| /* iommu.c: Generic sparc64 IOMMU support. |
| * |
| * Copyright (C) 1999, 2007, 2008 David S. Miller (davem@davemloft.net) |
| * Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com) |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/iommu-helper.h> |
| #include <linux/bitmap.h> |
| |
| #ifdef CONFIG_PCI |
| #include <linux/pci.h> |
| #endif |
| |
| #include <asm/iommu.h> |
| |
| #include "iommu_common.h" |
| |
| #define STC_CTXMATCH_ADDR(STC, CTX) \ |
| ((STC)->strbuf_ctxmatch_base + ((CTX) << 3)) |
| #define STC_FLUSHFLAG_INIT(STC) \ |
| (*((STC)->strbuf_flushflag) = 0UL) |
| #define STC_FLUSHFLAG_SET(STC) \ |
| (*((STC)->strbuf_flushflag) != 0UL) |
| |
| #define iommu_read(__reg) \ |
| ({ u64 __ret; \ |
| __asm__ __volatile__("ldxa [%1] %2, %0" \ |
| : "=r" (__ret) \ |
| : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ |
| : "memory"); \ |
| __ret; \ |
| }) |
| #define iommu_write(__reg, __val) \ |
| __asm__ __volatile__("stxa %0, [%1] %2" \ |
| : /* no outputs */ \ |
| : "r" (__val), "r" (__reg), \ |
| "i" (ASI_PHYS_BYPASS_EC_E)) |
| |
| /* Must be invoked under the IOMMU lock. */ |
| static void iommu_flushall(struct iommu *iommu) |
| { |
| if (iommu->iommu_flushinv) { |
| iommu_write(iommu->iommu_flushinv, ~(u64)0); |
| } else { |
| unsigned long tag; |
| int entry; |
| |
| tag = iommu->iommu_tags; |
| for (entry = 0; entry < 16; entry++) { |
| iommu_write(tag, 0); |
| tag += 8; |
| } |
| |
| /* Ensure completion of previous PIO writes. */ |
| (void) iommu_read(iommu->write_complete_reg); |
| } |
| } |
| |
| #define IOPTE_CONSISTENT(CTX) \ |
| (IOPTE_VALID | IOPTE_CACHE | \ |
| (((CTX) << 47) & IOPTE_CONTEXT)) |
| |
| #define IOPTE_STREAMING(CTX) \ |
| (IOPTE_CONSISTENT(CTX) | IOPTE_STBUF) |
| |
| /* Existing mappings are never marked invalid, instead they |
| * are pointed to a dummy page. |
| */ |
| #define IOPTE_IS_DUMMY(iommu, iopte) \ |
| ((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa) |
| |
| static inline void iopte_make_dummy(struct iommu *iommu, iopte_t *iopte) |
| { |
| unsigned long val = iopte_val(*iopte); |
| |
| val &= ~IOPTE_PAGE; |
| val |= iommu->dummy_page_pa; |
| |
| iopte_val(*iopte) = val; |
| } |
| |
| /* Based almost entirely upon the ppc64 iommu allocator. If you use the 'handle' |
| * facility it must all be done in one pass while under the iommu lock. |
| * |
| * On sun4u platforms, we only flush the IOMMU once every time we've passed |
| * over the entire page table doing allocations. Therefore we only ever advance |
| * the hint and cannot backtrack it. |
| */ |
| unsigned long iommu_range_alloc(struct device *dev, |
| struct iommu *iommu, |
| unsigned long npages, |
| unsigned long *handle) |
| { |
| unsigned long n, end, start, limit, boundary_size; |
| struct iommu_arena *arena = &iommu->arena; |
| int pass = 0; |
| |
| /* This allocator was derived from x86_64's bit string search */ |
| |
| /* Sanity check */ |
| if (unlikely(npages == 0)) { |
| if (printk_ratelimit()) |
| WARN_ON(1); |
| return DMA_ERROR_CODE; |
| } |
| |
| if (handle && *handle) |
| start = *handle; |
| else |
| start = arena->hint; |
| |
| limit = arena->limit; |
| |
| /* The case below can happen if we have a small segment appended |
| * to a large, or when the previous alloc was at the very end of |
