| /* |
| * This file is part of the Chelsio FCoE driver for Linux. |
| * |
| * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/pci_regs.h> |
| #include <linux/firmware.h> |
| #include <linux/stddef.h> |
| #include <linux/delay.h> |
| #include <linux/string.h> |
| #include <linux/compiler.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/log2.h> |
| |
| #include "csio_hw.h" |
| #include "csio_lnode.h" |
| #include "csio_rnode.h" |
| |
| int csio_dbg_level = 0xFEFF; |
| unsigned int csio_port_mask = 0xf; |
| |
| /* Default FW event queue entries. */ |
| static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE; |
| |
| /* Default MSI param level */ |
| int csio_msi = 2; |
| |
| /* FCoE function instances */ |
| static int dev_num; |
| |
| /* FCoE Adapter types & its description */ |
| static const struct csio_adap_desc csio_t5_fcoe_adapters[] = { |
| {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"}, |
| {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"}, |
| {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"}, |
| {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"}, |
| {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"}, |
| {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"}, |
| {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"}, |
| {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"}, |
| {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"}, |
| {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"}, |
| {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"}, |
| {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"}, |
| {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"}, |
| {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"}, |
| {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"}, |
| {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"}, |
| {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"}, |
| {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"}, |
| {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"}, |
| {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"}, |
| {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"}, |
| {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"} |
| }; |
| |
| static void csio_mgmtm_cleanup(struct csio_mgmtm *); |
| static void csio_hw_mbm_cleanup(struct csio_hw *); |
| |
| /* State machine forward declarations */ |
| static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev); |
| static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev); |
| static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev); |
| static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev); |
| static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev); |
| static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev); |
| static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev); |
| static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev); |
| static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev); |
| |
| static void csio_hw_initialize(struct csio_hw *hw); |
| static void csio_evtq_stop(struct csio_hw *hw); |
| static void csio_evtq_start(struct csio_hw *hw); |
| |
| int csio_is_hw_ready(struct csio_hw *hw) |
| { |
| return csio_match_state(hw, csio_hws_ready); |
| } |
| |
| int csio_is_hw_removing(struct csio_hw *hw) |
| { |
| return csio_match_state(hw, csio_hws_removing); |
| } |
| |
| |
| /* |
| * csio_hw_wait_op_done_val - wait until an operation is completed |
| * @hw: the HW module |
| * @reg: the register to check for completion |
| * @mask: a single-bit field within @reg that indicates completion |
| * @polarity: the value of the field when the operation is completed |
| * @attempts: number of check iterations |
| * @delay: delay in usecs between iterations |
| * @valp: where to store the value of the register at completion time |
| * |
| * Wait until an operation is completed by checking a bit in a register |
| * up to @attempts times. If @valp is not NULL the value of the register |
| * at the time it indicated completion is stored there. Returns 0 if the |
| * operation completes and -EAGAIN otherwise. |
| */ |
| int |
| csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask, |
| int polarity, int attempts, int delay, uint32_t *valp) |
| { |
| uint32_t val; |
| while (1) { |
| val = csio_rd_reg32(hw, reg); |
| |
| if (!!(val & mask) == polarity) { |
| if (valp) |
| *valp = val; |
| return 0; |
| } |
| |
| if (--attempts == 0) |
| return -EAGAIN; |
| if (delay) |
| udelay(delay); |
| } |
| } |
| |
| /* |
| * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register |
| * @hw: the adapter |
| * @addr: the indirect TP register address |
| * @mask: specifies the field within the register to modify |
| * @val: new value for the field |
| * |
| * Sets a field of an indirect TP register to the given value. |
| */ |
| void |
| csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr, |
| unsigned int mask, unsigned int val) |
| { |
| csio_wr_reg32(hw, addr, TP_PIO_ADDR_A); |
| val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask; |
| csio_wr_reg32(hw, val, TP_PIO_DATA_A); |
| } |
| |
| void |
| csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask, |
| uint32_t value) |
| { |
| uint32_t val = csio_rd_reg32(hw, reg) & ~mask; |
| |
| csio_wr_reg32(hw, val | value, reg); |
| /* Flush */ |
| csio_rd_reg32(hw, reg); |
| |
| } |
| |
| static int |
| csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf) |
| { |
| return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype, |
| addr, len, buf, 0); |
| } |
| |
| /* |
| * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. |
| */ |
| #define EEPROM_MAX_RD_POLL 40 |
| #define EEPROM_MAX_WR_POLL 6 |
| #define EEPROM_STAT_ADDR 0x7bfc |
| #define VPD_BASE 0x400 |
| #define VPD_BASE_OLD 0 |
| #define VPD_LEN 1024 |
| #define VPD_INFO_FLD_HDR_SIZE 3 |
| |
| /* |
| * csio_hw_seeprom_read - read a serial EEPROM location |
| * @hw: hw to read |
| * @addr: EEPROM virtual address |
| * @data: where to store the read data |
| * |
| * Read a 32-bit word from a location in serial EEPROM using the card's PCI |
| * VPD capability. Note that this function must be called with a virtual |
| * address. |
| */ |
| static int |
| csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data) |
| { |
| uint16_t val = 0; |
| int attempts = EEPROM_MAX_RD_POLL; |
| uint32_t base = hw->params.pci.vpd_cap_addr; |
| |
| if (addr >= EEPROMVSIZE || (addr & 3)) |
| return -EINVAL; |
| |
| pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr); |
| |
| do { |
| udelay(10); |
| pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val); |
| } while (!(val & PCI_VPD_ADDR_F) && --attempts); |
| |
| if (!(val & PCI_VPD_ADDR_F)) { |
| csio_err(hw, "reading EEPROM address 0x%x failed\n", addr); |
| return -EINVAL; |
| } |
| |
| pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data); |
| *data = le32_to_cpu(*(__le32 *)data); |
| |
| return 0; |
| } |
| |
| /* |
| * Partial EEPROM Vital Product Data structure. Includes only the ID and |
| * VPD-R sections. |
| */ |
| struct t4_vpd_hdr { |
| u8 id_tag; |
| u8 id_len[2]; |
| u8 id_data[ID_LEN]; |
| u8 vpdr_tag; |
| u8 vpdr_len[2]; |
| }; |
| |
| /* |
| * csio_hw_get_vpd_keyword_val - Locates an information field keyword in |
| * the VPD |
| * @v: Pointer to buffered vpd data structure |
| * @kw: The keyword to search for |
| * |
| * Returns the value of the information field keyword or |
| * -EINVAL otherwise. |
| */ |
| static int |
| csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw) |
| { |
| int32_t i; |
| int32_t offset , len; |
| const uint8_t *buf = &v->id_tag; |
| const uint8_t *vpdr_len = &v->vpdr_tag; |
| offset = sizeof(struct t4_vpd_hdr); |
| len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8); |
| |
| if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) |
| return -EINVAL; |
| |
| for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) { |
| if (memcmp(buf + i , kw, 2) == 0) { |
| i += VPD_INFO_FLD_HDR_SIZE; |
| return i; |
| } |
| |
| i += VPD_INFO_FLD_HDR_SIZE + buf[i+2]; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int |
| csio_pci_capability(struct pci_dev *pdev, int cap, int *pos) |
| { |
| *pos = pci_find_capability(pdev, cap); |
| if (*pos) |
| return 0; |
| |
| return -1; |
| } |
| |
| /* |
| * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM |
| * @hw: HW module |
| * @p: where to store the parameters |
| * |
| * Reads card parameters stored in VPD EEPROM. |
| */ |
| static int |
| csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p) |
| { |
| int i, ret, ec, sn, addr; |
| uint8_t *vpd, csum; |
| const struct t4_vpd_hdr *v; |
| /* To get around compilation warning from strstrip */ |
| char *s; |
| |
| if (csio_is_valid_vpd(hw)) |
| return 0; |
| |
| ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD, |
| &hw->params.pci.vpd_cap_addr); |
| if (ret) |
| return -EINVAL; |
| |
| vpd = kzalloc(VPD_LEN, GFP_ATOMIC); |
| if (vpd == NULL) |
| return -ENOMEM; |
| |
| /* |
| * Card information normally starts at VPD_BASE but early cards had |
| * it at 0. |
| */ |
| ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd)); |
| addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD; |
| |
| for (i = 0; i < VPD_LEN; i += 4) { |
| ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i)); |
| if (ret) { |
| kfree(vpd); |
| return ret; |
| } |
| } |
| |
| /* Reset the VPD flag! */ |
| hw->flags &= (~CSIO_HWF_VPD_VALID); |
| |
| v = (const struct t4_vpd_hdr *)vpd; |
| |
| #define FIND_VPD_KW(var, name) do { \ |
| var = csio_hw_get_vpd_keyword_val(v, name); \ |
| if (var < 0) { \ |
| csio_err(hw, "missing VPD keyword " name "\n"); \ |
| kfree(vpd); \ |
| return -EINVAL; \ |
| } \ |
| } while (0) |
| |
| FIND_VPD_KW(i, "RV"); |
| for (csum = 0; i >= 0; i--) |
| csum += vpd[i]; |
| |
| if (csum) { |
| csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum); |
| kfree(vpd); |
| return -EINVAL; |
| } |
| FIND_VPD_KW(ec, "EC"); |
| FIND_VPD_KW(sn, "SN"); |
| #undef FIND_VPD_KW |
| |
| memcpy(p->id, v->id_data, ID_LEN); |
| s = strstrip(p->id); |
| memcpy(p->ec, vpd + ec, EC_LEN); |
| s = strstrip(p->ec); |
| i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; |
| memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); |
| s = strstrip(p->sn); |
| |
| csio_valid_vpd_copied(hw); |
| |
| kfree(vpd); |
| return 0; |
| } |
| |
| /* |
| * csio_hw_sf1_read - read data from the serial flash |
| * @hw: the HW module |
| * @byte_cnt: number of bytes to read |
| * @cont: whether another operation will be chained |
| * @lock: whether to lock SF for PL access only |
| * @valp: where to store the read data |
| * |
| * Reads up to 4 bytes of data from the serial flash. The location of |
| * the read needs to be specified prior to calling this by issuing the |
| * appropriate commands to the serial flash. |
| */ |
| static int |
| csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont, |
| int32_t lock, uint32_t *valp) |
| { |
| int ret; |
| |
| if (!byte_cnt || byte_cnt > 4) |
| return -EINVAL; |
| if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F) |
| return -EBUSY; |
| |
| csio_wr_reg32(hw, SF_LOCK_V(lock) | SF_CONT_V(cont) | |
| BYTECNT_V(byte_cnt - 1), SF_OP_A); |
| ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, |
| 10, NULL); |
| if (!ret) |
| *valp = csio_rd_reg32(hw, SF_DATA_A); |
| return ret; |
| } |
| |
| /* |
| * csio_hw_sf1_write - write data to the serial flash |
| * @hw: the HW module |
| * @byte_cnt: number of bytes to write |
| * @cont: whether another operation will be chained |
| * @lock: whether to lock SF for PL access only |
| * @val: value to write |
| * |
| * Writes up to 4 bytes of data to the serial flash. The location of |
| * the write needs to be specified prior to calling this by issuing the |
| * appropriate commands to the serial flash. |
| */ |
| static int |
| csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont, |
| int32_t lock, uint32_t val) |
| { |
| if (!byte_cnt || byte_cnt > 4) |
| return -EINVAL; |
| if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F) |
| return -EBUSY; |
| |
| csio_wr_reg32(hw, val, SF_DATA_A); |
| csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | |
| OP_V(1) | SF_LOCK_V(lock), SF_OP_A); |
| |
| return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, |
| 10, NULL); |
| } |
| |
| /* |
| * csio_hw_flash_wait_op - wait for a flash operation to complete |
| * @hw: the HW module |
| * @attempts: max number of polls of the status register |
| * @delay: delay between polls in ms |
| * |
| * Wait for a flash operation to complete by polling the status register. |
| */ |
| static int |
| csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay) |
| { |
| int ret; |
| uint32_t status; |
| |
| while (1) { |
| ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS); |
| if (ret != 0) |
| return ret; |
| |
| ret = csio_hw_sf1_read(hw, 1, 0, 1, &status); |
| if (ret != 0) |
| return ret; |
| |
| if (!(status & 1)) |
| return 0; |
| if (--attempts == 0) |
| return -EAGAIN; |
| if (delay) |
| msleep(delay); |
| } |
| } |
| |
| /* |
| * csio_hw_read_flash - read words from serial flash |
| * @hw: the HW module |
| * @addr: the start address for the read |
| * @nwords: how many 32-bit words to read |
| * @data: where to store the read data |
| * @byte_oriented: whether to store data as bytes or as words |
| * |
| * Read the specified number of 32-bit words from the serial flash. |
| * If @byte_oriented is set the read data is stored as a byte array |
| * (i.e., big-endian), otherwise as 32-bit words in the platform's |
| * natural endianess. |
| */ |
| static int |
| csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords, |
| uint32_t *data, int32_t byte_oriented) |
| { |
| int ret; |
| |
| if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3)) |
| return -EINVAL; |
| |
| addr = swab32(addr) | SF_RD_DATA_FAST; |
| |
| ret = csio_hw_sf1_write(hw, 4, 1, 0, addr); |
| if (ret != 0) |
| return ret; |
| |
| ret = csio_hw_sf1_read(hw, 1, 1, 0, data); |
| if (ret != 0) |
| return ret; |
| |
| for ( ; nwords; nwords--, data++) { |
| ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data); |
| if (nwords == 1) |
| csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ |
| if (ret) |
| return ret; |
| if (byte_oriented) |
| *data = (__force __u32) htonl(*data); |
| } |
| return 0; |
| } |
| |
| /* |
| * csio_hw_write_flash - write up to a page of data to the serial flash |
| * @hw: the hw |
| * @addr: the start address to write |
| * @n: length of data to write in bytes |
| * @data: the data to write |
| * |
| * Writes up to a page of data (256 bytes) to the serial flash starting |
| * at the given address. All the data must be written to the same page. |
| */ |
| static int |
| csio_hw_write_flash(struct csio_hw *hw, uint32_t addr, |
| uint32_t n, const uint8_t *data) |
| { |
| int ret = -EINVAL; |
| uint32_t buf[64]; |
| uint32_t i, c, left, val, offset = addr & 0xff; |
| |
| if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE) |
| return -EINVAL; |
| |
| val = swab32(addr) | SF_PROG_PAGE; |
| |
| ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE); |
| if (ret != 0) |
| goto unlock; |
| |
| ret = csio_hw_sf1_write(hw, 4, 1, 1, val); |
| if (ret != 0) |
| goto unlock; |
| |
| for (left = n; left; left -= c) { |
| c = min(left, 4U); |
| for (val = 0, i = 0; i < c; ++i) |
| val = (val << 8) + *data++; |
| |
| ret = csio_hw_sf1_write(hw, c, c != left, 1, val); |
| if (ret) |
| goto unlock; |
| } |
| ret = csio_hw_flash_wait_op(hw, 8, 1); |
| if (ret) |
| goto unlock; |
| |
| csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ |
| |
| /* Read the page to verify the write succeeded */ |
| ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); |
| if (ret) |
| return ret; |
| |
| if (memcmp(data - n, (uint8_t *)buf + offset, n)) { |
| csio_err(hw, |
| "failed to correctly write the flash page at %#x\n", |
| addr); |
| return -EINVAL; |
| } |
| |
| return 0; |
| |
| unlock: |
| csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ |
| return ret; |
| } |
| |
| /* |
| * csio_hw_flash_erase_sectors - erase a range of flash sectors |
| * @hw: the HW module |
| * @start: the first sector to erase |
| * @end: the last sector to erase |
| * |
| * Erases the sectors in the given inclusive range. |
| */ |
| static int |
| csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end) |
| { |
| int ret = 0; |
| |
| while (start <= end) { |
| |
| ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE); |
| if (ret != 0) |
| goto out; |
| |
| ret = csio_hw_sf1_write(hw, 4, 0, 1, |
| SF_ERASE_SECTOR | (start << 8)); |
| if (ret != 0) |
| goto out; |
| |
| ret = csio_hw_flash_wait_op(hw, 14, 500); |
| if (ret != 0) |
| goto out; |
| |
| start++; |
| } |
| out: |
| if (ret) |
| csio_err(hw, "erase of flash sector %d failed, error %d\n", |
| start, ret); |
| csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ |
| return 0; |
| } |
| |
| static void |
| csio_hw_print_fw_version(struct csio_hw *hw, char *str) |
| { |
| csio_info(hw, "%s: %u.%u.%u.%u\n", str, |
| FW_HDR_FW_VER_MAJOR_G(hw->fwrev), |
| FW_HDR_FW_VER_MINOR_G(hw->fwrev), |
| FW_HDR_FW_VER_MICRO_G(hw->fwrev), |
| FW_HDR_FW_VER_BUILD_G(hw->fwrev)); |
| } |
| |
| /* |
| * csio_hw_get_fw_version - read the firmware version |
| * @hw: HW module |
| * @vers: where to place the version |
| * |
| * Reads the FW version from flash. |
| */ |
| static int |
| csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers) |
| { |
| return csio_hw_read_flash(hw, FLASH_FW_START + |
| offsetof(struct fw_hdr, fw_ver), 1, |
| vers, 0); |
| } |
| |
| /* |
| * csio_hw_get_tp_version - read the TP microcode version |
| * @hw: HW module |
| * @vers: where to place the version |
| * |
| * Reads the TP microcode version from flash. |
| */ |
| static int |
| csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers) |
| { |
| return csio_hw_read_flash(hw, FLASH_FW_START + |
| offsetof(struct fw_hdr, tp_microcode_ver), 1, |
| vers, 0); |
| } |
| |
| /* |
| * csio_hw_fw_dload - download firmware. |
| * @hw: HW module |
| * @fw_data: firmware image to write. |
| * @size: image size |
| * |
| * Write the supplied firmware image to the card's serial flash. |
| */ |
| static int |
| csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size) |
| { |
| uint32_t csum; |
| int32_t addr; |
| int ret; |
| uint32_t i; |
| uint8_t first_page[SF_PAGE_SIZE]; |
| const __be32 *p = (const __be32 *)fw_data; |
| struct fw_hdr *hdr = (struct fw_hdr *)fw_data; |
| uint32_t sf_sec_size; |
| |
| if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) { |
| csio_err(hw, "Serial Flash data invalid\n"); |
| return -EINVAL; |
| } |
| |
| if (!size) { |
| csio_err(hw, "FW image has no data\n"); |
| return -EINVAL; |
| } |
| |
| if (size & 511) { |
| csio_err(hw, "FW image size not multiple of 512 bytes\n"); |
| return -EINVAL; |
| } |
| |
| if (ntohs(hdr->len512) * 512 != size) { |
| csio_err(hw, "FW image size differs from size in FW header\n"); |
| return -EINVAL; |
| } |
| |
| if (size > FLASH_FW_MAX_SIZE) { |
| csio_err(hw, "FW image too large, max is %u bytes\n", |
| FLASH_FW_MAX_SIZE); |
| return -EINVAL; |
| } |
| |
| for (csum = 0, i = 0; i < size / sizeof(csum); i++) |
| csum += ntohl(p[i]); |
| |
| if (csum != 0xffffffff) { |
| csio_err(hw, "corrupted firmware image, checksum %#x\n", csum); |
| return -EINVAL; |
| } |
| |
| sf_sec_size = hw->params.sf_size / hw->params.sf_nsec; |
| i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ |
| |
| csio_dbg(hw, "Erasing sectors... start:%d end:%d\n", |
| FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1); |
| |
| ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC, |
| FLASH_FW_START_SEC + i - 1); |
| if (ret) { |
| csio_err(hw, "Flash Erase failed\n"); |
| goto out; |
| } |
| |
| /* |
| * We write the correct version at the end so the driver can see a bad |
| * version if the FW write fails. Start by writing a copy of the |
| * first page with a bad version. |
| */ |
| memcpy(first_page, fw_data, SF_PAGE_SIZE); |
| ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); |
| ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page); |
| if (ret) |
| goto out; |
| |
| csio_dbg(hw, "Writing Flash .. start:%d end:%d\n", |
| FW_IMG_START, FW_IMG_START + size); |
| |
| addr = FLASH_FW_START; |
| for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { |
| addr += SF_PAGE_SIZE; |
| fw_data += SF_PAGE_SIZE; |
| ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data); |
| if (ret) |
| goto out; |
| } |
| |
| ret = csio_hw_write_flash(hw, |
| FLASH_FW_START + |
| offsetof(struct fw_hdr, fw_ver), |
| sizeof(hdr->fw_ver), |
| (const uint8_t *)&hdr->fw_ver); |
| |
| out: |
| if (ret) |
| csio_err(hw, "firmware download failed, error %d\n", ret); |
| return ret; |
| } |
| |
| static int |
| csio_hw_get_flash_params(struct csio_hw *hw) |
| { |
| /* Table for non-Numonix supported flash parts. Numonix parts are left |
| * to the preexisting code. All flash parts have 64KB sectors. |
| */ |
| static struct flash_desc { |
| u32 vendor_and_model_id; |
| u32 size_mb; |
| } supported_flash[] = { |
| { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ |
| }; |
| |
| u32 part, manufacturer; |
| u32 density, size = 0; |
| u32 flashid = 0; |
| int ret; |
| |
| ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID); |
| if (!ret) |
| ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid); |
| csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ |
| if (ret) |
| return ret; |
| |
| /* Check to see if it's one of our non-standard supported Flash parts. |
| */ |
| for (part = 0; part < ARRAY_SIZE(supported_flash); part++) |
| if (supported_flash[part].vendor_and_model_id == flashid) { |
| hw->params.sf_size = supported_flash[part].size_mb; |
| hw->params.sf_nsec = |
| hw->params.sf_size / SF_SEC_SIZE; |
| goto found; |
| } |
| |
| /* Decode Flash part size. The code below looks repetative with |
| * common encodings, but that's not guaranteed in the JEDEC |
| * specification for the Read JADEC ID command. The only thing that |
| * we're guaranteed by the JADEC specification is where the |
| * Manufacturer ID is in the returned result. After that each |
| * Manufacturer ~could~ encode things completely differently. |
| * Note, all Flash parts must have 64KB sectors. |
| */ |
| manufacturer = flashid & 0xff; |
| switch (manufacturer) { |
| case 0x20: { /* Micron/Numonix */ |
| /* This Density -> Size decoding table is taken from Micron |
| * Data Sheets. |
| */ |
| density = (flashid >> 16) & 0xff; |
| switch (density) { |
| case 0x14 ... 0x19: /* 1MB - 32MB */ |
| size = 1 << density; |
| break; |
| case 0x20: /* 64MB */ |
| size = 1 << 26; |
| break; |
| case 0x21: /* 128MB */ |
| size = 1 << 27; |
| break; |
| case 0x22: /* 256MB */ |
| size = 1 << 28; |
| } |
| break; |
| } |
| case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ |
| /* This Density -> Size decoding table is taken from ISSI |
| * Data Sheets. |
| */ |
| density = (flashid >> 16) & 0xff; |
| switch (density) { |
| case 0x16: /* 32 MB */ |
| size = 1 << 25; |
| break; |
| case 0x17: /* 64MB */ |
| size = 1 << 26; |
| } |
| break; |
| } |
| case 0xc2: /* Macronix */ |
| case 0xef: /* Winbond */ { |
| /* This Density -> Size decoding table is taken from |
| * Macronix and Winbond Data Sheets. |
| */ |
| density = (flashid >> 16) & 0xff; |
| switch (density) { |
| case 0x17: /* 8MB */ |
| case 0x18: /* 16MB */ |
| size = 1 << density; |
| } |
| } |
| } |
| |
| /* If we didn't recognize the FLASH part, that's no real issue: the |
| * Hardware/Software contract says that Hardware will _*ALWAYS*_ |
| * use a FLASH part which is at least 4MB in size and has 64KB |
| * sectors. The unrecognized FLASH part is likely to be much larger |
