blob: 3f3951f3ba9834eb5ba4a9599a9f34051ed87f50 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dcn32/dcn32_init.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn32_resource.h"
#include "dcn20/dcn20_resource.h"
#include "dcn30/dcn30_resource.h"
#include "dcn10/dcn10_ipp.h"
#include "dcn30/dcn30_hubbub.h"
#include "dcn31/dcn31_hubbub.h"
#include "dcn32/dcn32_hubbub.h"
#include "dcn32/dcn32_mpc.h"
#include "dcn32/dcn32_hubp.h"
#include "irq/dcn32/irq_service_dcn32.h"
#include "dcn32/dcn32_dpp.h"
#include "dcn32/dcn32_optc.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dce110/dce110_hwseq.h"
#include "dcn30/dcn30_opp.h"
#include "dcn20/dcn20_dsc.h"
#include "dcn30/dcn30_vpg.h"
#include "dcn30/dcn30_afmt.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn32/dcn32_dio_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_link_encoder.h"
#include "dcn32/dcn32_hpo_dp_link_encoder.h"
#include "dcn31/dcn31_apg.h"
#include "dcn31/dcn31_dio_link_encoder.h"
#include "dcn32/dcn32_dio_link_encoder.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "clk_mgr.h"
#include "virtual/virtual_stream_encoder.h"
#include "dml/display_mode_vba.h"
#include "dcn32/dcn32_dccg.h"
#include "dcn10/dcn10_resource.h"
#include "link.h"
#include "dcn31/dcn31_panel_cntl.h"
#include "dcn30/dcn30_dwb.h"
#include "dcn32/dcn32_mmhubbub.h"
#include "dcn/dcn_3_2_0_offset.h"
#include "dcn/dcn_3_2_0_sh_mask.h"
#include "nbio/nbio_4_3_0_offset.h"
#include "reg_helper.h"
#include "dce/dmub_abm.h"
#include "dce/dmub_psr.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "dml/dcn30/display_mode_vba_30.h"
#include "vm_helper.h"
#include "dcn20/dcn20_vmid.h"
#include "dml/dcn32/dcn32_fpu.h"
#include "dc_state_priv.h"
#include "dml2/dml2_wrapper.h"
#define DC_LOGGER_INIT(logger)
enum dcn32_clk_src_array_id {
DCN32_CLK_SRC_PLL0,
DCN32_CLK_SRC_PLL1,
DCN32_CLK_SRC_PLL2,
DCN32_CLK_SRC_PLL3,
DCN32_CLK_SRC_PLL4,
DCN32_CLK_SRC_TOTAL
};
/* begin *********************
* macros to expend register list macro defined in HW object header file
*/
/* DCN */
#define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SR_ARR(reg_name, id) \
REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
#define SR_ARR_INIT(reg_name, id, value) \
REG_STRUCT[id].reg_name = value
#define SRI(reg_name, block, id)\
REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRI_ARR(reg_name, block, id)\
REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SR_ARR_I2C(reg_name, id) \
REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
#define SRI_ARR_I2C(reg_name, block, id)\
REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRI_ARR_ALPHABET(reg_name, block, index, id)\
REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRI2(reg_name, block, id)\
.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SRI2_ARR(reg_name, block, id)\
REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SRIR(var_name, reg_name, block, id)\
.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII_ARR_2(reg_name, block, id, inst)\
REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII_MPC_RMU(reg_name, block, id)\
.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII_DWB(reg_name, temp_name, block, id)\
REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## temp_name
#define SF_DWB2(reg_name, block, id, field_name, post_fix) \
.field_name = reg_name ## __ ## field_name ## post_fix
#define DCCG_SRII(reg_name, block, id)\
REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define VUPDATE_SRII(reg_name, block, id)\
REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
reg ## reg_name ## _ ## block ## id
/* NBIO */
#define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
regBIF_BX0_ ## reg_name
#define NBIO_SR_ARR(reg_name, id)\
REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
regBIF_BX0_ ## reg_name
#undef CTX
#define CTX ctx
#define REG(reg_name) \
(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
static struct bios_registers bios_regs;
#define bios_regs_init() \
( \
NBIO_SR(BIOS_SCRATCH_3),\
NBIO_SR(BIOS_SCRATCH_6)\
)
#define clk_src_regs_init(index, pllid)\
CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
static struct dce110_clk_src_regs clk_src_regs[5];
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};
#define abm_regs_init(id)\
ABM_DCN32_REG_LIST_RI(id)
static struct dce_abm_registers abm_regs[4];
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN32(_MASK)
};
#define audio_regs_init(id)\
AUD_COMMON_REG_LIST_RI(id)
static struct dce_audio_registers audio_regs[5];
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define vpg_regs_init(id)\
VPG_DCN3_REG_LIST_RI(id)
static struct dcn30_vpg_registers vpg_regs[10];
static const struct dcn30_vpg_shift vpg_shift = {
DCN3_VPG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_vpg_mask vpg_mask = {
DCN3_VPG_MASK_SH_LIST(_MASK)
};
#define afmt_regs_init(id)\
AFMT_DCN3_REG_LIST_RI(id)
static struct dcn30_afmt_registers afmt_regs[6];
static const struct dcn30_afmt_shift afmt_shift = {
DCN3_AFMT_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_afmt_mask afmt_mask = {
DCN3_AFMT_MASK_SH_LIST(_MASK)
};
#define apg_regs_init(id)\
APG_DCN31_REG_LIST_RI(id)
static struct dcn31_apg_registers apg_regs[4];
static const struct dcn31_apg_shift apg_shift = {
DCN31_APG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn31_apg_mask apg_mask = {
DCN31_APG_MASK_SH_LIST(_MASK)
};
#define stream_enc_regs_init(id)\
SE_DCN32_REG_LIST_RI(id)
static struct dcn10_stream_enc_registers stream_enc_regs[5];
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
};
#define aux_regs_init(id)\
DCN2_AUX_REG_LIST_RI(id)
static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
#define hpd_regs_init(id)\
HPD_REG_LIST_RI(id)
static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
#define link_regs_init(id, phyid)\
( \
LE_DCN31_REG_LIST_RI(id), \
UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
)
/*DPCS_DCN31_REG_LIST(id),*/ \
static struct dcn10_link_enc_registers link_enc_regs[5];
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
//DPCS_DCN31_MASK_SH_LIST(_MASK)
};
#define hpo_dp_stream_encoder_reg_init(id)\
DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
};
static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
};
#define hpo_dp_link_encoder_reg_init(id)\
DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
/*DCN3_1_RDPCSTX_REG_LIST(0),*/
/*DCN3_1_RDPCSTX_REG_LIST(1),*/
/*DCN3_1_RDPCSTX_REG_LIST(2),*/
/*DCN3_1_RDPCSTX_REG_LIST(3),*/
static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
};
static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
};
#define dpp_regs_init(id)\
DPP_REG_LIST_DCN30_COMMON_RI(id)
static struct dcn3_dpp_registers dpp_regs[4];
static const struct dcn3_dpp_shift tf_shift = {
DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
};
static const struct dcn3_dpp_mask tf_mask = {
DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
};
#define opp_regs_init(id)\