| * the available space. If so, go back to the beginning and flush. |
| */ |
| if (start >= limit) { |
| start = 0; |
| if (iommu->flush_all) |
| iommu->flush_all(iommu); |
| } |
| |
| again: |
| |
| if (dev) |
| boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, |
| 1 << IO_PAGE_SHIFT); |
| else |
| boundary_size = ALIGN(1UL << 32, 1 << IO_PAGE_SHIFT); |
| |
| n = iommu_area_alloc(arena->map, limit, start, npages, |
| iommu->page_table_map_base >> IO_PAGE_SHIFT, |
| boundary_size >> IO_PAGE_SHIFT, 0); |
| if (n == -1) { |
| if (likely(pass < 1)) { |
| /* First failure, rescan from the beginning. */ |
| start = 0; |
| if (iommu->flush_all) |
| iommu->flush_all(iommu); |
| pass++; |
| goto again; |
| } else { |
| /* Second failure, give up */ |
| return DMA_ERROR_CODE; |
| } |
| } |
| |
| end = n + npages; |
| |
| arena->hint = end; |
| |
| /* Update handle for SG allocations */ |
| if (handle) |
| *handle = end; |
| |
| return n; |
| } |
| |
| void iommu_range_free(struct iommu *iommu, dma_addr_t dma_addr, unsigned long npages) |
| { |
| struct iommu_arena *arena = &iommu->arena; |
| unsigned long entry; |
| |
| entry = (dma_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT; |
| |
| bitmap_clear(arena->map, entry, npages); |
| } |
| |
| int iommu_table_init(struct iommu *iommu, int tsbsize, |
| u32 dma_offset, u32 dma_addr_mask, |
| int numa_node) |
| { |
| unsigned long i, order, sz, num_tsb_entries; |
| struct page *page; |
| |
| num_tsb_entries = tsbsize / sizeof(iopte_t); |
| |
| /* Setup initial software IOMMU state. */ |
| spin_lock_init(&iommu->lock); |
| iommu->ctx_lowest_free = 1; |
| iommu->page_table_map_base = dma_offset; |
| iommu->dma_addr_mask = dma_addr_mask; |
| |
| /* Allocate and initialize the free area map. */ |
| sz = num_tsb_entries / 8; |
| sz = (sz + 7UL) & ~7UL; |
| iommu->arena.map = kmalloc_node(sz, GFP_KERNEL, numa_node); |
| if (!iommu->arena.map) { |
| printk(KERN_ERR "IOMMU: Error, kmalloc(arena.map) failed.\n"); |
| return -ENOMEM; |
| } |
| memset(iommu->arena.map, 0, sz); |
| iommu->arena.limit = num_tsb_entries; |
| |
| if (tlb_type != hypervisor) |
| iommu->flush_all = iommu_flushall; |
| |
| /* Allocate and initialize the dummy page which we |
| * set inactive IO PTEs to point to. |
| */ |
| page = alloc_pages_node(numa_node, GFP_KERNEL, 0); |
| if (!page) { |
| printk(KERN_ERR "IOMMU: Error, gfp(dummy_page) failed.\n"); |
| goto out_free_map; |
| } |
| iommu->dummy_page = (unsigned long) page_address(page); |
| memset((void *)iommu->dummy_page, 0, PAGE_SIZE); |
| iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page); |
| |
| /* Now allocate and setup the IOMMU page table itself. */ |
| order = get_order(tsbsize); |
| page = alloc_pages_node(numa_node, GFP_KERNEL, order); |
| if (!page) { |
| printk(KERN_ERR "IOMMU: Error, gfp(tsb) failed.\n"); |
| goto out_free_dummy_page; |
| } |
| iommu->page_table = (iopte_t *)page_address(page); |
| |
| for (i = 0; i < num_tsb_entries; i++) |
| iopte_make_dummy(iommu, &iommu->page_table[i]); |
| |
| return 0; |
| |
| out_free_dummy_page: |
| free_page(iommu->dummy_page); |
| iommu->dummy_page = 0UL; |
| |
| out_free_map: |
| kfree(iommu->arena.map); |
| iommu->arena.map = NULL; |
| |