| * than 4MB, but that's all we really need. |
| */ |
| if (size == 0) { |
| csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n", |
| flashid); |
| size = 1 << 22; |
| } |
| |
| /* Store decoded Flash size */ |
| hw->params.sf_size = size; |
| hw->params.sf_nsec = size / SF_SEC_SIZE; |
| |
| found: |
| if (hw->params.sf_size < FLASH_MIN_SIZE) |
| csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n", |
| flashid, hw->params.sf_size, FLASH_MIN_SIZE); |
| return 0; |
| } |
| |
| /*****************************************************************************/ |
| /* HW State machine assists */ |
| /*****************************************************************************/ |
| |
| static int |
| csio_hw_dev_ready(struct csio_hw *hw) |
| { |
| uint32_t reg; |
| int cnt = 6; |
| int src_pf; |
| |
| while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) && |
| (--cnt != 0)) |
| mdelay(100); |
| |
| if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) |
| src_pf = SOURCEPF_G(reg); |
| else |
| src_pf = T6_SOURCEPF_G(reg); |
| |
| if ((cnt == 0) && (((int32_t)(src_pf) < 0) || |
| (src_pf >= CSIO_MAX_PFN))) { |
| csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt); |
| return -EIO; |
| } |
| |
| hw->pfn = src_pf; |
| |
| return 0; |
| } |
| |
| /* |
| * csio_do_hello - Perform the HELLO FW Mailbox command and process response. |
| * @hw: HW module |
| * @state: Device state |
| * |
| * FW_HELLO_CMD has to be polled for completion. |
| */ |
| static int |
| csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state) |
| { |
| struct csio_mb *mbp; |
| int rv = 0; |
| enum fw_retval retval; |
| uint8_t mpfn; |
| char state_str[16]; |
| int retries = FW_CMD_HELLO_RETRIES; |
| |
| memset(state_str, 0, sizeof(state_str)); |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| rv = -ENOMEM; |
| CSIO_INC_STATS(hw, n_err_nomem); |
| goto out; |
| } |
| |
| retry: |
| csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, |
| hw->pfn, CSIO_MASTER_MAY, NULL); |
| |
| rv = csio_mb_issue(hw, mbp); |
| if (rv) { |
| csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv); |
| goto out_free_mb; |
| } |
| |
| csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "HELLO cmd failed with ret: %d\n", retval); |
| rv = -EINVAL; |
| goto out_free_mb; |
| } |
| |
| /* Firmware has designated us to be master */ |
| if (hw->pfn == mpfn) { |
| hw->flags |= CSIO_HWF_MASTER; |
| } else if (*state == CSIO_DEV_STATE_UNINIT) { |
| /* |
| * If we're not the Master PF then we need to wait around for |
| * the Master PF Driver to finish setting up the adapter. |
| * |
| * Note that we also do this wait if we're a non-Master-capable |
| * PF and there is no current Master PF; a Master PF may show up |
| * momentarily and we wouldn't want to fail pointlessly. (This |
| * can happen when an OS loads lots of different drivers rapidly |
| * at the same time). In this case, the Master PF returned by |
| * the firmware will be PCIE_FW_MASTER_MASK so the test below |
| * will work ... |
| */ |
| |
| int waiting = FW_CMD_HELLO_TIMEOUT; |
| |
| /* |
| * Wait for the firmware to either indicate an error or |
| * initialized state. If we see either of these we bail out |
| * and report the issue to the caller. If we exhaust the |
| * "hello timeout" and we haven't exhausted our retries, try |
| * again. Otherwise bail with a timeout error. |
| */ |
| for (;;) { |
| uint32_t pcie_fw; |
| |
| spin_unlock_irq(&hw->lock); |
| msleep(50); |
| spin_lock_irq(&hw->lock); |
| waiting -= 50; |
| |
| /* |
| * If neither Error nor Initialialized are indicated |
| * by the firmware keep waiting till we exaust our |
| * timeout ... and then retry if we haven't exhausted |
| * our retries ... |
| */ |
| pcie_fw = csio_rd_reg32(hw, PCIE_FW_A); |
| if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { |
| if (waiting <= 0) { |
| if (retries-- > 0) |
| goto retry; |
| |
| rv = -ETIMEDOUT; |
| break; |
| } |
| continue; |
| } |
| |
| /* |
| * We either have an Error or Initialized condition |
| * report errors preferentially. |
| */ |
| if (state) { |
| if (pcie_fw & PCIE_FW_ERR_F) { |
| *state = CSIO_DEV_STATE_ERR; |
| rv = -ETIMEDOUT; |
| } else if (pcie_fw & PCIE_FW_INIT_F) |
| *state = CSIO_DEV_STATE_INIT; |
| } |
| |
| /* |
| * If we arrived before a Master PF was selected and |
| * there's not a valid Master PF, grab its identity |
| * for our caller. |
| */ |
| if (mpfn == PCIE_FW_MASTER_M && |
| (pcie_fw & PCIE_FW_MASTER_VLD_F)) |
| mpfn = PCIE_FW_MASTER_G(pcie_fw); |
| break; |
| } |
| hw->flags &= ~CSIO_HWF_MASTER; |
| } |
| |
| switch (*state) { |
| case CSIO_DEV_STATE_UNINIT: |
| strcpy(state_str, "Initializing"); |
| break; |
| case CSIO_DEV_STATE_INIT: |
| strcpy(state_str, "Initialized"); |
| break; |
| case CSIO_DEV_STATE_ERR: |
| strcpy(state_str, "Error"); |
| break; |
| default: |
| strcpy(state_str, "Unknown"); |
| break; |
| } |
| |
| if (hw->pfn == mpfn) |
| csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n", |
| hw->pfn, state_str); |
| else |
| csio_info(hw, |
| "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n", |
| hw->pfn, mpfn, state_str); |
| |
| out_free_mb: |
| mempool_free(mbp, hw->mb_mempool); |
| out: |
| return rv; |
| } |
| |
| /* |
| * csio_do_bye - Perform the BYE FW Mailbox command and process response. |
| * @hw: HW module |
| * |
| */ |
| static int |
| csio_do_bye(struct csio_hw *hw) |
| { |
| struct csio_mb *mbp; |
| enum fw_retval retval; |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| CSIO_INC_STATS(hw, n_err_nomem); |
| return -ENOMEM; |
| } |
| |
| csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of BYE command failed\n"); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| retval = csio_mb_fw_retval(mbp); |
| if (retval != FW_SUCCESS) { |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| mempool_free(mbp, hw->mb_mempool); |
| |
| return 0; |
| } |
| |
| /* |
| * csio_do_reset- Perform the device reset. |
| * @hw: HW module |
| * @fw_rst: FW reset |
| * |
| * If fw_rst is set, issues FW reset mbox cmd otherwise |
| * does PIO reset. |
| * Performs reset of the function. |
| */ |
| static int |
| csio_do_reset(struct csio_hw *hw, bool fw_rst) |
| { |
| struct csio_mb *mbp; |
| enum fw_retval retval; |
| |
| if (!fw_rst) { |
| /* PIO reset */ |
| csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A); |
| mdelay(2000); |
| return 0; |
| } |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| CSIO_INC_STATS(hw, n_err_nomem); |
| return -ENOMEM; |
| } |
| |
| csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO, |
| PIORSTMODE_F | PIORST_F, 0, NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of RESET command failed.n"); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| retval = csio_mb_fw_retval(mbp); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| mempool_free(mbp, hw->mb_mempool); |
| |
| return 0; |
| } |
| |
| static int |
| csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp) |
| { |
| struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb; |
| uint16_t caps; |
| |
| caps = ntohs(rsp->fcoecaps); |
| |
| if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) { |
| csio_err(hw, "No FCoE Initiator capability in the firmware.\n"); |
| return -EINVAL; |
| } |
| |
| if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) { |
| csio_err(hw, "No FCoE Control Offload capability\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET |
| * @hw: the HW module |
| * @mbox: mailbox to use for the FW RESET command (if desired) |
| * @force: force uP into RESET even if FW RESET command fails |
| * |
| * Issues a RESET command to firmware (if desired) with a HALT indication |
| * and then puts the microprocessor into RESET state. The RESET command |
| * will only be issued if a legitimate mailbox is provided (mbox <= |
| * PCIE_FW_MASTER_MASK). |
| * |
| * This is generally used in order for the host to safely manipulate the |
| * adapter without fear of conflicting with whatever the firmware might |
| * be doing. The only way out of this state is to RESTART the firmware |
| * ... |
| */ |
| static int |
| csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force) |
| { |
| enum fw_retval retval = 0; |
| |
| /* |
| * If a legitimate mailbox is provided, issue a RESET command |
| * with a HALT indication. |
| */ |
| if (mbox <= PCIE_FW_MASTER_M) { |
| struct csio_mb *mbp; |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| CSIO_INC_STATS(hw, n_err_nomem); |
| return -ENOMEM; |
| } |
| |
| csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO, |
| PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F, |
| NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of RESET command failed!\n"); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| retval = csio_mb_fw_retval(mbp); |
| mempool_free(mbp, hw->mb_mempool); |
| } |
| |
| /* |
| * Normally we won't complete the operation if the firmware RESET |
| * command fails but if our caller insists we'll go ahead and put the |
| * uP into RESET. This can be useful if the firmware is hung or even |
| * missing ... We'll have to take the risk of putting the uP into |
| * RESET without the cooperation of firmware in that case. |
| * |
| * We also force the firmware's HALT flag to be on in case we bypassed |
| * the firmware RESET command above or we're dealing with old firmware |
| * which doesn't have the HALT capability. This will serve as a flag |
| * for the incoming firmware to know that it's coming out of a HALT |
| * rather than a RESET ... if it's new enough to understand that ... |
| */ |
| if (retval == 0 || force) { |
| csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); |
| csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, |
| PCIE_FW_HALT_F); |
| } |
| |
| /* |
| * And we always return the result of the firmware RESET command |
| * even when we force the uP into RESET ... |
| */ |
| return retval ? -EINVAL : 0; |
| } |
| |
| /* |
| * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET |
| * @hw: the HW module |
| * @reset: if we want to do a RESET to restart things |
| * |
| * Restart firmware previously halted by csio_hw_fw_halt(). On successful |
| * return the previous PF Master remains as the new PF Master and there |
| * is no need to issue a new HELLO command, etc. |
| * |
| * We do this in two ways: |
| * |
| * 1. If we're dealing with newer firmware we'll simply want to take |
| * the chip's microprocessor out of RESET. This will cause the |
| * firmware to start up from its start vector. And then we'll loop |
| * until the firmware indicates it's started again (PCIE_FW.HALT |
| * reset to 0) or we timeout. |
| * |
| * 2. If we're dealing with older firmware then we'll need to RESET |
| * the chip since older firmware won't recognize the PCIE_FW.HALT |
| * flag and automatically RESET itself on startup. |
| */ |
| static int |
| csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset) |
| { |
| if (reset) { |
| /* |
| * Since we're directing the RESET instead of the firmware |
| * doing it automatically, we need to clear the PCIE_FW.HALT |
| * bit. |
| */ |
| csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0); |
| |
| /* |
| * If we've been given a valid mailbox, first try to get the |
| * firmware to do the RESET. If that works, great and we can |
| * return success. Otherwise, if we haven't been given a |
| * valid mailbox or the RESET command failed, fall back to |
| * hitting the chip with a hammer. |
| */ |
| if (mbox <= PCIE_FW_MASTER_M) { |
| csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0); |
| msleep(100); |
| if (csio_do_reset(hw, true) == 0) |
| return 0; |
| } |
| |
| csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A); |
| msleep(2000); |
| } else { |
| int ms; |
| |
| csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0); |
| for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { |
| if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F)) |