OPP_REG_LIST_DCN30_RI(id)
static struct dcn20_opp_registers opp_regs[4];
static const struct dcn20_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn20_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_engine_regs_init(id)\
( \
AUX_COMMON_REG_LIST0_RI(id), \
SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
)
static struct dce110_aux_registers aux_engine_regs[5];
static const struct dce110_aux_registers_shift aux_shift = {
DCN_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCN_AUX_MASK_SH_LIST(_MASK)
};
#define dwbc_regs_dcn3_init(id)\
DWBC_COMMON_REG_LIST_DCN30_RI(id)
static struct dcn30_dwbc_registers dwbc30_regs[1];
static const struct dcn30_dwbc_shift dwbc30_shift = {
DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_dwbc_mask dwbc30_mask = {
DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define mcif_wb_regs_dcn3_init(id)\
MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
};
#define dsc_regsDCN20_init(id)\
DSC_REG_LIST_DCN20_RI(id)
static struct dcn20_dsc_registers dsc_regs[4];
static const struct dcn20_dsc_shift dsc_shift = {
DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};
static const struct dcn20_dsc_mask dsc_mask = {
DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};
static struct dcn30_mpc_registers mpc_regs;
#define dcn_mpc_regs_init() \
MPC_REG_LIST_DCN3_2_RI(0),\
MPC_REG_LIST_DCN3_2_RI(1),\
MPC_REG_LIST_DCN3_2_RI(2),\
MPC_REG_LIST_DCN3_2_RI(3),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
static const struct dcn30_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn30_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
};
#define optc_regs_init(id)\
OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
static struct dcn_optc_registers optc_regs[4];
static const struct dcn_optc_shift optc_shift = {
OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};
static const struct dcn_optc_mask optc_mask = {
OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};
#define hubp_regs_init(id)\
HUBP_REG_LIST_DCN32_RI(id)
static struct dcn_hubp2_registers hubp_regs[4];
static const struct dcn_hubp2_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn_hubp2_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN32(_MASK)
};
static struct dcn_hubbub_registers hubbub_reg;
#define hubbub_reg_init()\
HUBBUB_REG_LIST_DCN32_RI(0)
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN32(_MASK)
};
static struct dccg_registers dccg_regs;
#define dccg_regs_init()\
DCCG_REG_LIST_DCN32_RI()
static const struct dccg_shift dccg_shift = {
DCCG_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dccg_mask dccg_mask = {
DCCG_MASK_SH_LIST_DCN32(_MASK)
};
#define SRII2(reg_name_pre, reg_name_post, id)\
.reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \
## id ## _ ## reg_name_post ## _BASE_IDX) + \
reg ## reg_name_pre ## id ## _ ## reg_name_post
#define HWSEQ_DCN32_REG_LIST()\
SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
SR(DIO_MEM_PWR_CTRL), \
SR(ODM_MEM_PWR_CTRL3), \
SR(MMHUBBUB_MEM_PWR_CNTL), \
SR(DCCG_GATE_DISABLE_CNTL), \
SR(DCCG_GATE_DISABLE_CNTL2), \
SR(DCFCLK_CNTL),\
SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
SRII(PIXEL_RATE_CNTL, OTG, 0), \
SRII(PIXEL_RATE_CNTL, OTG, 1),\
SRII(PIXEL_RATE_CNTL, OTG, 2),\
SRII(PIXEL_RATE_CNTL, OTG, 3),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
SR(MICROSECOND_TIME_BASE_DIV), \
SR(MILLISECOND_TIME_BASE_DIV), \
SR(DISPCLK_FREQ_CHANGE_CNTL), \
SR(RBBMIF_TIMEOUT_DIS), \
SR(RBBMIF_TIMEOUT_DIS_2), \
SR(DCHUBBUB_CRC_CTRL), \
SR(DPP_TOP0_DPP_CRC_CTRL), \
SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
SR(MPC_CRC_CTRL), \
SR(MPC_CRC_RESULT_GB), \
SR(MPC_CRC_RESULT_C), \
SR(MPC_CRC_RESULT_AR), \
SR(DOMAIN0_PG_CONFIG), \
SR(DOMAIN1_PG_CONFIG), \
SR(DOMAIN2_PG_CONFIG), \
SR(DOMAIN3_PG_CONFIG), \
SR(DOMAIN16_PG_CONFIG), \
SR(DOMAIN17_PG_CONFIG), \
SR(DOMAIN18_PG_CONFIG), \
SR(DOMAIN19_PG_CONFIG), \
SR(DOMAIN0_PG_STATUS), \
SR(DOMAIN1_PG_STATUS), \
SR(DOMAIN2_PG_STATUS), \
SR(DOMAIN3_PG_STATUS), \
SR(DOMAIN16_PG_STATUS), \
SR(DOMAIN17_PG_STATUS), \
SR(DOMAIN18_PG_STATUS), \
SR(DOMAIN19_PG_STATUS), \
SR(D1VGA_CONTROL), \
SR(D2VGA_CONTROL), \
SR(D3VGA_CONTROL), \
SR(D4VGA_CONTROL), \
SR(D5VGA_CONTROL), \
SR(D6VGA_CONTROL), \
SR(DC_IP_REQUEST_CNTL), \
SR(AZALIA_AUDIO_DTO), \
SR(AZALIA_CONTROLLER_CLOCK_GATING)
static struct dce_hwseq_registers hwseq_reg;
#define hwseq_reg_init()\
HWSEQ_DCN32_REG_LIST()
#define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN32_MASK_SH_LIST(_MASK)
};
#define vmid_regs_init(id)\
DCN20_VMID_REG_LIST_RI(id)
static struct dcn_vmid_registers vmid_regs[16];
static const struct dcn20_vmid_shift vmid_shifts = {
DCN20_VMID_MASK_SH_LIST(__SHIFT)
};
static const struct dcn20_vmid_mask vmid_masks = {
DCN20_VMID_MASK_SH_LIST(_MASK)
};
static const struct resource_caps res_cap_dcn32 = {
.num_timing_generator = 4,
.num_opp = 4,
.num_video_plane = 4,
.num_audio = 5,
.num_stream_encoder = 5,
.num_hpo_dp_stream_encoder = 4,
.num_hpo_dp_link_encoder = 2,
.num_pll = 5,
.num_dwb = 1,
.num_ddc = 5,
.num_vmid = 16,
.num_mpc_3dlut = 4,
.num_dsc = 4,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.per_pixel_alpha = true,
.pixel_format_support = {
.argb8888 = true,
.nv12 = true,
.fp16 = true,
.p010 = true,
.ayuv = false,
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 16000,
.fp16 = 16000
},
// 6:1 downscaling ratio: 1000/6 = 166.666
.max_downscale_factor = {
.argb8888 = 167,
.nv12 = 167,
.fp16 = 167
},
64,
64
};
static const struct dc_debug_options debug_defaults_drv = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
.disable_pplib_clock_request = false,
.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
.force_single_disp_pipe_split = false,
.disable_dcc = DCC_ENABLE,
.vsr_support = true,
.performance_trace = false,
.max_downscale_src_width = 7680,/*upto 8K*/
.disable_pplib_wm_range = false,
.scl_reset_length10 = true,
.sanity_checks = false,
.underflow_assert_delay_us = 0xFFFFFFFF,
.dwb_fi_phase = -1, // -1 = disable,
.dmub_command_table = true,
.enable_mem_low_power = {
.bits = {
.vga = false,
.i2c = false,
.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
.dscl = false,
.cm = false,
.mpc = false,
.optc = true,
}
},
.use_max_lb = true,
.force_disable_subvp = false,
.exit_idle_opt_for_cursor_updates = true,
.using_dml2 = false,
.enable_single_display_2to1_odm_policy = true,
/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
.enable_double_buffered_dsc_pg_support = true,
.enable_dp_dig_pixel_rate_div_policy = 1,
.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
.alloc_extra_way_for_cursor = true,
.min_prefetch_in_strobe_ns = 60000, // 60us
.disable_unbounded_requesting = false,
.override_dispclk_programming = true,
.disable_fpo_optimizations = false,
.fpo_vactive_margin_us = 2000, // 2000us
.disable_fpo_vactive = false,
.disable_boot_optimizations = false,
.disable_subvp_high_refresh = false,
.disable_dp_plus_plus_wa = true,
.fpo_vactive_min_active_margin_us = 200,