| return -ENOMEM; |
| } |
| |
| static inline iopte_t *alloc_npages(struct device *dev, struct iommu *iommu, |
| unsigned long npages) |
| { |
| unsigned long entry; |
| |
| entry = iommu_range_alloc(dev, iommu, npages, NULL); |
| if (unlikely(entry == DMA_ERROR_CODE)) |
| return NULL; |
| |
| return iommu->page_table + entry; |
| } |
| |
| static int iommu_alloc_ctx(struct iommu *iommu) |
| { |
| int lowest = iommu->ctx_lowest_free; |
| int sz = IOMMU_NUM_CTXS - lowest; |
| int n = find_next_zero_bit(iommu->ctx_bitmap, sz, lowest); |
| |
| if (unlikely(n == sz)) { |
| n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1); |
| if (unlikely(n == lowest)) { |
| printk(KERN_WARNING "IOMMU: Ran out of contexts.\n"); |
| n = 0; |
| } |
| } |
| if (n) |
| __set_bit(n, iommu->ctx_bitmap); |
| |
| return n; |
| } |
| |
| static inline void iommu_free_ctx(struct iommu *iommu, int ctx) |
| { |
| if (likely(ctx)) { |
| __clear_bit(ctx, iommu->ctx_bitmap); |
| if (ctx < iommu->ctx_lowest_free) |
| iommu->ctx_lowest_free = ctx; |
| } |
| } |
| |
| static void *dma_4u_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t *dma_addrp, gfp_t gfp) |
| { |
| unsigned long flags, order, first_page; |
| struct iommu *iommu; |
| struct page *page; |
| int npages, nid; |
| iopte_t *iopte; |
| void *ret; |
| |
| size = IO_PAGE_ALIGN(size); |
| order = get_order(size); |
| if (order >= 10) |
| return NULL; |
| |
| nid = dev->archdata.numa_node; |
| page = alloc_pages_node(nid, gfp, order); |
| if (unlikely(!page)) |
| return NULL; |
| |
| first_page = (unsigned long) page_address(page); |
| memset((char *)first_page, 0, PAGE_SIZE << order); |
| |
| iommu = dev->archdata.iommu; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| iopte = alloc_npages(dev, iommu, size >> IO_PAGE_SHIFT); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| if (unlikely(iopte == NULL)) { |
| free_pages(first_page, order); |
| return NULL; |
| } |
| |
| *dma_addrp = (iommu->page_table_map_base + |
| ((iopte - iommu->page_table) << IO_PAGE_SHIFT)); |
| ret = (void *) first_page; |
| npages = size >> IO_PAGE_SHIFT; |
| first_page = __pa(first_page); |
| while (npages--) { |
| iopte_val(*iopte) = (IOPTE_CONSISTENT(0UL) | |
| IOPTE_WRITE | |
| (first_page & IOPTE_PAGE)); |
| iopte++; |
| first_page += IO_PAGE_SIZE; |
| } |
| |
| return ret; |
| } |
| |
| static void dma_4u_free_coherent(struct device *dev, size_t size, |
| void *cpu, dma_addr_t dvma) |
| { |
| struct iommu *iommu; |
| iopte_t *iopte; |
| unsigned long flags, order, npages; |
| |
| npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT; |
| iommu = dev->archdata.iommu; |
| iopte = iommu->page_table + |
| ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| iommu_range_free(iommu, dvma, npages); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| order = get_order(size); |
| if (order < 10) |
| free_pages((unsigned long)cpu, order); |
| } |
| |
| static dma_addr_t dma_4u_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t sz, |
| enum dma_data_direction direction, |
| struct dma_attrs *attrs) |
| { |
| struct iommu *iommu; |
| struct strbuf *strbuf; |
| iopte_t *base; |
| unsigned long flags, npages, oaddr; |
| unsigned long i, base_paddr, ctx; |
| u32 bus_addr, ret; |