| return 0; |
| msleep(100); |
| ms += 100; |
| } |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| /* |
| * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW |
| * @hw: the HW module |
| * @mbox: mailbox to use for the FW RESET command (if desired) |
| * @fw_data: the firmware image to write |
| * @size: image size |
| * @force: force upgrade even if firmware doesn't cooperate |
| * |
| * Perform all of the steps necessary for upgrading an adapter's |
| * firmware image. Normally this requires the cooperation of the |
| * existing firmware in order to halt all existing activities |
| * but if an invalid mailbox token is passed in we skip that step |
| * (though we'll still put the adapter microprocessor into RESET in |
| * that case). |
| * |
| * On successful return the new firmware will have been loaded and |
| * the adapter will have been fully RESET losing all previous setup |
| * state. On unsuccessful return the adapter may be completely hosed ... |
| * positive errno indicates that the adapter is ~probably~ intact, a |
| * negative errno indicates that things are looking bad ... |
| */ |
| static int |
| csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox, |
| const u8 *fw_data, uint32_t size, int32_t force) |
| { |
| const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; |
| int reset, ret; |
| |
| ret = csio_hw_fw_halt(hw, mbox, force); |
| if (ret != 0 && !force) |
| return ret; |
| |
| ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size); |
| if (ret != 0) |
| return ret; |
| |
| /* |
| * Older versions of the firmware don't understand the new |
| * PCIE_FW.HALT flag and so won't know to perform a RESET when they |
| * restart. So for newly loaded older firmware we'll have to do the |
| * RESET for it so it starts up on a clean slate. We can tell if |
| * the newly loaded firmware will handle this right by checking |
| * its header flags to see if it advertises the capability. |
| */ |
| reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); |
| return csio_hw_fw_restart(hw, mbox, reset); |
| } |
| |
| /* |
| * csio_get_device_params - Get device parameters. |
| * @hw: HW module |
| * |
| */ |
| static int |
| csio_get_device_params(struct csio_hw *hw) |
| { |
| struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| struct csio_mb *mbp; |
| enum fw_retval retval; |
| u32 param[6]; |
| int i, j = 0; |
| |
| /* Initialize portids to -1 */ |
| for (i = 0; i < CSIO_MAX_PPORTS; i++) |
| hw->pport[i].portid = -1; |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| CSIO_INC_STATS(hw, n_err_nomem); |
| return -ENOMEM; |
| } |
| |
| /* Get port vec information. */ |
| param[0] = FW_PARAM_DEV(PORTVEC); |
| |
| /* Get Core clock. */ |
| param[1] = FW_PARAM_DEV(CCLK); |
| |
| /* Get EQ id start and end. */ |
| param[2] = FW_PARAM_PFVF(EQ_START); |
| param[3] = FW_PARAM_PFVF(EQ_END); |
| |
| /* Get IQ id start and end. */ |
| param[4] = FW_PARAM_PFVF(IQFLINT_START); |
| param[5] = FW_PARAM_PFVF(IQFLINT_END); |
| |
| csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, |
| ARRAY_SIZE(param), param, NULL, false, NULL); |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n"); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| csio_mb_process_read_params_rsp(hw, mbp, &retval, |
| ARRAY_SIZE(param), param); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n", |
| retval); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| /* cache the information. */ |
| hw->port_vec = param[0]; |
| hw->vpd.cclk = param[1]; |
| wrm->fw_eq_start = param[2]; |
| wrm->fw_iq_start = param[4]; |
| |
| /* Using FW configured max iqs & eqs */ |
| if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) || |
| !csio_is_hw_master(hw)) { |
| hw->cfg_niq = param[5] - param[4] + 1; |
| hw->cfg_neq = param[3] - param[2] + 1; |
| csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n", |
| hw->cfg_niq, hw->cfg_neq); |
| } |
| |
| hw->port_vec &= csio_port_mask; |
| |
| hw->num_pports = hweight32(hw->port_vec); |
| |
| csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n", |
| hw->port_vec, hw->num_pports); |
| |
| for (i = 0; i < hw->num_pports; i++) { |
| while ((hw->port_vec & (1 << j)) == 0) |
| j++; |
| hw->pport[i].portid = j++; |
| csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid); |
| } |
| mempool_free(mbp, hw->mb_mempool); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * csio_config_device_caps - Get and set device capabilities. |
| * @hw: HW module |
| * |
| */ |
| static int |
| csio_config_device_caps(struct csio_hw *hw) |
| { |
| struct csio_mb *mbp; |
| enum fw_retval retval; |
| int rv = -EINVAL; |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| CSIO_INC_STATS(hw, n_err_nomem); |
| return -ENOMEM; |
| } |
| |
| /* Get device capabilities */ |
| csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n"); |
| goto out; |
| } |
| |
| retval = csio_mb_fw_retval(mbp); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval); |
| goto out; |
| } |
| |
| /* Validate device capabilities */ |
| rv = csio_hw_validate_caps(hw, mbp); |
| if (rv != 0) |
| goto out; |
| |
| /* Don't config device capabilities if already configured */ |
| if (hw->fw_state == CSIO_DEV_STATE_INIT) { |
| rv = 0; |
| goto out; |
| } |
| |
| /* Write back desired device capabilities */ |
| csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true, |
| false, true, NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n"); |
| goto out; |
| } |
| |
| retval = csio_mb_fw_retval(mbp); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval); |
| goto out; |
| } |
| |
| rv = 0; |
| out: |
| mempool_free(mbp, hw->mb_mempool); |
| return rv; |
| } |
| |
| static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) |
| { |
| enum cc_fec cc_fec = 0; |
| |
| if (fw_fec & FW_PORT_CAP32_FEC_RS) |
| cc_fec |= FEC_RS; |
| if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) |
| cc_fec |= FEC_BASER_RS; |
| |
| return cc_fec; |
| } |
| |
| static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) |
| { |
| fw_port_cap32_t fw_pause = 0; |
| |
| if (cc_pause & PAUSE_RX) |
| fw_pause |= FW_PORT_CAP32_FC_RX; |
| if (cc_pause & PAUSE_TX) |
| fw_pause |= FW_PORT_CAP32_FC_TX; |
| |
| return fw_pause; |
| } |
| |
| static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) |
| { |
| fw_port_cap32_t fw_fec = 0; |
| |
| if (cc_fec & FEC_RS) |
| fw_fec |= FW_PORT_CAP32_FEC_RS; |
| if (cc_fec & FEC_BASER_RS) |
| fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; |
| |
| return fw_fec; |
| } |
| |
| /** |
| * fwcap_to_fwspeed - return highest speed in Port Capabilities |
| * @acaps: advertised Port Capabilities |
| * |
| * Get the highest speed for the port from the advertised Port |
| * Capabilities. |
| */ |
| fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) |
| { |
| #define TEST_SPEED_RETURN(__caps_speed) \ |
| do { \ |
| if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ |
| return FW_PORT_CAP32_SPEED_##__caps_speed; \ |
| } while (0) |
| |
| TEST_SPEED_RETURN(400G); |
| TEST_SPEED_RETURN(200G); |
| TEST_SPEED_RETURN(100G); |
| TEST_SPEED_RETURN(50G); |
| TEST_SPEED_RETURN(40G); |
| TEST_SPEED_RETURN(25G); |
| TEST_SPEED_RETURN(10G); |
| TEST_SPEED_RETURN(1G); |
| TEST_SPEED_RETURN(100M); |
| |
| #undef TEST_SPEED_RETURN |
| |
| return 0; |
| } |
| |
| /** |
| * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits |
| * @caps16: a 16-bit Port Capabilities value |
| * |
| * Returns the equivalent 32-bit Port Capabilities value. |
| */ |
| fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) |
| { |
| fw_port_cap32_t caps32 = 0; |
| |
| #define CAP16_TO_CAP32(__cap) \ |
| do { \ |
| if (caps16 & FW_PORT_CAP_##__cap) \ |
| caps32 |= FW_PORT_CAP32_##__cap; \ |
| } while (0) |
| |
| CAP16_TO_CAP32(SPEED_100M); |
| CAP16_TO_CAP32(SPEED_1G); |
| CAP16_TO_CAP32(SPEED_25G); |
| CAP16_TO_CAP32(SPEED_10G); |
| CAP16_TO_CAP32(SPEED_40G); |
| CAP16_TO_CAP32(SPEED_100G); |
| CAP16_TO_CAP32(FC_RX); |
| CAP16_TO_CAP32(FC_TX); |
| CAP16_TO_CAP32(ANEG); |
| CAP16_TO_CAP32(MDIAUTO); |
| CAP16_TO_CAP32(MDISTRAIGHT); |
| CAP16_TO_CAP32(FEC_RS); |
| CAP16_TO_CAP32(FEC_BASER_RS); |
| CAP16_TO_CAP32(802_3_PAUSE); |
| CAP16_TO_CAP32(802_3_ASM_DIR); |
| |
| #undef CAP16_TO_CAP32 |
| |
| return caps32; |
| } |
| |
| /** |
| * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities |
| * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value |
| * |
| * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new |
| * 32-bit Port Capabilities value. |
| */ |
| fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) |
| { |
| fw_port_cap32_t linkattr = 0; |
| |
| /* The format of the Link Status in the old |
| * 16-bit Port Information message isn't the same as the |
| * 16-bit Port Capabilities bitfield used everywhere else. |
| */ |
| if (lstatus & FW_PORT_CMD_RXPAUSE_F) |
| linkattr |= FW_PORT_CAP32_FC_RX; |
| if (lstatus & FW_PORT_CMD_TXPAUSE_F) |
| linkattr |= FW_PORT_CAP32_FC_TX; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) |
| linkattr |= FW_PORT_CAP32_SPEED_100M; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) |
| linkattr |= FW_PORT_CAP32_SPEED_1G; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) |
| linkattr |= FW_PORT_CAP32_SPEED_10G; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) |
| linkattr |= FW_PORT_CAP32_SPEED_25G; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) |
| linkattr |= FW_PORT_CAP32_SPEED_40G; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) |
| linkattr |= FW_PORT_CAP32_SPEED_100G; |
| |
| return linkattr; |
| } |
| |
| /** |
| * csio_init_link_config - initialize a link's SW state |
| * @lc: pointer to structure holding the link state |
| * @pcaps: link Port Capabilities |
| * @acaps: link current Advertised Port Capabilities |
| * |
| * Initializes the SW state maintained for each link, including the link's |
| * capabilities and default speed/flow-control/autonegotiation settings. |
| */ |
| static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, |
| fw_port_cap32_t acaps) |
| { |
| lc->pcaps = pcaps; |
| lc->def_acaps = acaps; |
| lc->lpacaps = 0; |
| lc->speed_caps = 0; |
| lc->speed = 0; |
| lc->requested_fc = PAUSE_RX | PAUSE_TX; |
| lc->fc = lc->requested_fc; |
| |
| /* |
| * For Forward Error Control, we default to whatever the Firmware |
| * tells us the Link is currently advertising. |
| */ |
| lc->requested_fec = FEC_AUTO; |
| lc->fec = fwcap_to_cc_fec(lc->def_acaps); |
| |
| /* If the Port is capable of Auto-Negtotiation, initialize it as |
| * "enabled" and copy over all of the Physical Port Capabilities |
| * to the Advertised Port Capabilities. Otherwise mark it as |
| * Auto-Negotiate disabled and select the highest supported speed |
| * for the link. Note parallel structure in t4_link_l1cfg_core() |
| * and t4_handle_get_port_info(). |
| */ |
| if (lc->pcaps & FW_PORT_CAP32_ANEG) { |
| lc->acaps = lc->pcaps & ADVERT_MASK; |
| lc->autoneg = AUTONEG_ENABLE; |
| lc->requested_fc |= PAUSE_AUTONEG; |
| } else { |
| lc->acaps = 0; |
| lc->autoneg = AUTONEG_DISABLE; |
| } |
| } |
| |
| static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps, |
| uint32_t *rcaps) |
| { |
| unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO); |
| fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap; |
| |
| lc->link_ok = 0; |
| |
| /* |
| * Convert driver coding of Pause Frame Flow Control settings into the |
| * Firmware's API. |
| */ |
| fw_fc = cc_to_fwcap_pause(lc->requested_fc); |
| |
| /* |
| * Convert Common Code Forward Error Control settings into the |
| * Firmware's API. If the current Requested FEC has "Automatic" |
| * (IEEE 802.3) specified, then we use whatever the Firmware |
| * sent us as part of it's IEEE 802.3-based interpratation of |
| * the Transceiver Module EPROM FEC parameters. Otherwise we |
| * use whatever is in the current Requested FEC settings. |
| */ |
| if (lc->requested_fec & FEC_AUTO) |