.fpo_vactive_max_blank_us = 1000,
.enable_legacy_fast_update = false,
};
static struct dce_aux *dcn32_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT aux_engine_regs
aux_engine_regs_init(0),
aux_engine_regs_init(1),
aux_engine_regs_init(2),
aux_engine_regs_init(3),
aux_engine_regs_init(4);
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs_init(id)\
I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
static struct dce_i2c_registers i2c_hw_regs[5];
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
static struct dce_i2c_hw *dcn32_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT i2c_hw_regs
i2c_inst_regs_init(1),
i2c_inst_regs_init(2),
i2c_inst_regs_init(3),
i2c_inst_regs_init(4),
i2c_inst_regs_init(5);
dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct clock_source *dcn32_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
{
int i;
struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
GFP_KERNEL);
if (!hubbub2)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT hubbub_reg
hubbub_reg_init();
#undef REG_STRUCT
#define REG_STRUCT vmid_regs
vmid_regs_init(0),
vmid_regs_init(1),
vmid_regs_init(2),
vmid_regs_init(3),
vmid_regs_init(4),
vmid_regs_init(5),
vmid_regs_init(6),
vmid_regs_init(7),
vmid_regs_init(8),
vmid_regs_init(9),
vmid_regs_init(10),
vmid_regs_init(11),
vmid_regs_init(12),
vmid_regs_init(13),
vmid_regs_init(14),
vmid_regs_init(15);
hubbub32_construct(hubbub2, ctx,
&hubbub_reg,
&hubbub_shift,
&hubbub_mask,
ctx->dc->dml.ip.det_buffer_size_kbytes,
ctx->dc->dml.ip.pixel_chunk_size_kbytes,
ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
struct dcn20_vmid *vmid = &hubbub2->vmid[i];
vmid->ctx = ctx;
vmid->regs = &vmid_regs[i];
vmid->shifts = &vmid_shifts;
vmid->masks = &vmid_masks;
}
return &hubbub2->base;
}
static struct hubp *dcn32_hubp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_hubp *hubp2 =
kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
if (!hubp2)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT hubp_regs
hubp_regs_init(0),
hubp_regs_init(1),
hubp_regs_init(2),
hubp_regs_init(3);
if (hubp32_construct(hubp2, ctx, inst,
&hubp_regs[inst], &hubp_shift, &hubp_mask))
return &hubp2->base;
BREAK_TO_DEBUGGER();
kfree(hubp2);
return NULL;
}
static void dcn32_dpp_destroy(struct dpp **dpp)
{
kfree(TO_DCN30_DPP(*dpp));
*dpp = NULL;
}
static struct dpp *dcn32_dpp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn3_dpp *dpp3 =
kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
if (!dpp3)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT dpp_regs
dpp_regs_init(0),
dpp_regs_init(1),
dpp_regs_init(2),
dpp_regs_init(3);
if (dpp32_construct(dpp3, ctx, inst,
&dpp_regs[inst], &tf_shift, &tf_mask))
return &dpp3->base;
BREAK_TO_DEBUGGER();
kfree(dpp3);
return NULL;
}
static struct mpc *dcn32_mpc_create(
struct dc_context *ctx,
int num_mpcc,
int num_rmu)
{
struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
GFP_KERNEL);
if (!mpc30)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT mpc_regs
dcn_mpc_regs_init();
dcn32_mpc_construct(mpc30, ctx,
&mpc_regs,
&mpc_shift,
&mpc_mask,
num_mpcc,
num_rmu);
return &mpc30->base;
}
static struct output_pixel_processor *dcn32_opp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_opp *opp2 =
kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
if (!opp2) {
BREAK_TO_DEBUGGER();
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT opp_regs
opp_regs_init(0),
opp_regs_init(1),
opp_regs_init(2),
opp_regs_init(3);
dcn20_opp_construct(opp2, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp2->base;
}
static struct timing_generator *dcn32_timing_generator_create(
struct dc_context *ctx,
uint32_t instance)
{
struct optc *tgn10 =
kzalloc(sizeof(struct optc), GFP_KERNEL);
if (!tgn10)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT optc_regs
optc_regs_init(0),
optc_regs_init(1),
optc_regs_init(2),
optc_regs_init(3);
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &optc_regs[instance];
tgn10->tg_shift = &optc_shift;
tgn10->tg_mask = &optc_mask;
dcn32_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.fec_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
static struct link_encoder *dcn32_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dcn20_link_encoder *enc20 =
kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
if (!enc20)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT link_enc_aux_regs
aux_regs_init(0),
aux_regs_init(1),
aux_regs_init(2),
aux_regs_init(3),
aux_regs_init(4);
#undef REG_STRUCT
#define REG_STRUCT link_enc_hpd_regs
hpd_regs_init(0),
hpd_regs_init(1),
hpd_regs_init(2),
hpd_regs_init(3),
hpd_regs_init(4);
#undef REG_STRUCT
#define REG_STRUCT link_enc_regs
link_regs_init(0, A),
link_regs_init(1, B),
link_regs_init(2, C),
link_regs_init(3, D),
link_regs_init(4, E);
dcn32_link_encoder_construct(enc20,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source],
&le_shift,
&le_mask);
return &enc20->enc10.base;
}
struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dcn31_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dcn31_panel_cntl_construct(panel_cntl, init_data);
return &panel_cntl->base;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static struct audio *dcn32_create_audio(
struct dc_context *ctx, unsigned int inst)
{
#undef REG_STRUCT
#define REG_STRUCT audio_regs
audio_regs_init(0),
audio_regs_init(1),
audio_regs_init(2),
audio_regs_init(3),
audio_regs_init(4);
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct vpg *dcn32_vpg_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
if (!vpg3)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT vpg_regs
vpg_regs_init(0),
vpg_regs_init(1),
vpg_regs_init(2),
vpg_regs_init(3),
vpg_regs_init(4),
vpg_regs_init(5),
vpg_regs_init(6),
vpg_regs_init(7),
vpg_regs_init(8),
vpg_regs_init(9);
vpg3_construct(vpg3, ctx, inst,
&vpg_regs[inst],
&vpg_shift,
&vpg_mask);
return &vpg3->base;
}
static struct afmt *dcn32_afmt_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
if (!afmt3)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT afmt_regs
afmt_regs_init(0),
afmt_regs_init(1),
afmt_regs_init(2),
afmt_regs_init(3),
afmt_regs_init(4),
afmt_regs_init(5);
afmt3_construct(afmt3, ctx, inst,
&afmt_regs[inst],
&afmt_shift,
&afmt_mask);
return &afmt3->base;
}
static struct apg *dcn31_apg_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
if (!apg31)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT apg_regs
apg_regs_init(0),
apg_regs_init(1),
apg_regs_init(2),
apg_regs_init(3);
apg31_construct(apg31, ctx, inst,
&apg_regs[inst],
&apg_shift,
&apg_mask);
return &apg31->base;
}
static struct stream_encoder *dcn32_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1;
struct vpg *vpg;
struct afmt *afmt;
int vpg_inst;
int afmt_inst;
/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
if (eng_id <= ENGINE_ID_DIGF) {
vpg_inst = eng_id;
afmt_inst = eng_id;
} else
return NULL;
enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
vpg = dcn32_vpg_create(ctx, vpg_inst);
afmt = dcn32_afmt_create(ctx, afmt_inst);
if (!enc1 || !vpg || !afmt) {
kfree(enc1);
kfree(vpg);
kfree(afmt);
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT stream_enc_regs
stream_enc_regs_init(0),
stream_enc_regs_init(1),
stream_enc_regs_init(2),
stream_enc_regs_init(3),
stream_enc_regs_init(4);
dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
eng_id, vpg, afmt,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
struct vpg *vpg;
struct apg *apg;
uint32_t hpo_dp_inst;
uint32_t vpg_inst;
uint32_t apg_inst;
ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
/* Mapping of VPG register blocks to HPO DP block instance:
* VPG[6] -> HPO_DP[0]
* VPG[7] -> HPO_DP[1]
* VPG[8] -> HPO_DP[2]
* VPG[9] -> HPO_DP[3]
*/
vpg_inst = hpo_dp_inst + 6;
/* Mapping of APG register blocks to HPO DP block instance:
* APG[0] -> HPO_DP[0]
* APG[1] -> HPO_DP[1]
* APG[2] -> HPO_DP[2]
* APG[3] -> HPO_DP[3]
*/
apg_inst = hpo_dp_inst;
/* allocate HPO stream encoder and create VPG sub-block */
hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
vpg = dcn32_vpg_create(ctx, vpg_inst);
apg = dcn31_apg_create(ctx, apg_inst);
if (!hpo_dp_enc31 || !vpg || !apg) {
kfree(hpo_dp_enc31);
kfree(vpg);
kfree(apg);
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT hpo_dp_stream_enc_regs
hpo_dp_stream_encoder_reg_init(0),
hpo_dp_stream_encoder_reg_init(1),
hpo_dp_stream_encoder_reg_init(2),
hpo_dp_stream_encoder_reg_init(3);
dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
hpo_dp_inst, eng_id, vpg, apg,
&hpo_dp_stream_enc_regs[hpo_dp_inst],
&hpo_dp_se_shift, &hpo_dp_se_mask);
return &hpo_dp_enc31->base;
}
static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
uint8_t inst,
struct dc_context *ctx)
{
struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
/* allocate HPO link encoder */
hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
#undef REG_STRUCT
#define REG_STRUCT hpo_dp_link_enc_regs
hpo_dp_link_encoder_reg_init(0),
hpo_dp_link_encoder_reg_init(1);
hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
&hpo_dp_link_enc_regs[inst],
&hpo_dp_le_shift, &hpo_dp_le_mask);
return &hpo_dp_enc31->base;
}
static struct dce_hwseq *dcn32_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
#undef REG_STRUCT
#define REG_STRUCT hwseq_reg
hwseq_reg_init();
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = dcn32_create_audio,
.create_stream_encoder = dcn32_stream_encoder_create,
.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
.create_hwseq = dcn32_hwseq_create,
};
static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
if (pool->base.stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
pool->base.stream_enc[i]->vpg = NULL;
}
if (pool->base.stream_enc[i]->afmt != NULL) {
kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
pool->base.stream_enc[i]->afmt = NULL;
}
kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
pool->base.stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
if (pool->base.hpo_dp_stream_enc[i] != NULL) {
if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
}
if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
pool->base.hpo_dp_stream_enc[i]->apg = NULL;
}
kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
pool->base.hpo_dp_stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
if (pool->base.hpo_dp_link_enc[i] != NULL) {
kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
pool->base.hpo_dp_link_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
if (pool->base.dscs[i] != NULL)
dcn20_dsc_destroy(&pool->base.dscs[i]);
}
if (pool->base.mpc != NULL) {
kfree(TO_DCN20_MPC(pool->base.mpc));
pool->base.mpc = NULL;
}
if (pool->base.hubbub != NULL) {
kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
pool->base.hubbub = NULL;
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.dpps[i] != NULL)
dcn32_dpp_destroy(&pool->base.dpps[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.hubps[i] != NULL) {
kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
pool->base.hubps[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
if (pool->base.dwbc[i] != NULL) {
kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
pool->base.dwbc[i] = NULL;
}
if (pool->base.mcif_wb[i] != NULL) {
kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
pool->base.mcif_wb[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
if (pool->base.mpc_lut[i] != NULL) {
dc_3dlut_func_release(pool->base.mpc_lut[i]);
pool->base.mpc_lut[i] = NULL;
}
if (pool->base.mpc_shaper[i] != NULL) {
dc_transfer_func_release(pool->base.mpc_shaper[i]);
pool->base.mpc_shaper[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn20_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.multiple_abms[i] != NULL)
dce_abm_destroy(&pool->base.multiple_abms[i]);
}
if (pool->base.psr != NULL)
dmub_psr_destroy(&pool->base.psr);
if (pool->base.dccg != NULL)
dcn_dccg_destroy(&pool->base.dccg);
if (pool->base.oem_device != NULL) {
struct dc *dc = pool->base.oem_device->ctx->dc;
dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
}
}
static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t dwb_count = pool->res_cap->num_dwb;
for (i = 0; i < dwb_count; i++) {
struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
GFP_KERNEL);
if (!dwbc30) {
dm_error("DC: failed to create dwbc30!\n");
return false;
}
#undef REG_STRUCT
#define REG_STRUCT dwbc30_regs
dwbc_regs_dcn3_init(0);
dcn30_dwbc_construct(dwbc30, ctx,
&dwbc30_regs[i],
&dwbc30_shift,
&dwbc30_mask,
i);
pool->dwbc[i] = &dwbc30->base;
}
return true;
}
static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t dwb_count = pool->res_cap->num_dwb;
for (i = 0; i < dwb_count; i++) {
struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
GFP_KERNEL);
if (!mcif_wb30) {
dm_error("DC: failed to create mcif_wb30!\n");
return false;
}
#undef REG_STRUCT
#define REG_STRUCT mcif_wb30_regs
mcif_wb_regs_dcn3_init(0);
dcn32_mmhubbub_construct(mcif_wb30, ctx,
&mcif_wb30_regs[i],
&mcif_wb30_shift,
&mcif_wb30_mask,
i);
pool->mcif_wb[i] = &mcif_wb30->base;
}
return true;
}
static struct display_stream_compressor *dcn32_dsc_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_dsc *dsc =
kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
if (!dsc) {
BREAK_TO_DEBUGGER();
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT dsc_regs
dsc_regsDCN20_init(0),
dsc_regsDCN20_init(1),
dsc_regsDCN20_init(2),
dsc_regsDCN20_init(3);
dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
dsc->max_image_width = 6016;
return &dsc->base;
}
static void dcn32_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
dcn32_resource_destruct(dcn32_pool);
kfree(dcn32_pool);
*pool = NULL;
}
bool dcn32_acquire_post_bldn_3dlut(
struct resource_context *res_ctx,
const struct resource_pool *pool,
int mpcc_id,
struct dc_3dlut **lut,
struct dc_transfer_func **shaper)
{
bool ret = false;
ASSERT(*lut == NULL && *shaper == NULL);