| unsigned long iopte_protection; |
| |
| iommu = dev->archdata.iommu; |
| strbuf = dev->archdata.stc; |
| |
| if (unlikely(direction == DMA_NONE)) |
| goto bad_no_ctx; |
| |
| oaddr = (unsigned long)(page_address(page) + offset); |
| npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK); |
| npages >>= IO_PAGE_SHIFT; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| base = alloc_npages(dev, iommu, npages); |
| ctx = 0; |
| if (iommu->iommu_ctxflush) |
| ctx = iommu_alloc_ctx(iommu); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| if (unlikely(!base)) |
| goto bad; |
| |
| bus_addr = (iommu->page_table_map_base + |
| ((base - iommu->page_table) << IO_PAGE_SHIFT)); |
| ret = bus_addr | (oaddr & ~IO_PAGE_MASK); |
| base_paddr = __pa(oaddr & IO_PAGE_MASK); |
| if (strbuf->strbuf_enabled) |
| iopte_protection = IOPTE_STREAMING(ctx); |
| else |
| iopte_protection = IOPTE_CONSISTENT(ctx); |
| if (direction != DMA_TO_DEVICE) |
| iopte_protection |= IOPTE_WRITE; |
| |
| for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE) |
| iopte_val(*base) = iopte_protection | base_paddr; |
| |
| return ret; |
| |
| bad: |
| iommu_free_ctx(iommu, ctx); |
| bad_no_ctx: |
| if (printk_ratelimit()) |
| WARN_ON(1); |
| return DMA_ERROR_CODE; |
| } |
| |
| static void strbuf_flush(struct strbuf *strbuf, struct iommu *iommu, |
| u32 vaddr, unsigned long ctx, unsigned long npages, |
| enum dma_data_direction direction) |
| { |
| int limit; |
| |
| if (strbuf->strbuf_ctxflush && |
| iommu->iommu_ctxflush) { |
| unsigned long matchreg, flushreg; |
| u64 val; |
| |
| flushreg = strbuf->strbuf_ctxflush; |
| matchreg = STC_CTXMATCH_ADDR(strbuf, ctx); |
| |
| iommu_write(flushreg, ctx); |
| val = iommu_read(matchreg); |
| val &= 0xffff; |
| if (!val) |
| goto do_flush_sync; |
| |
| while (val) { |
| if (val & 0x1) |
| iommu_write(flushreg, ctx); |
| val >>= 1; |
| } |
| val = iommu_read(matchreg); |
| if (unlikely(val)) { |
| printk(KERN_WARNING "strbuf_flush: ctx flush " |
| "timeout matchreg[%llx] ctx[%lx]\n", |
| val, ctx); |
| goto do_page_flush; |
| } |
| } else { |
| unsigned long i; |
| |
| do_page_flush: |
| for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE) |
| iommu_write(strbuf->strbuf_pflush, vaddr); |
| } |
| |
| do_flush_sync: |
| /* If the device could not have possibly put dirty data into |
| * the streaming cache, no flush-flag synchronization needs |
| * to be performed. |
| */ |
| if (direction == DMA_TO_DEVICE) |
| return; |
| |
| STC_FLUSHFLAG_INIT(strbuf); |
| iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa); |
| (void) iommu_read(iommu->write_complete_reg); |
| |
| limit = 100000; |
| while (!STC_FLUSHFLAG_SET(strbuf)) { |
| limit--; |
| if (!limit) |
| break; |
| udelay(1); |
| rmb(); |
| } |
| if (!limit) |
| printk(KERN_WARNING "strbuf_flush: flushflag timeout " |
| "vaddr[%08x] ctx[%lx] npages[%ld]\n", |
| vaddr, ctx, npages); |
| } |
| |
| static void dma_4u_unmap_page(struct device *dev, dma_addr_t bus_addr, |
| size_t sz, enum dma_data_direction direction, |
| struct dma_attrs *attrs) |
| { |
| struct iommu *iommu; |
| struct strbuf *strbuf; |
| iopte_t *base; |
| unsigned long flags, npages, ctx, i; |
| |
| if (unlikely(direction == DMA_NONE)) { |
| if (printk_ratelimit()) |
| WARN_ON(1); |
