if (mode & FALLOC_FL_INSERT_RANGE) { |
| unsigned blksize_mask = (1 << inode->i_blkbits) - 1; |
| |
| new_size = i_size_read(inode) + len; |
| if (offset & blksize_mask || len & blksize_mask) { |
| error = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* check the new inode size does not wrap through zero */ |
| if (new_size > inode->i_sb->s_maxbytes) { |
| error = -EFBIG; |
| goto out_unlock; |
| } |
| |
| /* Offset should be less than i_size */ |
| if (offset >= i_size_read(inode)) { |
| error = -EINVAL; |
| goto out_unlock; |
| } |
| do_file_insert = 1; |
| } else { |
| flags |= XFS_PREALLOC_SET; |
| |
| if (!(mode & FALLOC_FL_KEEP_SIZE) && |
| offset + len > i_size_read(inode)) { |
| new_size = offset + len; |
| error = inode_newsize_ok(inode, new_size); |
| if (error) |
| goto out_unlock; |
| } |
| |
| if (mode & FALLOC_FL_ZERO_RANGE) |
| error = xfs_zero_file_space(ip, offset, len); |
| else { |
| if (mode & FALLOC_FL_UNSHARE_RANGE) { |
| error = xfs_reflink_unshare(ip, offset, len); |
| if (error) |
| goto out_unlock; |
| } |
| error = xfs_alloc_file_space(ip, offset, len, |
| XFS_BMAPI_PREALLOC); |
| } |
| if (error) |
| goto out_unlock; |
| } |
| |
| if (file->f_flags & O_DSYNC) |
| flags |= XFS_PREALLOC_SYNC; |
| |
| error = xfs_update_prealloc_flags(ip, flags); |
| if (error) |
| goto out_unlock; |
| |
| /* Change file size if needed */ |
| if (new_size) { |
| struct iattr iattr; |
| |
| iattr.ia_valid = ATTR_SIZE; |
| iattr.ia_size = new_size; |
| error = xfs_vn_setattr_size(file_dentry(file), &iattr); |
| if (error) |
| goto out_unlock; |
| } |
| |
| /* |
| * Perform hole insertion now that the file size has been |
| * updated so that if we crash during the operation we don't |
| * leave shifted extents past EOF and hence losing access to |
| * the data that is contained within them. |
| */ |
| if (do_file_insert) |
| error = xfs_insert_file_space(ip, offset, len); |
| |
| out_unlock: |
| xfs_iunlock(ip, iolock); |
| return error; |
| } |
| |
| STATIC int |
| xfs_file_clone_range( |
| struct file *file_in, |
| loff_t pos_in, |
| struct file *file_out, |
| loff_t pos_out, |
| u64 len) |
| { |
| return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, |
| len, false); |
| } |
| |
| STATIC ssize_t |
| xfs_file_dedupe_range( |
| struct file *src_file, |
| u64 loff, |
| u64 len, |
| struct file *dst_file, |
| u64 dst_loff) |
| { |
| int error; |
| |
| error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, |
| len, true); |
| if (error) |
| return error; |
| return len; |
| } |
| |
| STATIC int |
| xfs_file_open( |
| struct inode *inode, |
| struct file *file) |
| { |
| if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) |
| return -EFBIG; |
| if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) |
| return -EIO; |
| return 0; |
| } |
| |
| STATIC int |
| xfs_dir_open( |
| struct inode *inode, |
| struct file *file) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| int mode; |
| int error; |
| |
| error = xfs_file_open(inode, file); |
| if (error) |
| return error; |
| |
| /* |
| * If there are any blocks, read-ahead block 0 as we're almost |
| * certain to have the next operation be a read there. |
| */ |
| mode = xfs_ilock_data_map_shared(ip); |
| if (ip->i_d.di_nextents > 0) |
| error = xfs_dir3_data_readahead(ip, 0, -1); |
| xfs_iunlock(ip, mode); |
| return error; |
| } |
| |
| STATIC int |
| xfs_file_release( |
| struct inode *inode, |
| struct file *filp) |
| { |
| return xfs_release(XFS_I(inode)); |
| } |
| |
| STATIC int |
| xfs_file_readdir( |
| struct file *file, |
| struct dir_context *ctx) |
| { |
| struct inode *inode = file_inode(file); |
| xfs_inode_t *ip = XFS_I(inode); |
| size_t bufsize; |
| |
| /* |
| * The Linux API doesn't pass down the total size of the buffer |
| * we read into down to the filesystem. With the filldir concept |
| * it's not needed for correct information, but the XFS dir2 leaf |
| * code wants an estimate of the buffer size to calculate it's |
| * readahead window and size the buffers used for mapping to |
| * physical blocks. |
| * |