*lut = NULL;
*shaper = NULL;
if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
*lut = pool->mpc_lut[mpcc_id];
*shaper = pool->mpc_shaper[mpcc_id];
res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
ret = true;
}
return ret;
}
bool dcn32_release_post_bldn_3dlut(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_3dlut **lut,
struct dc_transfer_func **shaper)
{
int i;
bool ret = false;
for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
res_ctx->is_mpc_3dlut_acquired[i] = false;
pool->mpc_lut[i]->state.raw = 0;
*lut = NULL;
*shaper = NULL;
ret = true;
break;
}
}
return ret;
}
static void dcn32_enable_phantom_plane(struct dc *dc,
struct dc_state *context,
struct dc_stream_state *phantom_stream,
unsigned int dc_pipe_idx)
{
struct dc_plane_state *phantom_plane = NULL;
struct dc_plane_state *prev_phantom_plane = NULL;
struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
while (curr_pipe) {
if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
phantom_plane = prev_phantom_plane;
else
phantom_plane = dc_state_create_phantom_plane(dc, context, curr_pipe->plane_state);
memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
sizeof(phantom_plane->scaling_quality));
memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
sizeof(phantom_plane->plane_size));
memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
sizeof(phantom_plane->tiling_info));
memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
phantom_plane->format = curr_pipe->plane_state->format;
phantom_plane->rotation = curr_pipe->plane_state->rotation;
phantom_plane->visible = curr_pipe->plane_state->visible;
/* Shadow pipe has small viewport. */
phantom_plane->clip_rect.y = 0;
phantom_plane->clip_rect.height = phantom_stream->src.height;
dc_state_add_phantom_plane(dc, phantom_stream, phantom_plane, context);
curr_pipe = curr_pipe->bottom_pipe;
prev_phantom_plane = phantom_plane;
}
}
static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
unsigned int pipe_cnt,
unsigned int dc_pipe_idx)
{
struct dc_stream_state *phantom_stream = NULL;
struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
phantom_stream = dc_state_create_phantom_stream(dc, context, ref_pipe->stream);
/* stream has limited viewport and small timing */
memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
DC_FP_START();
dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
DC_FP_END();
dc_state_add_phantom_stream(dc, context, phantom_stream, ref_pipe->stream);
return phantom_stream;
}
/* TODO: Input to this function should indicate which pipe indexes (or streams)
* require a phantom pipe / stream
*/
void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
unsigned int pipe_cnt,
unsigned int index)
{
struct dc_stream_state *phantom_stream = NULL;
unsigned int i;
// The index of the DC pipe passed into this function is guarenteed to
// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
// already have phantom pipe assigned, etc.) by previous checks.
phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
// Build scaling params for phantom pipes which were newly added.
// We determine which phantom pipes were added by comparing with
// the phantom stream.
if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
pipe->stream->use_dynamic_meta = false;
pipe->plane_state->flip_immediate = false;
if (!resource_build_scaling_params(pipe)) {
// Log / remove phantom pipes since failed to build scaling params
}
}
}
}
static bool dml1_validate(struct dc *dc, struct dc_state *context, bool fast_validate)
{
bool out = false;
BW_VAL_TRACE_SETUP();
int vlevel = 0;
int pipe_cnt = 0;
display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
/* To handle Freesync properly, setting FreeSync DML parameters
* to its default state for the first stage of validation
*/
context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
DC_LOGGER_INIT(dc->ctx->logger);
BW_VAL_TRACE_COUNT();
DC_FP_START();
out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
DC_FP_END();
if (pipe_cnt == 0)
goto validate_out;
if (!out)
goto validate_fail;
BW_VAL_TRACE_END_VOLTAGE_LEVEL();
if (fast_validate) {
BW_VAL_TRACE_SKIP(fast);
goto validate_out;
}
dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
dcn32_override_min_req_memclk(dc, context);
BW_VAL_TRACE_END_WATERMARKS();
goto validate_out;
validate_fail:
DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
BW_VAL_TRACE_SKIP(fail);
out = false;
validate_out:
kfree(pipes);
BW_VAL_TRACE_FINISH();
return out;
}
bool dcn32_validate_bandwidth(struct dc *dc,
struct dc_state *context,
bool fast_validate)
{
bool out = false;
if (dc->debug.using_dml2)
out = dml2_validate(dc, context, fast_validate);
else
out = dml1_validate(dc, context, fast_validate);
return out;
}
int dcn32_populate_dml_pipes_from_context(
struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
bool fast_validate)
{
int i, pipe_cnt;
struct resource_context *res_ctx = &context->res_ctx;
struct pipe_ctx *pipe = NULL;
bool subvp_in_use = false;
struct dc_crtc_timing *timing;
dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
if (!res_ctx->pipe_ctx[i].stream)
continue;
pipe = &res_ctx->pipe_ctx[i];
timing = &pipe->stream->timing;
pipes[pipe_cnt].pipe.src.gpuvm = true;
DC_FP_START();
dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
DC_FP_END();
pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
if (dc->config.enable_windowed_mpo_odm &&
dc->debug.enable_single_display_2to1_odm_policy) {
switch (resource_get_odm_slice_count(pipe)) {
case 2:
pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
break;
case 4:
pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_4to1;
break;
default:
pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
}
} else {
pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
}
pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
/* Only populate DML input with subvp info for full updates.
* This is just a workaround -- needs a proper fix.
*/
if (!fast_validate) {
switch (dc_state_get_pipe_subvp_type(context, pipe)) {
case SUBVP_MAIN:
pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
subvp_in_use = true;
break;
case SUBVP_PHANTOM:
pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
// Disallow unbounded req for SubVP according to DCHUB programming guide
pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
break;
case SUBVP_NONE:
pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
break;
default:
break;
}
}
pipes[pipe_cnt].dout.dsc_input_bpc = 0;
if (pipes[pipe_cnt].dout.dsc_enable) {
switch (timing->display_color_depth) {
case COLOR_DEPTH_888:
pipes[pipe_cnt].dout.dsc_input_bpc = 8;
break;
case COLOR_DEPTH_101010:
pipes[pipe_cnt].dout.dsc_input_bpc = 10;
break;
case COLOR_DEPTH_121212:
pipes[pipe_cnt].dout.dsc_input_bpc = 12;
break;
default:
ASSERT(0);
break;
}
}
pipe_cnt++;
}
/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
* the DET available for each pipe). Use the DET override input to maintain our driver
* policy.