| return; |
| } |
| |
| iommu = dev->archdata.iommu; |
| strbuf = dev->archdata.stc; |
| |
| npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); |
| npages >>= IO_PAGE_SHIFT; |
| base = iommu->page_table + |
| ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); |
| bus_addr &= IO_PAGE_MASK; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| /* Record the context, if any. */ |
| ctx = 0; |
| if (iommu->iommu_ctxflush) |
| ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL; |
| |
| /* Step 1: Kick data out of streaming buffers if necessary. */ |
| if (strbuf->strbuf_enabled) |
| strbuf_flush(strbuf, iommu, bus_addr, ctx, |
| npages, direction); |
| |
| /* Step 2: Clear out TSB entries. */ |
| for (i = 0; i < npages; i++) |
| iopte_make_dummy(iommu, base + i); |
| |
| iommu_range_free(iommu, bus_addr, npages); |
| |
| iommu_free_ctx(iommu, ctx); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction direction, |
| struct dma_attrs *attrs) |
| { |
| struct scatterlist *s, *outs, *segstart; |
| unsigned long flags, handle, prot, ctx; |
| dma_addr_t dma_next = 0, dma_addr; |
| unsigned int max_seg_size; |
| unsigned long seg_boundary_size; |
| int outcount, incount, i; |
| struct strbuf *strbuf; |
| struct iommu *iommu; |
| unsigned long base_shift; |
| |
| BUG_ON(direction == DMA_NONE); |
| |
| iommu = dev->archdata.iommu; |
| strbuf = dev->archdata.stc; |
| if (nelems == 0 || !iommu) |
| return 0; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| ctx = 0; |
| if (iommu->iommu_ctxflush) |
| ctx = iommu_alloc_ctx(iommu); |
| |
| if (strbuf->strbuf_enabled) |
| prot = IOPTE_STREAMING(ctx); |
| else |
| prot = IOPTE_CONSISTENT(ctx); |
| if (direction != DMA_TO_DEVICE) |
| prot |= IOPTE_WRITE; |
| |
| outs = s = segstart = &sglist[0]; |
| outcount = 1; |
| incount = nelems; |
| handle = 0; |
| |
| /* Init first segment length for backout at failure */ |
| outs->dma_length = 0; |
| |
| max_seg_size = dma_get_max_seg_size(dev); |
| seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, |
| IO_PAGE_SIZE) >> IO_PAGE_SHIFT; |
| base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT; |
| for_each_sg(sglist, s, nelems, i) { |
| unsigned long paddr, npages, entry, out_entry = 0, slen; |
| iopte_t *base; |
| |
| slen = s->length; |
| /* Sanity check */ |
| if (slen == 0) { |
| dma_next = 0; |
| continue; |
| } |
| /* Allocate iommu entries for that segment */ |
| paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s); |
| npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE); |
| entry = iommu_range_alloc(dev, iommu, npages, &handle); |
| |
| /* Handle failure */ |
| if (unlikely(entry == DMA_ERROR_CODE)) { |
| if (printk_ratelimit()) |
| printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx" |
| " npages %lx\n", iommu, paddr, npages); |
| goto iommu_map_failed; |
| } |
| |
| base = iommu->page_table + entry; |
| |
| /* Convert entry to a dma_addr_t */ |
| dma_addr = iommu->page_table_map_base + |
| (entry << IO_PAGE_SHIFT); |
| dma_addr |= (s->offset & ~IO_PAGE_MASK); |
| |
| /* Insert into HW table */ |
| paddr &= IO_PAGE_MASK; |
| while (npages--) { |
| iopte_val(*base) = prot | paddr; |
| base++; |
| paddr += IO_PAGE_SIZE; |
| } |
| |
| /* If we are in an open segment, try merging */ |