| * Try to give it an estimate that's good enough, maybe at some |
| * point we can change the ->readdir prototype to include the |
| * buffer size. For now we use the current glibc buffer size. |
| */ |
| bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); |
| |
| return xfs_readdir(ip, ctx, bufsize); |
| } |
| |
| /* |
| * This type is designed to indicate the type of offset we would like |
| * to search from page cache for xfs_seek_hole_data(). |
| */ |
| enum { |
| HOLE_OFF = 0, |
| DATA_OFF, |
| }; |
| |
| /* |
| * Lookup the desired type of offset from the given page. |
| * |
| * On success, return true and the offset argument will point to the |
| * start of the region that was found. Otherwise this function will |
| * return false and keep the offset argument unchanged. |
| */ |
| STATIC bool |
| xfs_lookup_buffer_offset( |
| struct page *page, |
| loff_t *offset, |
| unsigned int type) |
| { |
| loff_t lastoff = page_offset(page); |
| bool found = false; |
| struct buffer_head *bh, *head; |
| |
| bh = head = page_buffers(page); |
| do { |
| /* |
| * Unwritten extents that have data in the page |
| * cache covering them can be identified by the |
| * BH_Unwritten state flag. Pages with multiple |
| * buffers might have a mix of holes, data and |
| * unwritten extents - any buffer with valid |
| * data in it should have BH_Uptodate flag set |
| * on it. |
| */ |
| if (buffer_unwritten(bh) || |
| buffer_uptodate(bh)) { |
| if (type == DATA_OFF) |
| found = true; |
| } else { |
| if (type == HOLE_OFF) |
| found = true; |
| } |
| |
| if (found) { |
| *offset = lastoff; |
| break; |
| } |
| lastoff += bh->b_size; |
| } while ((bh = bh->b_this_page) != head); |
| |
| return found; |
| } |
| |
| /* |
| * This routine is called to find out and return a data or hole offset |
| * from the page cache for unwritten extents according to the desired |
| * type for xfs_seek_hole_data(). |
| * |
| * The argument offset is used to tell where we start to search from the |
| * page cache. Map is used to figure out the end points of the range to |
| * lookup pages. |
| * |
| * Return true if the desired type of offset was found, and the argument |
| * offset is filled with that address. Otherwise, return false and keep |
| * offset unchanged. |
| */ |
| STATIC bool |
| xfs_find_get_desired_pgoff( |
| struct inode *inode, |
| struct xfs_bmbt_irec *map, |
| unsigned int type, |
| loff_t *offset) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| struct pagevec pvec; |
| pgoff_t index; |
| pgoff_t end; |
| loff_t endoff; |
| loff_t startoff = *offset; |
| loff_t lastoff = startoff; |
| bool found = false; |
| |
| pagevec_init(&pvec, 0); |
| |
| index = startoff >> PAGE_SHIFT; |
| endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); |
| end = endoff >> PAGE_SHIFT; |
| do { |
| int want; |
| unsigned nr_pages; |
| unsigned int i; |
| |
| want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); |
| nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, |
| want); |
| /* |
| * No page mapped into given range. If we are searching holes |
| * and if this is the first time we got into the loop, it means |
| * that the given offset is landed in a hole, return it. |
| * |
| * If we have already stepped through some block buffers to find |
| * holes but they all contains data. In this case, the last |
| * offset is already updated and pointed to the end of the last |
| * mapped page, if it does not reach the endpoint to search, |
| * that means there should be a hole between them. |
| */ |
| if (nr_pages == 0) { |
| /* Data search found nothing */ |
| if (type == DATA_OFF) |
| break; |
| |
| ASSERT(type == HOLE_OFF); |
| if (lastoff == startoff || lastoff < endoff) { |
| found = true; |
| *offset = lastoff; |
| } |
| break; |
| } |
| |
| /* |
| * At lease we found one page. If this is the first time we |
| * step into the loop, and if the first page index offset is |
| * greater than the given search offset, a hole was found. |
| */ |
| if (type == HOLE_OFF && lastoff == startoff && |
| lastoff < page_offset(pvec.pages[0])) { |
| found = true; |