*/
dcn32_set_det_allocations(dc, context, pipes);
// In general cases we want to keep the dram clock change requirement
// (prefer configs that support MCLK switch). Only override to false
// for SubVP
if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
else
context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
return pipe_cnt;
}
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn20_get_dcc_compression_cap,
.get_subvp_en = dcn32_subvp_in_use,
};
void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt,
int vlevel)
{
DC_FP_START();
dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
DC_FP_END();
}
static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
{
DC_FP_START();
dcn32_update_bw_bounding_box_fpu(dc, bw_params);
DC_FP_END();
}
static struct resource_funcs dcn32_res_pool_funcs = {
.destroy = dcn32_destroy_resource_pool,
.link_enc_create = dcn32_link_encoder_create,
.link_enc_create_minimal = NULL,
.panel_cntl_create = dcn32_panel_cntl_create,
.validate_bandwidth = dcn32_validate_bandwidth,
.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
.acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
.acquire_free_pipe_as_secondary_opp_head = dcn32_acquire_free_pipe_as_secondary_opp_head,
.release_pipe = dcn20_release_pipe,
.add_stream_to_ctx = dcn30_add_stream_to_ctx,
.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
.set_mcif_arb_params = dcn30_set_mcif_arb_params,
.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
.update_bw_bounding_box = dcn32_update_bw_bounding_box,
.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
.add_phantom_pipes = dcn32_add_phantom_pipes,
.build_pipe_pix_clk_params = dcn20_build_pipe_pix_clk_params,
};
static uint32_t read_pipe_fuses(struct dc_context *ctx)
{
uint32_t value = REG_READ(CC_DC_PIPE_DIS);
/* DCN32 support max 4 pipes */
value = value & 0xf;
return value;
}
static bool dcn32_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dcn32_resource_pool *pool)
{
int i, j;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data init_data;
struct ddc_service_init_data ddc_init_data = {0};
uint32_t pipe_fuses = 0;
uint32_t num_pipes = 4;
#undef REG_STRUCT
#define REG_STRUCT bios_regs
bios_regs_init();
#undef REG_STRUCT
#define REG_STRUCT clk_src_regs
clk_src_regs_init(0, A),
clk_src_regs_init(1, B),
clk_src_regs_init(2, C),
clk_src_regs_init(3, D),
clk_src_regs_init(4, E);
#undef REG_STRUCT
#define REG_STRUCT abm_regs
abm_regs_init(0),
abm_regs_init(1),
abm_regs_init(2),
abm_regs_init(3);
#undef REG_STRUCT
#define REG_STRUCT dccg_regs
dccg_regs_init();
DC_FP_START();
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap_dcn32;
/* max number of pipes for ASIC before checking for pipe fuses */
num_pipes = pool->base.res_cap->num_timing_generator;
pipe_fuses = read_pipe_fuses(ctx);
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
if (pipe_fuses & 1 << i)
num_pipes--;
if (pipe_fuses & 1)
ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
ASSERT(0); //Entire DCN is harvested!
/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
* value will be changed, update max_num_dpp and max_num_otg for dml.
*/
dcn3_2_ip.max_num_dpp = num_pipes;
dcn3_2_ip.max_num_otg = num_pipes;
pool->base.funcs = &dcn32_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.timing_generator_count = num_pipes;
pool->base.pipe_count = num_pipes;
pool->base.mpcc_count = num_pipes;
dc->caps.max_downscale_ratio = 600;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
dc->caps.max_cursor_size = 64;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dmdata_alloc_size = 2048;
dc->caps.mall_size_per_mem_channel = 4;
dc->caps.mall_size_total = 0;
dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
dc->caps.cache_line_size = 64;
dc->caps.cache_num_ways = 16;
/* Calculate the available MALL space */
dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
dc, dc->ctx->dc_bios->vram_info.num_chans) *
dc->caps.mall_size_per_mem_channel * 1024 * 1024;
dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
dc->caps.subvp_fw_processing_delay_us = 15;
dc->caps.subvp_drr_max_vblank_margin_us = 40;
dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
dc->caps.subvp_swath_height_margin_lines = 16;
dc->caps.subvp_pstate_allow_width_us = 20;
dc->caps.subvp_vertical_int_margin_us = 30;
dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
dc->caps.max_slave_planes = 2;
dc->caps.max_slave_yuv_planes = 2;
dc->caps.max_slave_rgb_planes = 2;
dc->caps.post_blend_color_processing = true;
dc->caps.force_dp_tps4_for_cp2520 = true;
if (dc->config.forceHBR2CP2520)
dc->caps.force_dp_tps4_for_cp2520 = false;
dc->caps.dp_hpo = true;
dc->caps.dp_hdmi21_pcon_support = true;
dc->caps.edp_dsc_support = true;
dc->caps.extended_aux_timeout_support = true;
dc->caps.dmcub_support = true;
dc->caps.seamless_odm = true;
dc->caps.max_v_total = (1 << 15) - 1;
/* Color pipeline capabilities */
dc->caps.color.dpp.dcn_arch = 1;
dc->caps.color.dpp.input_lut_shared = 0;
dc->caps.color.dpp.icsc = 1;
dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
dc->caps.color.dpp.dgam_rom_caps.pq = 1;
dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
dc->caps.color.dpp.post_csc = 1;
dc->caps.color.dpp.gamma_corr = 1;
dc->caps.color.dpp.dgam_rom_for_yuv = 0;
dc->caps.color.dpp.hw_3d_lut = 1;
dc->caps.color.dpp.ogam_ram = 0; // no OGAM in DPP since DCN1
// no OGAM ROM on DCN2 and later ASICs
dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.ogam_rom_caps.pq = 0;
dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
dc->caps.color.dpp.ocsc = 0;
dc->caps.color.mpc.gamut_remap = 1;
dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
dc->caps.color.mpc.ogam_ram = 1;
dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.mpc.ogam_rom_caps.pq = 0;
dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
dc->caps.color.mpc.ocsc = 1;
/* Use pipe context based otg sync logic */
dc->config.use_pipe_ctx_sync_logic = true;
dc->config.dc_mode_clk_limit_support = true;
dc->config.enable_windowed_mpo_odm = true;
/* read VBIOS LTTPR caps */
{
if (ctx->dc_bios->funcs->get_lttpr_caps) {
enum bp_result bp_query_result;
uint8_t is_vbios_lttpr_enable = 0;
bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
}
/* interop bit is implicit */
{
dc->caps.vbios_lttpr_aware = true;
}
}
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->debug = debug_defaults_drv;
// Init the vm_helper
if (dc->vm_helper)
vm_helper_init(dc->vm_helper, 16);
/*************************************************
* Create resources *
*************************************************/
/* Clock Sources for Pixel Clock*/
pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
/* todo: not reuse phy_pll registers */
pool->base.dp_clock_source =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* DCCG */
pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
if (pool->base.dccg == NULL) {
dm_error("DC: failed to create dccg!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* DML */
dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
/* IRQ Service */
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
if (!pool->base.irqs)
goto create_fail;
/* HUBBUB */
pool->base.hubbub = dcn32_hubbub_create(ctx);
if (pool->base.hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto create_fail;
}
/* HUBPs, DPPs, OPPs, TGs, ABMs */
for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
/* if pipe is disabled, skip instance of HW pipe,
* i.e, skip ASIC register instance
*/
if (pipe_fuses & 1 << i)
continue;
/* HUBPs */
pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
if (pool->base.hubps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create hubps!\n");
goto create_fail;
}
/* DPPs */
pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
if (pool->base.dpps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create dpps!\n");
goto create_fail;
}
/* OPPs */
pool->base.opps[j] = dcn32_opp_create(ctx, i);
if (pool->base.opps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto create_fail;
}
/* TGs */
pool->base.timing_generators[j] = dcn32_timing_generator_create(
ctx, i);
if (pool->base.timing_generators[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto create_fail;
}
/* ABMs */
pool->base.multiple_abms[j] = dmub_abm_create(ctx,
&abm_regs[i],