| if (segstart != s) { |
| /* We cannot merge if: |
| * - allocated dma_addr isn't contiguous to previous allocation |
| */ |
| if ((dma_addr != dma_next) || |
| (outs->dma_length + s->length > max_seg_size) || |
| (is_span_boundary(out_entry, base_shift, |
| seg_boundary_size, outs, s))) { |
| /* Can't merge: create a new segment */ |
| segstart = s; |
| outcount++; |
| outs = sg_next(outs); |
| } else { |
| outs->dma_length += s->length; |
| } |
| } |
| |
| if (segstart == s) { |
| /* This is a new segment, fill entries */ |
| outs->dma_address = dma_addr; |
| outs->dma_length = slen; |
| out_entry = entry; |
| } |
| |
| /* Calculate next page pointer for contiguous check */ |
| dma_next = dma_addr + slen; |
| } |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| if (outcount < incount) { |
| outs = sg_next(outs); |
| outs->dma_address = DMA_ERROR_CODE; |
| outs->dma_length = 0; |
| } |
| |
| return outcount; |
| |
| iommu_map_failed: |
| for_each_sg(sglist, s, nelems, i) { |
| if (s->dma_length != 0) { |
| unsigned long vaddr, npages, entry, j; |
| iopte_t *base; |
| |
| vaddr = s->dma_address & IO_PAGE_MASK; |
| npages = iommu_num_pages(s->dma_address, s->dma_length, |
| IO_PAGE_SIZE); |
| iommu_range_free(iommu, vaddr, npages); |
| |
| entry = (vaddr - iommu->page_table_map_base) |
| >> IO_PAGE_SHIFT; |
| base = iommu->page_table + entry; |
| |
| for (j = 0; j < npages; j++) |
| iopte_make_dummy(iommu, base + j); |
| |
| s->dma_address = DMA_ERROR_CODE; |
| s->dma_length = 0; |
| } |
| if (s == outs) |
| break; |
| } |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return 0; |
| } |
| |
| /* If contexts are being used, they are the same in all of the mappings |
| * we make for a particular SG. |
| */ |
| static unsigned long fetch_sg_ctx(struct iommu *iommu, struct scatterlist *sg) |
| { |
| unsigned long ctx = 0; |
| |
| if (iommu->iommu_ctxflush) { |
| iopte_t *base; |
| u32 bus_addr; |
| |
| bus_addr = sg->dma_address & IO_PAGE_MASK; |
| base = iommu->page_table + |
| ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); |
| |
| ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL; |
| } |
| return ctx; |
| } |
| |
| static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction direction, |
| struct dma_attrs *attrs) |
| { |
| unsigned long flags, ctx; |
| struct scatterlist *sg; |
| struct strbuf *strbuf; |
| struct iommu *iommu; |
| |
| BUG_ON(direction == DMA_NONE); |
| |
| iommu = dev->archdata.iommu; |
| strbuf = dev->archdata.stc; |
| |
| ctx = fetch_sg_ctx(iommu, sglist); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| sg = sglist; |
| while (nelems--) { |
| dma_addr_t dma_handle = sg->dma_address; |
| unsigned int len = sg->dma_length; |
| unsigned long npages, entry; |
| iopte_t *base; |
| int i; |
| |
| if (!len) |
| break; |
| npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE); |
| iommu_range_free(iommu, dma_handle, npages); |
| |
| entry = ((dma_handle - iommu->page_table_map_base) |
| >> IO_PAGE_SHIFT); |
| base = iommu->page_table + entry; |
| |
| dma_handle &= IO_PAGE_MASK; |
| if (strbuf->strbuf_enabled) |
| strbuf_flush(strbuf, iommu, dma_handle, ctx, |
| npages, direction); |
| |
| for (i = 0; i < npages; i++) |
| iopte_make_dummy(iommu, base + i); |