| break; |
| } |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| loff_t b_offset; |
| |
| /* |
| * At this point, the page may be truncated or |
| * invalidated (changing page->mapping to NULL), |
| * or even swizzled back from swapper_space to tmpfs |
| * file mapping. However, page->index will not change |
| * because we have a reference on the page. |
| * |
| * Searching done if the page index is out of range. |
| * If the current offset is not reaches the end of |
| * the specified search range, there should be a hole |
| * between them. |
| */ |
| if (page->index > end) { |
| if (type == HOLE_OFF && lastoff < endoff) { |
| *offset = lastoff; |
| found = true; |
| } |
| goto out; |
| } |
| |
| lock_page(page); |
| /* |
| * Page truncated or invalidated(page->mapping == NULL). |
| * We can freely skip it and proceed to check the next |
| * page. |
| */ |
| if (unlikely(page->mapping != inode->i_mapping)) { |
| unlock_page(page); |
| continue; |
| } |
| |
| if (!page_has_buffers(page)) { |
| unlock_page(page); |
| continue; |
| } |
| |
| found = xfs_lookup_buffer_offset(page, &b_offset, type); |
| if (found) { |
| /* |
| * The found offset may be less than the start |
| * point to search if this is the first time to |
| * come here. |
| */ |
| *offset = max_t(loff_t, startoff, b_offset); |
| unlock_page(page); |
| goto out; |
| } |
| |
| /* |
| * We either searching data but nothing was found, or |
| * searching hole but found a data buffer. In either |
| * case, probably the next page contains the desired |
| * things, update the last offset to it so. |
| */ |
| lastoff = page_offset(page) + PAGE_SIZE; |
| unlock_page(page); |
| } |
| |
| /* |
| * The number of returned pages less than our desired, search |
| * done. In this case, nothing was found for searching data, |
| * but we found a hole behind the last offset. |
| */ |
| if (nr_pages < want) { |
| if (type == HOLE_OFF) { |
| *offset = lastoff; |
| found = true; |
| } |
| break; |
| } |
| |
| index = pvec.pages[i - 1]->index + 1; |
| pagevec_release(&pvec); |
| } while (index <= end); |
| |
| out: |
| pagevec_release(&pvec); |
| return found; |
| } |
| |
| /* |
| * caller must lock inode with xfs_ilock_data_map_shared, |
| * can we craft an appropriate ASSERT? |
| * |
| * end is because the VFS-level lseek interface is defined such that any |
| * offset past i_size shall return -ENXIO, but we use this for quota code |
| * which does not maintain i_size, and we want to SEEK_DATA past i_size. |
| */ |
| loff_t |
| __xfs_seek_hole_data( |
| struct inode *inode, |
| loff_t start, |
| loff_t end, |
| int whence) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| loff_t uninitialized_var(offset); |
| xfs_fileoff_t fsbno; |
| xfs_filblks_t lastbno; |
| int error; |
| |
| if (start >= end) { |
| error = -ENXIO; |
| goto out_error; |
| } |
| |
| /* |
| * Try to read extents from the first block indicated |
| * by fsbno to the end block of the file. |
| */ |
| fsbno = XFS_B_TO_FSBT(mp, start); |
| lastbno = XFS_B_TO_FSB(mp, end); |
| |
| for (;;) { |
| struct xfs_bmbt_irec map[2]; |
| int nmap = 2; |
| unsigned int i; |
| |
| error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap, |
| XFS_BMAPI_ENTIRE); |
| if (error) |
| goto out_error; |
| |
| /* No extents at given offset, must be beyond EOF */ |
| if (nmap == 0) { |
| error = -ENXIO; |
| goto out_error; |
| } |
| |
| for (i = 0; i < nmap; i++) { |
| offset = max_t(loff_t, start, |
| XFS_FSB_TO_B(mp, map[i].br_startoff)); |
| |
| /* Landed in the hole we wanted? */ |
| if (whence == SEEK_HOLE && |
| map[i].br_startblock == HOLESTARTBLOCK) |
| goto out; |
| |
| /* Landed in the data extent we wanted? */ |
| if (whence == SEEK_DATA && |
| (map[i].br_startblock == DELAYSTARTBLOCK || |
| (map[i].br_state == XFS_EXT_NORM && |
| !isnullstartblock(map[i].br_startblock)))) |
| goto out; |
| |
| /* |
| * Landed in an unwritten extent, try to search |
| * for hole or data from page cache. |
| */ |
| if (map[i].br_state == XFS_EXT_UNWRITTEN) { |
| if (xfs_find_get_desired_pgoff(inode, &map[i], |
| whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, |
| &offset)) |
| goto out; |
| } |
| } |
| |
| /* |
| * We only received one extent out of the two requested. This |
| * means we've hit EOF and didn't find what we are looking for. |
| */ |
| if (nmap == 1) { |
| /* |
| * If we were looking for a hole, set offset to |
| * the end of the file (i.e., there is an implicit |
| * hole at the end of any file). |
| */ |
| if (whence == SEEK_HOLE) { |
| offset = end; |
| break; |
| } |
| /* |
| * If we were looking for data, it's nowhere to be found |
| */ |
| ASSERT(whence == SEEK_DATA); |
| error = -ENXIO; |
| goto out_error; |
| } |
| |
| ASSERT(i > 1); |
| |
| /* |
| * Nothing was found, proceed to the next round of search |
| * if the next reading offset is not at or beyond EOF. |
| */ |
| fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; |
| start = XFS_FSB_TO_B(mp, fsbno); |
| if (start >= end) { |
| if (whence == SEEK_HOLE) { |
| offset = end; |
| break; |
| } |
| ASSERT(whence == SEEK_DATA); |
| error = -ENXIO; |
| goto out_error; |
| } |
| } |
| |
| out: |
| /* |
| * If at this point we have found the hole we wanted, the returned |
| * offset may be bigger than the file size as it may be aligned to |
| * page boundary for unwritten extents. We need to deal with this |
| * situation in particular. |
| */ |
| if (whence == SEEK_HOLE) |
| offset = min_t(loff_t, offset, end); |
| |
| return offset; |
| |
| out_error: |
| return error; |
| } |
| |
| STATIC loff_t |
| xfs_seek_hole_data( |
| struct file *file, |
| loff_t start, |
| int whence) |
| { |
| struct inode *inode = file->f_mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| uint lock; |
| loff_t offset, end; |
| int error = 0; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| lock = xfs_ilock_data_map_shared(ip); |
| |
| end = i_size_read(inode); |
| offset = __xfs_seek_hole_data(inode, start, end, whence); |
| if (offset < 0) { |
| error = offset; |
| goto out_unlock; |
| } |
| |
| offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); |
| |
| out_unlock: |
| xfs_iunlock(ip, lock); |
| |
| if (error) |
| return error; |
| return offset; |
| } |
| |
| STATIC loff_t |
| xfs_file_llseek( |
| struct file *file, |
| loff_t offset, |
| int whence) |
| { |
| switch (whence) { |
| case SEEK_END: |
| case SEEK_CUR: |
| case SEEK_SET: |
| return generic_file_llseek(file, offset, whence); |
| case SEEK_HOLE: |
| case SEEK_DATA: |
| return xfs_seek_hole_data(file, offset, whence); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Locking for serialisation of IO during page faults. This results in a lock |
| * ordering of: |
| * |
| * mmap_sem (MM) |
| * sb_start_pagefault(vfs, freeze) |
| * i_mmaplock (XFS - truncate serialisation) |
| * page_lock (MM) |
| * i_lock (XFS - extent map serialisation) |
| */ |
| |
| /* |
| * mmap()d file has taken write protection fault and is being made writable. We |
| * can set the page state up correctly for a writable page, which means we can |
| * do correct delalloc accounting (ENOSPC checking!) and unwritten extent |
| * mapping. |
| */ |
| STATIC int |
| xfs_filemap_page_mkwrite( |
| struct vm_area_struct *vma, |
| struct vm_fault *vmf) |
| { |
| struct inode *inode = file_inode(vma->vm_file); |
| int ret; |
| |
| trace_xfs_filemap_page_mkwrite(XFS_I(inode)); |
| |
| sb_start_pagefault(inode->i_sb); |
| file_update_time(vma->vm_file); |
| xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| |
| if (IS_DAX(inode)) { |
| ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops); |
| } else { |
| ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops); |
| ret = block_page_mkwrite_return(ret); |
| } |
| |
| xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| sb_end_pagefault(inode->i_sb); |
| |
| return ret; |
| } |
| |
| STATIC int |
| xfs_filemap_fault( |
| struct vm_area_struct *vma, |
| struct vm_fault *vmf) |
| { |
| struct inode *inode = file_inode(vma->vm_file); |
| int ret; |
| |
| trace_xfs_filemap_fault(XFS_I(inode)); |
| |
| /* DAX can shortcut the normal fault path on write faults! */ |
| if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) |