| cc_fec = fwcap_to_cc_fec(lc->def_acaps); |
| else |
| cc_fec = lc->requested_fec; |
| fw_fec = cc_to_fwcap_fec(cc_fec); |
| |
| /* Figure out what our Requested Port Capabilities are going to be. |
| * Note parallel structure in t4_handle_get_port_info() and |
| * init_link_config(). |
| */ |
| if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { |
| lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec; |
| lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; |
| lc->fec = cc_fec; |
| } else if (lc->autoneg == AUTONEG_DISABLE) { |
| lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; |
| lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; |
| lc->fec = cc_fec; |
| } else { |
| lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi; |
| } |
| |
| *rcaps = lrcap; |
| } |
| |
| /* |
| * csio_enable_ports - Bring up all available ports. |
| * @hw: HW module. |
| * |
| */ |
| static int |
| csio_enable_ports(struct csio_hw *hw) |
| { |
| struct csio_mb *mbp; |
| u16 fw_caps = FW_CAPS_UNKNOWN; |
| enum fw_retval retval; |
| uint8_t portid; |
| fw_port_cap32_t pcaps, acaps, rcaps; |
| int i; |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| CSIO_INC_STATS(hw, n_err_nomem); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < hw->num_pports; i++) { |
| portid = hw->pport[i].portid; |
| |
| if (fw_caps == FW_CAPS_UNKNOWN) { |
| u32 param, val; |
| |
| param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); |
| val = 1; |
| |
| csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, |
| hw->pfn, 0, 1, ¶m, &val, false, |
| NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n", |
| portid); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| csio_mb_process_read_params_rsp(hw, mbp, &retval, 1, |
| &val); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "FW_PARAMS_CMD(r) port:%d failed: 0x%x\n", |
| portid, retval); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| fw_caps = val; |
| } |
| |
| /* Read PORT information */ |
| csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, |
| false, 0, fw_caps, NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n", |
| portid); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps, |
| &pcaps, &acaps); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n", |
| portid, retval); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps); |
| |
| csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps); |
| |
| /* Write back PORT information */ |
| csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, |
| true, rcaps, fw_caps, NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n", |
| portid); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| retval = csio_mb_fw_retval(mbp); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n", |
| portid, retval); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| } /* For all ports */ |
| |
| mempool_free(mbp, hw->mb_mempool); |
| |
| return 0; |
| } |
| |
| /* |
| * csio_get_fcoe_resinfo - Read fcoe fw resource info. |
| * @hw: HW module |
| * Issued with lock held. |
| */ |
| static int |
| csio_get_fcoe_resinfo(struct csio_hw *hw) |
| { |
| struct csio_fcoe_res_info *res_info = &hw->fres_info; |
| struct fw_fcoe_res_info_cmd *rsp; |
| struct csio_mb *mbp; |
| enum fw_retval retval; |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| CSIO_INC_STATS(hw, n_err_nomem); |
| return -ENOMEM; |
| } |
| |
| /* Get FCoE FW resource information */ |
| csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n"); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb); |
| retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16)); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n", |
| retval); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| res_info->e_d_tov = ntohs(rsp->e_d_tov); |
| res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq); |
| res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els); |
| res_info->r_r_tov = ntohs(rsp->r_r_tov); |
| res_info->max_xchgs = ntohl(rsp->max_xchgs); |
| res_info->max_ssns = ntohl(rsp->max_ssns); |
| res_info->used_xchgs = ntohl(rsp->used_xchgs); |
| res_info->used_ssns = ntohl(rsp->used_ssns); |
| res_info->max_fcfs = ntohl(rsp->max_fcfs); |
| res_info->max_vnps = ntohl(rsp->max_vnps); |
| res_info->used_fcfs = ntohl(rsp->used_fcfs); |
| res_info->used_vnps = ntohl(rsp->used_vnps); |
| |
| csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns, |
| res_info->max_xchgs); |
| mempool_free(mbp, hw->mb_mempool); |
| |
| return 0; |
| } |
| |
| static int |
| csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param) |
| { |
| struct csio_mb *mbp; |
| enum fw_retval retval; |
| u32 _param[1]; |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| CSIO_INC_STATS(hw, n_err_nomem); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Find out whether we're dealing with a version of |
| * the firmware which has configuration file support. |
| */ |
| _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); |
| |
| csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, |
| ARRAY_SIZE(_param), _param, NULL, false, NULL); |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n"); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| csio_mb_process_read_params_rsp(hw, mbp, &retval, |
| ARRAY_SIZE(_param), _param); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n", |
| retval); |
| mempool_free(mbp, hw->mb_mempool); |
| return -EINVAL; |
| } |
| |
| mempool_free(mbp, hw->mb_mempool); |
| *param = _param[0]; |
| |
| return 0; |
| } |
| |
| static int |
| csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path) |
| { |
| int ret = 0; |
| const struct firmware *cf; |
| struct pci_dev *pci_dev = hw->pdev; |
| struct device *dev = &pci_dev->dev; |
| unsigned int mtype = 0, maddr = 0; |
| uint32_t *cfg_data; |
| int value_to_add = 0; |
| const char *fw_cfg_file; |
| |
| if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK)) |
| fw_cfg_file = FW_CFG_NAME_T5; |
| else |
| fw_cfg_file = FW_CFG_NAME_T6; |
| |
| if (request_firmware(&cf, fw_cfg_file, dev) < 0) { |
| csio_err(hw, "could not find config file %s, err: %d\n", |
| fw_cfg_file, ret); |
| return -ENOENT; |
| } |
| |
| if (cf->size%4 != 0) |
| value_to_add = 4 - (cf->size % 4); |
| |
| cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL); |
| if (cfg_data == NULL) { |
| ret = -ENOMEM; |
| goto leave; |
| } |
| |
| memcpy((void *)cfg_data, (const void *)cf->data, cf->size); |
| if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) { |
| ret = -EINVAL; |
| goto leave; |
| } |
| |
| mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param); |
| maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16; |
| |
| ret = csio_memory_write(hw, mtype, maddr, |
| cf->size + value_to_add, cfg_data); |
| |
| if ((ret == 0) && (value_to_add != 0)) { |
| union { |
| u32 word; |
| char buf[4]; |
| } last; |
| size_t size = cf->size & ~0x3; |
| int i; |
| |
| last.word = cfg_data[size >> 2]; |
| for (i = value_to_add; i < 4; i++) |
| last.buf[i] = 0; |
| ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word); |
| } |
| if (ret == 0) { |
| csio_info(hw, "config file upgraded to %s\n", fw_cfg_file); |
| snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file); |
| } |
| |
| leave: |
| kfree(cfg_data); |
| release_firmware(cf); |
| return ret; |
| } |
| |
| /* |
| * HW initialization: contact FW, obtain config, perform basic init. |
| * |
| * If the firmware we're dealing with has Configuration File support, then |
| * we use that to perform all configuration -- either using the configuration |
| * file stored in flash on the adapter or using a filesystem-local file |
| * if available. |
| * |
| * If we don't have configuration file support in the firmware, then we'll |
| * have to set things up the old fashioned way with hard-coded register |
| * writes and firmware commands ... |
| */ |
| |
| /* |
| * Attempt to initialize the HW via a Firmware Configuration File. |
| */ |
| static int |
| csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param) |
| { |
| struct csio_mb *mbp = NULL; |
| struct fw_caps_config_cmd *caps_cmd; |
| unsigned int mtype, maddr; |
| int rv = -EINVAL; |
| uint32_t finiver = 0, finicsum = 0, cfcsum = 0; |
| char path[64]; |
| char *config_name = NULL; |
| |
| /* |
| * Reset device if necessary |
| */ |
| if (reset) { |
| rv = csio_do_reset(hw, true); |
| if (rv != 0) |
| goto bye; |
| } |
| |
| /* |
| * If we have a configuration file in host , |
| * then use that. Otherwise, use the configuration file stored |
| * in the HW flash ... |
| */ |
| spin_unlock_irq(&hw->lock); |
| rv = csio_hw_flash_config(hw, fw_cfg_param, path); |
| spin_lock_irq(&hw->lock); |
| if (rv != 0) { |
| /* |
| * config file was not found. Use default |
| * config file from flash. |
| */ |
| config_name = "On FLASH"; |
| mtype = FW_MEMTYPE_CF_FLASH; |
| maddr = hw->chip_ops->chip_flash_cfg_addr(hw); |
| } else { |
| config_name = path; |
| mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param); |
| maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16; |
| } |
| |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) { |
| CSIO_INC_STATS(hw, n_err_nomem); |
| return -ENOMEM; |
| } |
| /* |
| * Tell the firmware to process the indicated Configuration File. |
| * If there are no errors and the caller has provided return value |
| * pointers for the [fini] section version, checksum and computed |
| * checksum, pass those back to the caller. |
| */ |
| caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb); |
| CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1); |
| caps_cmd->op_to_write = |
| htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| caps_cmd->cfvalid_to_len16 = |
| htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | |
| FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | |
| FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | |
| FW_LEN16(*caps_cmd)); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| rv = -EINVAL; |
| goto bye; |
| } |
| |
| rv = csio_mb_fw_retval(mbp); |
| /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware |
| * Configuration File in FLASH), our last gasp effort is to use the |
| * Firmware Configuration File which is embedded in the |
| * firmware. A very few early versions of the firmware didn't |
| * have one embedded but we can ignore those. |
| */ |
| if (rv == ENOENT) { |
| CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1); |
| caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd)); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| rv = -EINVAL; |
| goto bye; |
| } |
| |
| rv = csio_mb_fw_retval(mbp); |
| config_name = "Firmware Default"; |
| } |
| if (rv != FW_SUCCESS) |
| goto bye; |
| |
| finiver = ntohl(caps_cmd->finiver); |
| finicsum = ntohl(caps_cmd->finicsum); |
| cfcsum = ntohl(caps_cmd->cfcsum); |
| |
| /* |
| * And now tell the firmware to use the configuration we just loaded. |
| */ |
| caps_cmd->op_to_write = |
| htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F); |
| caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd)); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| rv = -EINVAL; |
| goto bye; |
| } |
| |
| rv = csio_mb_fw_retval(mbp); |
| if (rv != FW_SUCCESS) { |
| csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv); |
| goto bye; |
| } |
| |
| if (finicsum != cfcsum) { |
| csio_warn(hw, |
| "Config File checksum mismatch: csum=%#x, computed=%#x\n", |
| finicsum, cfcsum); |
| } |
| |
| /* Validate device capabilities */ |
| rv = csio_hw_validate_caps(hw, mbp); |
| if (rv != 0) |
| goto bye; |
| |
| mempool_free(mbp, hw->mb_mempool); |
| mbp = NULL; |
| |
| /* |
| * Note that we're operating with parameters |
| * not supplied by the driver, rather than from hard-wired |
| * initialization constants buried in the driver. |
| */ |
| hw->flags |= CSIO_HWF_USING_SOFT_PARAMS; |
| |
| /* device parameters */ |
| rv = csio_get_device_params(hw); |