| |
| sg = sg_next(sg); |
| } |
| |
| iommu_free_ctx(iommu, ctx); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static void dma_4u_sync_single_for_cpu(struct device *dev, |
| dma_addr_t bus_addr, size_t sz, |
| enum dma_data_direction direction) |
| { |
| struct iommu *iommu; |
| struct strbuf *strbuf; |
| unsigned long flags, ctx, npages; |
| |
| iommu = dev->archdata.iommu; |
| strbuf = dev->archdata.stc; |
| |
| if (!strbuf->strbuf_enabled) |
| return; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); |
| npages >>= IO_PAGE_SHIFT; |
| bus_addr &= IO_PAGE_MASK; |
| |
| /* Step 1: Record the context, if any. */ |
| ctx = 0; |
| if (iommu->iommu_ctxflush && |
| strbuf->strbuf_ctxflush) { |
| iopte_t *iopte; |
| |
| iopte = iommu->page_table + |
| ((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT); |
| ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL; |
| } |
| |
| /* Step 2: Kick data out of streaming buffers. */ |
| strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static void dma_4u_sync_sg_for_cpu(struct device *dev, |
| struct scatterlist *sglist, int nelems, |
| enum dma_data_direction direction) |
| { |
| struct iommu *iommu; |
| struct strbuf *strbuf; |
| unsigned long flags, ctx, npages, i; |
| struct scatterlist *sg, *sgprv; |
| u32 bus_addr; |
| |
| iommu = dev->archdata.iommu; |
| strbuf = dev->archdata.stc; |
| |
| if (!strbuf->strbuf_enabled) |
| return; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| /* Step 1: Record the context, if any. */ |
| ctx = 0; |
| if (iommu->iommu_ctxflush && |
| strbuf->strbuf_ctxflush) { |
| iopte_t *iopte; |
| |
| iopte = iommu->page_table + |
| ((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT); |
| ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL; |
| } |
| |
| /* Step 2: Kick data out of streaming buffers. */ |
| bus_addr = sglist[0].dma_address & IO_PAGE_MASK; |
| sgprv = NULL; |
| for_each_sg(sglist, sg, nelems, i) { |
| if (sg->dma_length == 0) |
| break; |
| sgprv = sg; |
| } |
| |
| npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length) |
| - bus_addr) >> IO_PAGE_SHIFT; |
| strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction); |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static struct dma_map_ops sun4u_dma_ops = { |
| .alloc_coherent = dma_4u_alloc_coherent, |
| .free_coherent = dma_4u_free_coherent, |
| .map_page = dma_4u_map_page, |
| .unmap_page = dma_4u_unmap_page, |
| .map_sg = dma_4u_map_sg, |
| .unmap_sg = dma_4u_unmap_sg, |
| .sync_single_for_cpu = dma_4u_sync_single_for_cpu, |
| .sync_sg_for_cpu = dma_4u_sync_sg_for_cpu, |
| }; |
| |
| struct dma_map_ops *dma_ops = &sun4u_dma_ops; |
| EXPORT_SYMBOL(dma_ops); |
| |
| extern int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask); |
| |
| int dma_supported(struct device *dev, u64 device_mask) |
| { |
| struct iommu *iommu = dev->archdata.iommu; |
| u64 dma_addr_mask = iommu->dma_addr_mask; |
| |
| if (device_mask >= (1UL << 32UL)) |
| return 0; |
| |
| if ((device_mask & dma_addr_mask) == dma_addr_mask) |
| return 1; |
| |
| #ifdef CONFIG_PCI |
| if (dev->bus == &pci_bus_type) |
| return pci64_dma_supported(to_pci_dev(dev), device_mask); |
| #endif |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_supported); |