&abm_shift,
&abm_mask);
if (pool->base.multiple_abms[j] == NULL) {
dm_error("DC: failed to create abm for pipe %d!\n", i);
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* index for resource pool arrays for next valid pipe */
j++;
}
/* PSR */
pool->base.psr = dmub_psr_create(ctx);
if (pool->base.psr == NULL) {
dm_error("DC: failed to create psr obj!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* MPCCs */
pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
if (pool->base.mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto create_fail;
}
/* DSCs */
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
if (pool->base.dscs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create display stream compressor %d!\n", i);
goto create_fail;
}
}
/* DWB */
if (!dcn32_dwbc_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create dwbc!\n");
goto create_fail;
}
/* MMHUBBUB */
if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mcif_wb!\n");
goto create_fail;
}
/* AUX and I2C */
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto create_fail;
}
pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create hw i2c!!\n");
goto create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto create_fail;
/* HW Sequencer init functions and Plane caps */
dcn32_hw_sequencer_init_functions(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
ddc_init_data.ctx = dc->ctx;
ddc_init_data.link = NULL;
ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
ddc_init_data.id.enum_id = 0;
ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
} else {
pool->base.oem_device = NULL;
}
dc->dml2_options.dcn_pipe_count = pool->base.pipe_count;
dc->dml2_options.use_native_pstate_optimization = false;
dc->dml2_options.use_native_soc_bb_construction = true;
dc->dml2_options.minimize_dispclk_using_odm = true;
dc->dml2_options.callbacks.dc = dc;
dc->dml2_options.callbacks.build_scaling_params = &resource_build_scaling_params;
dc->dml2_options.callbacks.can_support_mclk_switch_using_fw_based_vblank_stretch = &dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch;
dc->dml2_options.callbacks.acquire_secondary_pipe_for_mpc_odm = &dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy;
dc->dml2_options.callbacks.update_pipes_for_stream_with_slice_count = &resource_update_pipes_for_stream_with_slice_count;
dc->dml2_options.callbacks.update_pipes_for_plane_with_slice_count = &resource_update_pipes_for_plane_with_slice_count;
dc->dml2_options.callbacks.get_mpc_slice_index = &resource_get_mpc_slice_index;
dc->dml2_options.callbacks.get_odm_slice_index = &resource_get_odm_slice_index;
dc->dml2_options.callbacks.get_opp_head = &resource_get_opp_head;
dc->dml2_options.svp_pstate.callbacks.dc = dc;
dc->dml2_options.svp_pstate.callbacks.add_phantom_plane = &dc_state_add_phantom_plane;
dc->dml2_options.svp_pstate.callbacks.add_phantom_stream = &dc_state_add_phantom_stream;
dc->dml2_options.svp_pstate.callbacks.build_scaling_params = &resource_build_scaling_params;
dc->dml2_options.svp_pstate.callbacks.create_phantom_plane = &dc_state_create_phantom_plane;
dc->dml2_options.svp_pstate.callbacks.remove_phantom_plane = &dc_state_remove_phantom_plane;
dc->dml2_options.svp_pstate.callbacks.remove_phantom_stream = &dc_state_remove_phantom_stream;
dc->dml2_options.svp_pstate.callbacks.create_phantom_stream = &dc_state_create_phantom_stream;
dc->dml2_options.svp_pstate.callbacks.release_phantom_plane = &dc_state_release_phantom_plane;
dc->dml2_options.svp_pstate.callbacks.release_phantom_stream = &dc_state_release_phantom_stream;
dc->dml2_options.svp_pstate.callbacks.release_dsc = &dcn20_release_dsc;
dc->dml2_options.svp_pstate.callbacks.get_pipe_subvp_type = &dc_state_get_pipe_subvp_type;
dc->dml2_options.svp_pstate.callbacks.get_stream_subvp_type = &dc_state_get_stream_subvp_type;
dc->dml2_options.svp_pstate.callbacks.get_paired_subvp_stream = &dc_state_get_paired_subvp_stream;
dc->dml2_options.svp_pstate.subvp_fw_processing_delay_us = dc->caps.subvp_fw_processing_delay_us;
dc->dml2_options.svp_pstate.subvp_prefetch_end_to_mall_start_us = dc->caps.subvp_prefetch_end_to_mall_start_us;
dc->dml2_options.svp_pstate.subvp_pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us;
dc->dml2_options.svp_pstate.subvp_swath_height_margin_lines = dc->caps.subvp_swath_height_margin_lines;
dc->dml2_options.svp_pstate.force_disable_subvp = dc->debug.force_disable_subvp;
dc->dml2_options.svp_pstate.force_enable_subvp = dc->debug.force_subvp_mclk_switch;
dc->dml2_options.mall_cfg.cache_line_size_bytes = dc->caps.cache_line_size;
dc->dml2_options.mall_cfg.cache_num_ways = dc->caps.cache_num_ways;
dc->dml2_options.mall_cfg.max_cab_allocation_bytes = dc->caps.max_cab_allocation_bytes;
dc->dml2_options.mall_cfg.mblk_height_4bpe_pixels = DCN3_2_MBLK_HEIGHT_4BPE;
dc->dml2_options.mall_cfg.mblk_height_8bpe_pixels = DCN3_2_MBLK_HEIGHT_8BPE;
dc->dml2_options.mall_cfg.mblk_size_bytes = DCN3_2_MALL_MBLK_SIZE_BYTES;
dc->dml2_options.mall_cfg.mblk_width_pixels = DCN3_2_MBLK_WIDTH;
dc->dml2_options.max_segments_per_hubp = 18;
dc->dml2_options.det_segment_size = DCN3_2_DET_SEG_SIZE;
dc->dml2_options.map_dc_pipes_with_callbacks = true;
if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
dc->config.sdpif_request_limit_words_per_umc = 16;
DC_FP_END();
return true;
create_fail:
DC_FP_END();
dcn32_resource_destruct(pool);
return false;
}
struct resource_pool *dcn32_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc)
{
struct dcn32_resource_pool *pool =
kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
kfree(pool);
return NULL;
}
/*
* Find the most optimal free pipe from res_ctx, which could be used as a
* secondary dpp pipe for input opp head pipe.
*
* a free pipe - a pipe in input res_ctx not yet used for any streams or
* planes.
* secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
* tree. This is typical used for rendering MPO planes or additional offset
* areas in MPCC combine.
*
* Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
* -------------------------------------------------------------------------
*
* PROBLEM:
*
* 1. There is a hardware limitation that a secondary DPP pipe cannot be
* transferred from one MPC blending tree to the other in a single frame.
* Otherwise it could cause glitches on the screen.
*
* For instance, we cannot transition from state 1 to state 2 in one frame. This
* is because PIPE1 is transferred from PIPE0's MPC blending tree over to
* PIPE2's MPC blending tree, which is not supported by hardware.
* To support this transition we need to first remove PIPE1 from PIPE0's MPC
* blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
* in the next frame. This is not optimal as it will delay the flip for two
* frames.
*
* State 1:
* PIPE0 -- secondary DPP pipe --> (PIPE1)
* PIPE2 -- secondary DPP pipe --> NONE
*
* State 2:
* PIPE0 -- secondary DPP pipe --> NONE
* PIPE2 -- secondary DPP pipe --> (PIPE1)
*
* 2. We want to in general minimize the unnecessary changes in pipe topology.
* If a pipe is already added in current blending tree and there are no changes
* to plane topology, we don't want to swap it with another free pipe
* unnecessarily in every update. Powering up and down a pipe would require a
* full update which delays the flip for 1 frame. If we use the original pipe
* we don't have to toggle its power. So we can flip faster.
*/
static int find_optimal_free_pipe_as_secondary_dpp_pipe(
const struct resource_context *cur_res_ctx,
struct resource_context *new_res_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *new_opp_head)
{
const struct pipe_ctx *cur_opp_head;
int free_pipe_idx;
cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
cur_res_ctx, new_res_ctx, cur_opp_head);
/* Up until here if we have not found a free secondary pipe, we will
* need to wait for at least one frame to complete the transition
* sequence.
*/
if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
cur_res_ctx, new_res_ctx, pool);
/* Up until here if we have not found a free secondary pipe, we will
* need to wait for at least two frames to complete the transition
* sequence. It really doesn't matter which pipe we decide take from
* current enabled pipes. It won't save our frame time when we swap only
* one pipe or more pipes.