| if (rv != 0) |
| goto bye; |
| |
| /* Configure SGE */ |
| csio_wr_sge_init(hw); |
| |
| /* |
| * And finally tell the firmware to initialize itself using the |
| * parameters from the Configuration File. |
| */ |
| /* Post event to notify completion of configuration */ |
| csio_post_event(&hw->sm, CSIO_HWE_INIT); |
| |
| csio_info(hw, "Successfully configure using Firmware " |
| "Configuration File %s, version %#x, computed checksum %#x\n", |
| config_name, finiver, cfcsum); |
| return 0; |
| |
| /* |
| * Something bad happened. Return the error ... |
| */ |
| bye: |
| if (mbp) |
| mempool_free(mbp, hw->mb_mempool); |
| hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS; |
| csio_warn(hw, "Configuration file error %d\n", rv); |
| return rv; |
| } |
| |
| /* Is the given firmware API compatible with the one the driver was compiled |
| * with? |
| */ |
| static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) |
| { |
| |
| /* short circuit if it's the exact same firmware version */ |
| if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) |
| return 1; |
| |
| #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) |
| if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && |
| SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) |
| return 1; |
| #undef SAME_INTF |
| |
| return 0; |
| } |
| |
| /* The firmware in the filesystem is usable, but should it be installed? |
| * This routine explains itself in detail if it indicates the filesystem |
| * firmware should be installed. |
| */ |
| static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable, |
| int k, int c) |
| { |
| const char *reason; |
| |
| if (!card_fw_usable) { |
| reason = "incompatible or unusable"; |
| goto install; |
| } |
| |
| if (k > c) { |
| reason = "older than the version supported with this driver"; |
| goto install; |
| } |
| |
| return 0; |
| |
| install: |
| csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, " |
| "installing firmware %u.%u.%u.%u on card.\n", |
| FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), |
| FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, |
| FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), |
| FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); |
| |
| return 1; |
| } |
| |
| static struct fw_info fw_info_array[] = { |
| { |
| .chip = CHELSIO_T5, |
| .fs_name = FW_CFG_NAME_T5, |
| .fw_mod_name = FW_FNAME_T5, |
| .fw_hdr = { |
| .chip = FW_HDR_CHIP_T5, |
| .fw_ver = __cpu_to_be32(FW_VERSION(T5)), |
| .intfver_nic = FW_INTFVER(T5, NIC), |
| .intfver_vnic = FW_INTFVER(T5, VNIC), |
| .intfver_ri = FW_INTFVER(T5, RI), |
| .intfver_iscsi = FW_INTFVER(T5, ISCSI), |
| .intfver_fcoe = FW_INTFVER(T5, FCOE), |
| }, |
| }, { |
| .chip = CHELSIO_T6, |
| .fs_name = FW_CFG_NAME_T6, |
| .fw_mod_name = FW_FNAME_T6, |
| .fw_hdr = { |
| .chip = FW_HDR_CHIP_T6, |
| .fw_ver = __cpu_to_be32(FW_VERSION(T6)), |
| .intfver_nic = FW_INTFVER(T6, NIC), |
| .intfver_vnic = FW_INTFVER(T6, VNIC), |
| .intfver_ri = FW_INTFVER(T6, RI), |
| .intfver_iscsi = FW_INTFVER(T6, ISCSI), |
| .intfver_fcoe = FW_INTFVER(T6, FCOE), |
| }, |
| } |
| }; |
| |
| static struct fw_info *find_fw_info(int chip) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { |
| if (fw_info_array[i].chip == chip) |
| return &fw_info_array[i]; |
| } |
| return NULL; |
| } |
| |
| static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info, |
| const u8 *fw_data, unsigned int fw_size, |
| struct fw_hdr *card_fw, enum csio_dev_state state, |
| int *reset) |
| { |
| int ret, card_fw_usable, fs_fw_usable; |
| const struct fw_hdr *fs_fw; |
| const struct fw_hdr *drv_fw; |
| |
| drv_fw = &fw_info->fw_hdr; |
| |
| /* Read the header of the firmware on the card */ |
| ret = csio_hw_read_flash(hw, FLASH_FW_START, |
| sizeof(*card_fw) / sizeof(uint32_t), |
| (uint32_t *)card_fw, 1); |
| if (ret == 0) { |
| card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); |
| } else { |
| csio_err(hw, |
| "Unable to read card's firmware header: %d\n", ret); |
| card_fw_usable = 0; |
| } |
| |
| if (fw_data != NULL) { |
| fs_fw = (const void *)fw_data; |
| fs_fw_usable = fw_compatible(drv_fw, fs_fw); |
| } else { |
| fs_fw = NULL; |
| fs_fw_usable = 0; |
| } |
| |
| if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && |
| (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { |
| /* Common case: the firmware on the card is an exact match and |
| * the filesystem one is an exact match too, or the filesystem |
| * one is absent/incompatible. |
| */ |
| } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT && |
| csio_should_install_fs_fw(hw, card_fw_usable, |
| be32_to_cpu(fs_fw->fw_ver), |
| be32_to_cpu(card_fw->fw_ver))) { |
| ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data, |
| fw_size, 0); |
| if (ret != 0) { |
| csio_err(hw, |
| "failed to install firmware: %d\n", ret); |
| goto bye; |
| } |
| |
| /* Installed successfully, update the cached header too. */ |
| memcpy(card_fw, fs_fw, sizeof(*card_fw)); |
| card_fw_usable = 1; |
| *reset = 0; /* already reset as part of load_fw */ |
| } |
| |
| if (!card_fw_usable) { |
| uint32_t d, c, k; |
| |
| d = be32_to_cpu(drv_fw->fw_ver); |
| c = be32_to_cpu(card_fw->fw_ver); |
| k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; |
| |
| csio_err(hw, "Cannot find a usable firmware: " |
| "chip state %d, " |
| "driver compiled with %d.%d.%d.%d, " |
| "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", |
| state, |
| FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), |
| FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), |
| FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), |
| FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), |
| FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), |
| FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); |
| ret = EINVAL; |
| goto bye; |
| } |
| |
| /* We're using whatever's on the card and it's known to be good. */ |
| hw->fwrev = be32_to_cpu(card_fw->fw_ver); |
| hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); |
| |
| bye: |
| return ret; |
| } |
| |
| /* |
| * Returns -EINVAL if attempts to flash the firmware failed |
| * else returns 0, |
| * if flashing was not attempted because the card had the |
| * latest firmware ECANCELED is returned |
| */ |
| static int |
| csio_hw_flash_fw(struct csio_hw *hw, int *reset) |
| { |
| int ret = -ECANCELED; |
| const struct firmware *fw; |
| struct fw_info *fw_info; |
| struct fw_hdr *card_fw; |
| struct pci_dev *pci_dev = hw->pdev; |
| struct device *dev = &pci_dev->dev ; |
| const u8 *fw_data = NULL; |
| unsigned int fw_size = 0; |
| const char *fw_bin_file; |
| |
| /* This is the firmware whose headers the driver was compiled |
| * against |
| */ |
| fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id)); |
| if (fw_info == NULL) { |
| csio_err(hw, |
| "unable to get firmware info for chip %d.\n", |
| CHELSIO_CHIP_VERSION(hw->chip_id)); |
| return -EINVAL; |
| } |
| |
| if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK)) |
| fw_bin_file = FW_FNAME_T5; |
| else |
| fw_bin_file = FW_FNAME_T6; |
| |
| if (request_firmware(&fw, fw_bin_file, dev) < 0) { |
| csio_err(hw, "could not find firmware image %s, err: %d\n", |
| fw_bin_file, ret); |
| } else { |
| fw_data = fw->data; |
| fw_size = fw->size; |
| } |
| |
| /* allocate memory to read the header of the firmware on the |
| * card |
| */ |
| card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL); |
| |
| /* upgrade FW logic */ |
| ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw, |
| hw->fw_state, reset); |
| |
| /* Cleaning up */ |
| if (fw != NULL) |
| release_firmware(fw); |
| kfree(card_fw); |
| return ret; |
| } |
| |
| static int csio_hw_check_fwver(struct csio_hw *hw) |
| { |
| if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) && |
| (hw->fwrev < CSIO_MIN_T6_FW)) { |
| csio_hw_print_fw_version(hw, "T6 unsupported fw"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * csio_hw_configure - Configure HW |
| * @hw - HW module |
| * |
| */ |
| static void |
| csio_hw_configure(struct csio_hw *hw) |
| { |
| int reset = 1; |
| int rv; |
| u32 param[1]; |
| |
| rv = csio_hw_dev_ready(hw); |
| if (rv != 0) { |
| CSIO_INC_STATS(hw, n_err_fatal); |
| csio_post_event(&hw->sm, CSIO_HWE_FATAL); |
| goto out; |
| } |
| |
| /* HW version */ |
| hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A); |
| |
| /* Needed for FW download */ |
| rv = csio_hw_get_flash_params(hw); |
| if (rv != 0) { |
| csio_err(hw, "Failed to get serial flash params rv:%d\n", rv); |
| csio_post_event(&hw->sm, CSIO_HWE_FATAL); |
| goto out; |
| } |
| |
| /* Set PCIe completion timeout to 4 seconds */ |
| if (pci_is_pcie(hw->pdev)) |
| pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2, |
| PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); |
| |
| hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR); |
| |
| rv = csio_hw_get_fw_version(hw, &hw->fwrev); |
| if (rv != 0) |
| goto out; |
| |
| csio_hw_print_fw_version(hw, "Firmware revision"); |
| |
| rv = csio_do_hello(hw, &hw->fw_state); |
| if (rv != 0) { |
| CSIO_INC_STATS(hw, n_err_fatal); |
| csio_post_event(&hw->sm, CSIO_HWE_FATAL); |
| goto out; |
| } |
| |
| /* Read vpd */ |
| rv = csio_hw_get_vpd_params(hw, &hw->vpd); |
| if (rv != 0) |
| goto out; |
| |
| csio_hw_get_fw_version(hw, &hw->fwrev); |
| csio_hw_get_tp_version(hw, &hw->tp_vers); |
| if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { |
| |
| /* Do firmware update */ |
| spin_unlock_irq(&hw->lock); |
| rv = csio_hw_flash_fw(hw, &reset); |
| spin_lock_irq(&hw->lock); |
| |
| if (rv != 0) |
| goto out; |
| |
| rv = csio_hw_check_fwver(hw); |
| if (rv < 0) |
| goto out; |
| |
| /* If the firmware doesn't support Configuration Files, |
| * return an error. |
| */ |
| rv = csio_hw_check_fwconfig(hw, param); |
| if (rv != 0) { |
| csio_info(hw, "Firmware doesn't support " |
| "Firmware Configuration files\n"); |
| goto out; |
| } |
| |
| /* The firmware provides us with a memory buffer where we can |
| * load a Configuration File from the host if we want to |
| * override the Configuration File in flash. |
| */ |
| rv = csio_hw_use_fwconfig(hw, reset, param); |
| if (rv == -ENOENT) { |
| csio_info(hw, "Could not initialize " |
| "adapter, error%d\n", rv); |
| goto out; |
| } |
| if (rv != 0) { |
| csio_info(hw, "Could not initialize " |
| "adapter, error%d\n", rv); |
| goto out; |
| } |
| |
| } else { |
| rv = csio_hw_check_fwver(hw); |
| if (rv < 0) |
| goto out; |
| |
| if (hw->fw_state == CSIO_DEV_STATE_INIT) { |
| |
| hw->flags |= CSIO_HWF_USING_SOFT_PARAMS; |
| |
| /* device parameters */ |
| rv = csio_get_device_params(hw); |
| if (rv != 0) |
| goto out; |
| |
| /* Get device capabilities */ |
| rv = csio_config_device_caps(hw); |
| if (rv != 0) |
| goto out; |
| |
| /* Configure SGE */ |
| csio_wr_sge_init(hw); |
| |
| /* Post event to notify completion of configuration */ |
| csio_post_event(&hw->sm, CSIO_HWE_INIT); |
| goto out; |
| } |
| } /* if not master */ |
| |
| out: |
| return; |
| } |
| |
| /* |
| * csio_hw_initialize - Initialize HW |
| * @hw - HW module |
| * |
| */ |
| static void |
| csio_hw_initialize(struct csio_hw *hw) |
| { |
| struct csio_mb *mbp; |
| enum fw_retval retval; |
| int rv; |
| int i; |
| |
| if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { |
| mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| if (!mbp) |
| goto out; |
| |
| csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); |
| |
| if (csio_mb_issue(hw, mbp)) { |
| csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n"); |
| goto free_and_out; |
| } |
| |
| retval = csio_mb_fw_retval(mbp); |
| if (retval != FW_SUCCESS) { |
| csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n", |
| retval); |
| goto free_and_out; |
| } |
| |
| mempool_free(mbp, hw->mb_mempool); |
| } |
| |
| rv = csio_get_fcoe_resinfo(hw); |
| if (rv != 0) { |