| return xfs_filemap_page_mkwrite(vma, vmf); |
| |
| xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| if (IS_DAX(inode)) |
| ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops); |
| else |
| ret = filemap_fault(vma, vmf); |
| xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| |
| return ret; |
| } |
| |
| /* |
| * Similar to xfs_filemap_fault(), the DAX fault path can call into here on |
| * both read and write faults. Hence we need to handle both cases. There is no |
| * ->pmd_mkwrite callout for huge pages, so we have a single function here to |
| * handle both cases here. @flags carries the information on the type of fault |
| * occuring. |
| */ |
| STATIC int |
| xfs_filemap_pmd_fault( |
| struct vm_area_struct *vma, |
| unsigned long addr, |
| pmd_t *pmd, |
| unsigned int flags) |
| { |
| struct inode *inode = file_inode(vma->vm_file); |
| struct xfs_inode *ip = XFS_I(inode); |
| int ret; |
| |
| if (!IS_DAX(inode)) |
| return VM_FAULT_FALLBACK; |
| |
| trace_xfs_filemap_pmd_fault(ip); |
| |
| if (flags & FAULT_FLAG_WRITE) { |
| sb_start_pagefault(inode->i_sb); |
| file_update_time(vma->vm_file); |
| } |
| |
| xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| ret = dax_iomap_pmd_fault(vma, addr, pmd, flags, &xfs_iomap_ops); |
| xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| |
| if (flags & FAULT_FLAG_WRITE) |
| sb_end_pagefault(inode->i_sb); |
| |
| return ret; |
| } |
| |
| /* |
| * pfn_mkwrite was originally inteneded to ensure we capture time stamp |
| * updates on write faults. In reality, it's need to serialise against |
| * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED |
| * to ensure we serialise the fault barrier in place. |
| */ |
| static int |
| xfs_filemap_pfn_mkwrite( |
| struct vm_area_struct *vma, |
| struct vm_fault *vmf) |
| { |
| |
| struct inode *inode = file_inode(vma->vm_file); |
| struct xfs_inode *ip = XFS_I(inode); |
| int ret = VM_FAULT_NOPAGE; |
| loff_t size; |
| |
| trace_xfs_filemap_pfn_mkwrite(ip); |
| |
| sb_start_pagefault(inode->i_sb); |
| file_update_time(vma->vm_file); |
| |
| /* check if the faulting page hasn't raced with truncate */ |
| xfs_ilock(ip, XFS_MMAPLOCK_SHARED); |
| size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| if (vmf->pgoff >= size) |
| ret = VM_FAULT_SIGBUS; |
| else if (IS_DAX(inode)) |
| ret = dax_pfn_mkwrite(vma, vmf); |
| xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); |
| sb_end_pagefault(inode->i_sb); |
| return ret; |
| |
| } |
| |
| static const struct vm_operations_struct xfs_file_vm_ops = { |
| .fault = xfs_filemap_fault, |
| .pmd_fault = xfs_filemap_pmd_fault, |
| .map_pages = filemap_map_pages, |
| .page_mkwrite = xfs_filemap_page_mkwrite, |
| .pfn_mkwrite = xfs_filemap_pfn_mkwrite, |
| }; |
| |
| STATIC int |
| xfs_file_mmap( |
| struct file *filp, |
| struct vm_area_struct *vma) |
| { |
| file_accessed(filp); |
| vma->vm_ops = &xfs_file_vm_ops; |
| if (IS_DAX(file_inode(filp))) |
| vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; |
| return 0; |
| } |
| |
| const struct file_operations xfs_file_operations = { |
| .llseek = xfs_file_llseek, |
| .read_iter = xfs_file_read_iter, |
| .write_iter = xfs_file_write_iter, |
| .splice_read = generic_file_splice_read, |
| .splice_write = iter_file_splice_write, |
| .unlocked_ioctl = xfs_file_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = xfs_file_compat_ioctl, |
| #endif |
| .mmap = xfs_file_mmap, |
| .open = xfs_file_open, |
| .release = xfs_file_release, |
| .fsync = xfs_file_fsync, |
| .get_unmapped_area = thp_get_unmapped_area, |
| .fallocate = xfs_file_fallocate, |
| .clone_file_range = xfs_file_clone_range, |
| .dedupe_file_range = xfs_file_dedupe_range, |
| }; |
| |
| const struct file_operations xfs_dir_file_operations = { |
| .open = xfs_dir_open, |
| .read = generic_read_dir, |
| .iterate_shared = xfs_file_readdir, |
| .llseek = generic_file_llseek, |
| .unlocked_ioctl = xfs_file_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = xfs_file_compat_ioctl, |
| #endif |
| .fsync = xfs_dir_fsync, |
| }; |