*/
if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
cur_res_ctx, new_res_ctx, pool);
if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
return free_pipe_idx;
}
static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
struct resource_context *res_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *primary_pipe)
{
int i;
struct pipe_ctx *secondary_pipe = NULL;
struct pipe_ctx *next_odm_mpo_pipe = NULL;
int primary_index, preferred_pipe_idx;
struct pipe_ctx *old_primary_pipe = NULL;
/*
* Modified from find_idle_secondary_pipe
* With windowed MPO and ODM, we want to avoid the case where we want a
* free pipe for the left side but the free pipe is being used on the
* right side.
* Add check on current_state if the primary_pipe is the left side,
* to check the right side ( primary_pipe->next_odm_pipe ) to see if
* it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
* - If so, then don't use this pipe
* EXCEPTION - 3 plane ( 2 MPO plane ) case
* - in this case, the primary pipe has already gotten a free pipe for the
* MPO window in the left
* - when it tries to get a free pipe for the MPO window on the right,
* it will see that it is already assigned to the right side
* ( primary_pipe->next_odm_pipe ). But in this case, we want this
* free pipe, since it will be for the right side. So add an
* additional condition, that skipping the free pipe on the right only
* applies if the primary pipe has no bottom pipe currently assigned
*/
if (primary_pipe) {
primary_index = primary_pipe->pipe_idx;
old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
&& (!primary_pipe->bottom_pipe))
next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
secondary_pipe->pipe_idx = preferred_pipe_idx;
}
}
/*
* search backwards for the second pipe to keep pipe
* assignment more consistent
*/
if (!secondary_pipe)
for (i = pool->pipe_count - 1; i >= 0; i--) {
if ((res_ctx->pipe_ctx[i].stream == NULL) &&
!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
secondary_pipe = &res_ctx->pipe_ctx[i];
secondary_pipe->pipe_idx = i;
break;
}
}
return secondary_pipe;
}
static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
struct dc_state *state,
const struct resource_pool *pool,
struct dc_stream_state *stream,
const struct pipe_ctx *head_pipe)
{
struct resource_context *res_ctx = &state->res_ctx;
struct pipe_ctx *idle_pipe, *pipe;
struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
int head_index;
if (!head_pipe)
ASSERT(0);
/*
* Modified from dcn20_acquire_idle_pipe_for_layer
* Check if head_pipe in old_context already has bottom_pipe allocated.
* - If so, check if that pipe is available in the current context.
* -- If so, reuse pipe from old_context
*/
head_index = head_pipe->pipe_idx;
pipe = &old_ctx->pipe_ctx[head_index];
if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
} else {
idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
if (!idle_pipe)
return NULL;
}
idle_pipe->stream = head_pipe->stream;
idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
return idle_pipe;
}
static int find_optimal_free_pipe_as_secondary_opp_head(
const struct resource_context *cur_res_ctx,
struct resource_context *new_res_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *new_otg_master)
{
const struct pipe_ctx *cur_otg_master;
int free_pipe_idx;
cur_otg_master = &cur_res_ctx->pipe_ctx[new_otg_master->pipe_idx];
free_pipe_idx = resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
cur_res_ctx, new_res_ctx, cur_otg_master);
/* Up until here if we have not found a free secondary pipe, we will
* need to wait for at least one frame to complete the transition
* sequence.
*/
if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
cur_res_ctx, new_res_ctx, pool);
if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
return free_pipe_idx;
}
struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
const struct dc_state *cur_ctx,
struct dc_state *new_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *opp_head_pipe)
{
int free_pipe_idx;
struct pipe_ctx *free_pipe;
if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);
free_pipe_idx = find_optimal_free_pipe_as_secondary_dpp_pipe(
&cur_ctx->res_ctx, &new_ctx->res_ctx,
pool, opp_head_pipe);
if (free_pipe_idx >= 0) {
free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
free_pipe->pipe_idx = free_pipe_idx;
free_pipe->stream = opp_head_pipe->stream;
free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;
free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
free_pipe->plane_res.mpcc_inst =
pool->dpps[free_pipe->pipe_idx]->inst;
} else {
ASSERT(opp_head_pipe);
free_pipe = NULL;
}
return free_pipe;
}
struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_opp_head(
const struct dc_state *cur_ctx,
struct dc_state *new_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *otg_master)
{
int free_pipe_idx = find_optimal_free_pipe_as_secondary_opp_head(
&cur_ctx->res_ctx, &new_ctx->res_ctx,
pool, otg_master);
struct pipe_ctx *free_pipe;
if (free_pipe_idx >= 0) {
free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
free_pipe->pipe_idx = free_pipe_idx;
free_pipe->stream = otg_master->stream;
free_pipe->stream_res.tg = otg_master->stream_res.tg;
free_pipe->stream_res.dsc = NULL;
free_pipe->stream_res.opp = pool->opps[free_pipe_idx];
free_pipe->plane_res.mi = pool->mis[free_pipe_idx];
free_pipe->plane_res.hubp = pool->hubps[free_pipe_idx];
free_pipe->plane_res.ipp = pool->ipps[free_pipe_idx];
free_pipe->plane_res.xfm = pool->transforms[free_pipe_idx];
free_pipe->plane_res.dpp = pool->dpps[free_pipe_idx];
free_pipe->plane_res.mpcc_inst = pool->dpps[free_pipe_idx]->inst;
if (free_pipe->stream->timing.flags.DSC == 1) {
dcn20_acquire_dsc(free_pipe->stream->ctx->dc,
&new_ctx->res_ctx,
&free_pipe->stream_res.dsc,
free_pipe_idx);
ASSERT(free_pipe->stream_res.dsc);
if (free_pipe->stream_res.dsc == NULL) {
memset(free_pipe, 0, sizeof(*free_pipe));
free_pipe = NULL;
}
}
} else {
ASSERT(otg_master);
free_pipe = NULL;
}
return free_pipe;
}
unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
{
/*
* DCN32 and DCN321 SKUs may have different sizes for MALL
* but we may not be able to access all the MALL space.
* If the num_chans is power of 2, then we can access all
* of the available MALL space. Otherwise, we can only
* access:
*
* max_cab_size_in_bytes = total_cache_size_in_bytes *
* ((2^floor(log2(num_chans)))/num_chans)
*
* Calculating the MALL sizes for all available SKUs, we
* have come up with the follow simplified check.
* - we have max_chans which provides the max MALL size.
* Each chans supports 4MB of MALL so:
*
* total_cache_size_in_bytes = max_chans * 4 MB
*
* - we have avail_chans which shows the number of channels
* we can use if we can't access the entire MALL space.
* It is generally half of max_chans
* - so we use the following checks:
*
* if (num_chans == max_chans), return max_chans
* if (num_chans < max_chans), return avail_chans
*
* - exception is GC_11_0_0 where we can't access max_chans,
* so we define max_avail_chans as the maximum available
* MALL space
*
*/
int gc_11_0_0_max_chans = 48;
int gc_11_0_0_max_avail_chans = 32;
int gc_11_0_0_avail_chans = 16;
int gc_11_0_3_max_chans = 16;
int gc_11_0_3_avail_chans = 8;
int gc_11_0_2_max_chans = 8;
int gc_11_0_2_avail_chans = 4;
if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
return (num_chans == gc_11_0_0_max_chans) ?
gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
return (num_chans == gc_11_0_2_max_chans) ?
gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
return (num_chans == gc_11_0_3_max_chans) ?
gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
}
}