| csio_err(hw, "Failed to read fcoe resource info: %d\n", rv); |
| goto out; |
| } |
| |
| spin_unlock_irq(&hw->lock); |
| rv = csio_config_queues(hw); |
| spin_lock_irq(&hw->lock); |
| |
| if (rv != 0) { |
| csio_err(hw, "Config of queues failed!: %d\n", rv); |
| goto out; |
| } |
| |
| for (i = 0; i < hw->num_pports; i++) |
| hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA; |
| |
| if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { |
| rv = csio_enable_ports(hw); |
| if (rv != 0) { |
| csio_err(hw, "Failed to enable ports: %d\n", rv); |
| goto out; |
| } |
| } |
| |
| csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE); |
| return; |
| |
| free_and_out: |
| mempool_free(mbp, hw->mb_mempool); |
| out: |
| return; |
| } |
| |
| #define PF_INTR_MASK (PFSW_F | PFCIM_F) |
| |
| /* |
| * csio_hw_intr_enable - Enable HW interrupts |
| * @hw: Pointer to HW module. |
| * |
| * Enable interrupts in HW registers. |
| */ |
| static void |
| csio_hw_intr_enable(struct csio_hw *hw) |
| { |
| uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw)); |
| u32 pf = 0; |
| uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A); |
| |
| if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) |
| pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); |
| else |
| pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); |
| |
| /* |
| * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up |
| * by FW, so do nothing for INTX. |
| */ |
| if (hw->intr_mode == CSIO_IM_MSIX) |
| csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A), |
| AIVEC_V(AIVEC_M), vec); |
| else if (hw->intr_mode == CSIO_IM_MSI) |
| csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A), |
| AIVEC_V(AIVEC_M), 0); |
| |
| csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A)); |
| |
| /* Turn on MB interrupts - this will internally flush PIO as well */ |
| csio_mb_intr_enable(hw); |
| |
| /* These are common registers - only a master can modify them */ |
| if (csio_is_hw_master(hw)) { |
| /* |
| * Disable the Serial FLASH interrupt, if enabled! |
| */ |
| pl &= (~SF_F); |
| csio_wr_reg32(hw, pl, PL_INT_ENABLE_A); |
| |
| csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F | |
| EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F | |
| ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F | |
| ERR_DATA_CPL_ON_HIGH_QID1_F | |
| ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | |
| ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | |
| ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | |
| ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F, |
| SGE_INT_ENABLE3_A); |
| csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf); |
| } |
| |
| hw->flags |= CSIO_HWF_HW_INTR_ENABLED; |
| |
| } |
| |
| /* |
| * csio_hw_intr_disable - Disable HW interrupts |
| * @hw: Pointer to HW module. |
| * |
| * Turn off Mailbox and PCI_PF_CFG interrupts. |
| */ |
| void |
| csio_hw_intr_disable(struct csio_hw *hw) |
| { |
| u32 pf = 0; |
| |
| if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) |
| pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); |
| else |
| pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); |
| |
| if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED)) |
| return; |
| |
| hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED; |
| |
| csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A)); |
| if (csio_is_hw_master(hw)) |
| csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0); |
| |
| /* Turn off MB interrupts */ |
| csio_mb_intr_disable(hw); |
| |
| } |
| |
| void |
| csio_hw_fatal_err(struct csio_hw *hw) |
| { |
| csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0); |
| csio_hw_intr_disable(hw); |
| |
| /* Do not reset HW, we may need FW state for debugging */ |
| csio_fatal(hw, "HW Fatal error encountered!\n"); |
| } |
| |
| /*****************************************************************************/ |
| /* START: HW SM */ |
| /*****************************************************************************/ |
| /* |
| * csio_hws_uninit - Uninit state |
| * @hw - HW module |
| * @evt - Event |
| * |
| */ |
| static void |
| csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt) |
| { |
| hw->prev_evt = hw->cur_evt; |
| hw->cur_evt = evt; |
| CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| |
| switch (evt) { |
| case CSIO_HWE_CFG: |
| csio_set_state(&hw->sm, csio_hws_configuring); |
| csio_hw_configure(hw); |
| break; |
| |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| } |
| } |
| |
| /* |
| * csio_hws_configuring - Configuring state |
| * @hw - HW module |
| * @evt - Event |
| * |
| */ |
| static void |
| csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt) |
| { |
| hw->prev_evt = hw->cur_evt; |
| hw->cur_evt = evt; |
| CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| |
| switch (evt) { |
| case CSIO_HWE_INIT: |
| csio_set_state(&hw->sm, csio_hws_initializing); |
| csio_hw_initialize(hw); |
| break; |
| |
| case CSIO_HWE_INIT_DONE: |
| csio_set_state(&hw->sm, csio_hws_ready); |
| /* Fan out event to all lnode SMs */ |
| csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY); |
| break; |
| |
| case CSIO_HWE_FATAL: |
| csio_set_state(&hw->sm, csio_hws_uninit); |
| break; |
| |
| case CSIO_HWE_PCI_REMOVE: |
| csio_do_bye(hw); |
| break; |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| } |
| } |
| |
| /* |
| * csio_hws_initializing - Initialiazing state |
| * @hw - HW module |
| * @evt - Event |
| * |
| */ |
| static void |
| csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt) |
| { |
| hw->prev_evt = hw->cur_evt; |
| hw->cur_evt = evt; |
| CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| |
| switch (evt) { |
| case CSIO_HWE_INIT_DONE: |
| csio_set_state(&hw->sm, csio_hws_ready); |
| |
| /* Fan out event to all lnode SMs */ |
| csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY); |
| |
| /* Enable interrupts */ |
| csio_hw_intr_enable(hw); |
| break; |
| |
| case CSIO_HWE_FATAL: |
| csio_set_state(&hw->sm, csio_hws_uninit); |
| break; |
| |
| case CSIO_HWE_PCI_REMOVE: |
| csio_do_bye(hw); |
| break; |
| |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| } |
| } |
| |
| /* |
| * csio_hws_ready - Ready state |
| * @hw - HW module |
| * @evt - Event |
| * |
| */ |
| static void |
| csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt) |
| { |
| /* Remember the event */ |
| hw->evtflag = evt; |
| |
| hw->prev_evt = hw->cur_evt; |
| hw->cur_evt = evt; |
| CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| |
| switch (evt) { |
| case CSIO_HWE_HBA_RESET: |
| case CSIO_HWE_FW_DLOAD: |
| case CSIO_HWE_SUSPEND: |
| case CSIO_HWE_PCI_REMOVE: |
| case CSIO_HWE_PCIERR_DETECTED: |
| csio_set_state(&hw->sm, csio_hws_quiescing); |
| /* cleanup all outstanding cmds */ |
| if (evt == CSIO_HWE_HBA_RESET || |
| evt == CSIO_HWE_PCIERR_DETECTED) |
| csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false); |
| else |
| csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true); |
| |
| csio_hw_intr_disable(hw); |
| csio_hw_mbm_cleanup(hw); |
| csio_evtq_stop(hw); |
| csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP); |
| csio_evtq_flush(hw); |
| csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw)); |
| csio_post_event(&hw->sm, CSIO_HWE_QUIESCED); |
| break; |
| |
| case CSIO_HWE_FATAL: |
| csio_set_state(&hw->sm, csio_hws_uninit); |
| break; |
| |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| } |
| } |
| |
| /* |
| * csio_hws_quiescing - Quiescing state |
| * @hw - HW module |
| * @evt - Event |
| * |
| */ |
| static void |
| csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt) |
| { |
| hw->prev_evt = hw->cur_evt; |
| hw->cur_evt = evt; |
| CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| |
| switch (evt) { |
| case CSIO_HWE_QUIESCED: |
| switch (hw->evtflag) { |
| case CSIO_HWE_FW_DLOAD: |
| csio_set_state(&hw->sm, csio_hws_resetting); |
| /* Download firmware */ |
| /* Fall through */ |
| |
| case CSIO_HWE_HBA_RESET: |
| csio_set_state(&hw->sm, csio_hws_resetting); |
| /* Start reset of the HBA */ |
| csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET); |
| csio_wr_destroy_queues(hw, false); |
| csio_do_reset(hw, false); |
| csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE); |
| break; |
| |
| case CSIO_HWE_PCI_REMOVE: |
| csio_set_state(&hw->sm, csio_hws_removing); |
| csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE); |
| csio_wr_destroy_queues(hw, true); |
| /* Now send the bye command */ |
| csio_do_bye(hw); |
| break; |
| |
| case CSIO_HWE_SUSPEND: |
| csio_set_state(&hw->sm, csio_hws_quiesced); |
| break; |
| |
| case CSIO_HWE_PCIERR_DETECTED: |
| csio_set_state(&hw->sm, csio_hws_pcierr); |
| csio_wr_destroy_queues(hw, false); |
| break; |
| |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| |
| } |
| break; |
| |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| } |
| } |
| |
| /* |
| * csio_hws_quiesced - Quiesced state |
| * @hw - HW module |
| * @evt - Event |
| * |
| */ |
| static void |
| csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt) |
| { |
| hw->prev_evt = hw->cur_evt; |
| hw->cur_evt = evt; |
| CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| |
| switch (evt) { |
| case CSIO_HWE_RESUME: |
| csio_set_state(&hw->sm, csio_hws_configuring); |
| csio_hw_configure(hw); |
| break; |
| |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| } |
| } |
| |
| /* |
| * csio_hws_resetting - HW Resetting state |
| * @hw - HW module |
| * @evt - Event |
| * |
| */ |
| static void |
| csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt) |
| { |
| hw->prev_evt = hw->cur_evt; |
| hw->cur_evt = evt; |
| CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| |
| switch (evt) { |
| case CSIO_HWE_HBA_RESET_DONE: |
| csio_evtq_start(hw); |
| csio_set_state(&hw->sm, csio_hws_configuring); |
| csio_hw_configure(hw); |
| break; |
| |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| } |
| } |
| |
| /* |
| * csio_hws_removing - PCI Hotplug removing state |
| * @hw - HW module |
| * @evt - Event |
| * |
| */ |
| static void |
| csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt) |
| { |
| hw->prev_evt = hw->cur_evt; |
| hw->cur_evt = evt; |
| CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| |
| switch (evt) { |
| case CSIO_HWE_HBA_RESET: |
| if (!csio_is_hw_master(hw)) |
| break; |
| /* |
| * The BYE should have alerady been issued, so we cant |
| * use the mailbox interface. Hence we use the PL_RST |
| * register directly. |
| */ |
| csio_err(hw, "Resetting HW and waiting 2 seconds...\n"); |
| csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A); |
| mdelay(2000); |
| break; |
| |
| /* Should never receive any new events */ |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| |
| } |
| } |
| |
| /* |
| * csio_hws_pcierr - PCI Error state |
| * @hw - HW module |
| * @evt - Event |
| * |
| */ |
| static void |
| csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt) |
| { |
| hw->prev_evt = hw->cur_evt; |
| hw->cur_evt = evt; |
| CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| |
| switch (evt) { |
| case CSIO_HWE_PCIERR_SLOT_RESET: |
| csio_evtq_start(hw); |
| csio_set_state(&hw->sm, csio_hws_configuring); |
| csio_hw_configure(hw); |
| break; |
| |
| default: |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| } |
| } |
| |
| /*****************************************************************************/ |
| /* END: HW SM */ |
| /*****************************************************************************/ |
| |
| /* |
| * csio_handle_intr_status - table driven interrupt handler |
| * @hw: HW instance |
| * @reg: the interrupt status register to process |
| * @acts: table of interrupt actions |
| * |
| * A table driven interrupt handler that applies a set of masks to an |
| * interrupt status word and performs the corresponding actions if the |
| * interrupts described by the mask have occured. The actions include |
| * optionally emitting a warning or alert message. The table is terminated |
| * by an entry specifying mask 0. Returns the number of fatal interrupt |
| * conditions. |
| */ |
| int |
| csio_handle_intr_status(struct csio_hw *hw, unsigned int reg, |
| const struct intr_info *acts) |
| { |
| int fatal = 0; |
| unsigned int mask = 0; |
| unsigned int status = csio_rd_reg32(hw, reg); |
| |
| for ( ; acts->mask; ++acts) { |
| if (!(status & acts->mask)) |
| continue; |
| if (acts->fatal) { |
| fatal++; |
| csio_fatal(hw, "Fatal %s (0x%x)\n", |
| acts->msg, status & acts->mask); |
| } else if (acts->msg) |
| csio_info(hw, "%s (0x%x)\n", |
| acts->msg, status & acts->mask); |
| mask |= acts->mask; |
| } |
| status &= mask; |
| if (status) /* clear processed interrupts */ |
| csio_wr_reg32(hw, status, reg); |
| return fatal; |
| } |
| |
| /* |
| * TP interrupt handler. |
| */ |
| static void csio_tp_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info tp_intr_info[] = { |
| { 0x3fffffff, "TP parity error", -1, 1 }, |
| { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * SGE interrupt handler. |
| */ |
| static void csio_sge_intr_handler(struct csio_hw *hw) |
| { |
| uint64_t v; |
| |
| static struct intr_info sge_intr_info[] = { |
| { ERR_CPL_EXCEED_IQE_SIZE_F, |
| "SGE received CPL exceeding IQE size", -1, 1 }, |
| { ERR_INVALID_CIDX_INC_F, |
| "SGE GTS CIDX increment too large", -1, 0 }, |
| { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, |
| { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 }, |
| { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, |
| "SGE IQID > 1023 received CPL for FL", -1, 0 }, |
| { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, |
| 0 }, |
| { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, |
| 0 }, |
| { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, |
| 0 }, |
| { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, |
| 0 }, |
| { ERR_ING_CTXT_PRIO_F, |
| "SGE too many priority ingress contexts", -1, 0 }, |
| { ERR_EGR_CTXT_PRIO_F, |
| "SGE too many priority egress contexts", -1, 0 }, |
| { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, |
| { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) | |
| ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32); |
| if (v) { |
| csio_fatal(hw, "SGE parity error (%#llx)\n", |
| (unsigned long long)v); |
| csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF), |
| SGE_INT_CAUSE1_A); |
| csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A); |
| } |
| |
| v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info); |
| |
| if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) || |
| v != 0) |
| csio_hw_fatal_err(hw); |
| } |
| |
| #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ |
| OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) |
| #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ |
| IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) |
| |
| /* |
| * CIM interrupt handler. |
| */ |
| static void csio_cim_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info cim_intr_info[] = { |
| { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, |
| { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, |
| { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, |
| { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, |
| { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, |
| { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, |
| { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| static struct intr_info cim_upintr_info[] = { |
| { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, |
| { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, |
| { ILLWRINT_F, "CIM illegal write", -1, 1 }, |
| { ILLRDINT_F, "CIM illegal read", -1, 1 }, |
| { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, |
| { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, |
| { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, |
| { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, |
| { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, |
| { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, |
| { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, |
| { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, |
| { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, |
| { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, |
| { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, |
| { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, |
| { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, |
| { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, |
| { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, |
| { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, |
| { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, |
| { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, |
| { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, |
| { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, |
| { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, |
| { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, |
| { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, |
| { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| int fat; |
| |
| fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A, |
| cim_intr_info) + |
| csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A, |
| cim_upintr_info); |
| if (fat) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * ULP RX interrupt handler. |
| */ |
| static void csio_ulprx_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info ulprx_intr_info[] = { |
| { 0x1800000, "ULPRX context error", -1, 1 }, |
| { 0x7fffff, "ULPRX parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * ULP TX interrupt handler. |
| */ |
| static void csio_ulptx_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info ulptx_intr_info[] = { |
| { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, |
| 0 }, |
| { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, |
| 0 }, |
| { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, |
| 0 }, |
| { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, |
| 0 }, |
| { 0xfffffff, "ULPTX parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * PM TX interrupt handler. |
| */ |
| static void csio_pmtx_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info pmtx_intr_info[] = { |
| { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, |
| { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, |
| { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, |
| { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, |
| { 0xffffff0, "PMTX framing error", -1, 1 }, |
| { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, |
| { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1, |
| 1 }, |
| { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, |
| { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * PM RX interrupt handler. |
| */ |
| static void csio_pmrx_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info pmrx_intr_info[] = { |
| { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, |
| { 0x3ffff0, "PMRX framing error", -1, 1 }, |
| { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, |
| { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1, |
| 1 }, |
| { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, |
| { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * CPL switch interrupt handler. |
| */ |
| static void csio_cplsw_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info cplsw_intr_info[] = { |
| { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, |
| { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, |
| { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, |
| { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, |
| { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, |
| { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * LE interrupt handler. |
| */ |
| static void csio_le_intr_handler(struct csio_hw *hw) |
| { |
| enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id); |
| |
| static struct intr_info le_intr_info[] = { |
| { LIPMISS_F, "LE LIP miss", -1, 0 }, |
| { LIP0_F, "LE 0 LIP error", -1, 0 }, |
| { PARITYERR_F, "LE parity error", -1, 1 }, |
| { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, |
| { REQQPARERR_F, "LE request queue parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| static struct intr_info t6_le_intr_info[] = { |
| { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, |
| { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, |
| { TCAMINTPERR_F, "LE parity error", -1, 1 }, |
| { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, |
| { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A, |
| (chip == CHELSIO_T5) ? |
| le_intr_info : t6_le_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * MPS interrupt handler. |
| */ |
| static void csio_mps_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info mps_rx_intr_info[] = { |
| { 0xffffff, "MPS Rx parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| static struct intr_info mps_tx_intr_info[] = { |
| { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, |
| { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, |
| { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", |
| -1, 1 }, |
| { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", |
| -1, 1 }, |
| { BUBBLE_F, "MPS Tx underflow", -1, 1 }, |
| { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, |
| { FRMERR_F, "MPS Tx framing error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| static struct intr_info mps_trc_intr_info[] = { |
| { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, |
| { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", |
| -1, 1 }, |
| { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| static struct intr_info mps_stat_sram_intr_info[] = { |
| { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| static struct intr_info mps_stat_tx_intr_info[] = { |
| { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| static struct intr_info mps_stat_rx_intr_info[] = { |
| { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| static struct intr_info mps_cls_intr_info[] = { |
| { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, |
| { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, |
| { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| int fat; |
| |
| fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A, |
| mps_rx_intr_info) + |
| csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A, |
| mps_tx_intr_info) + |
| csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A, |
| mps_trc_intr_info) + |
| csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A, |
| mps_stat_sram_intr_info) + |
| csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, |
| mps_stat_tx_intr_info) + |
| csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, |
| mps_stat_rx_intr_info) + |
| csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A, |
| mps_cls_intr_info); |
| |
| csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A); |
| csio_rd_reg32(hw, MPS_INT_CAUSE_A); /* flush */ |
| if (fat) |
| csio_hw_fatal_err(hw); |
| } |
| |
| #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ |
| ECC_UE_INT_CAUSE_F) |
| |
| /* |
| * EDC/MC interrupt handler. |
| */ |
| static void csio_mem_intr_handler(struct csio_hw *hw, int idx) |
| { |
| static const char name[3][5] = { "EDC0", "EDC1", "MC" }; |
| |
| unsigned int addr, cnt_addr, v; |
| |
| if (idx <= MEM_EDC1) { |
| addr = EDC_REG(EDC_INT_CAUSE_A, idx); |
| cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); |
| } else { |
| addr = MC_INT_CAUSE_A; |
| cnt_addr = MC_ECC_STATUS_A; |
| } |
| |
| v = csio_rd_reg32(hw, addr) & MEM_INT_MASK; |
| if (v & PERR_INT_CAUSE_F) |
| csio_fatal(hw, "%s FIFO parity error\n", name[idx]); |
| if (v & ECC_CE_INT_CAUSE_F) { |
| uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr)); |
| |
| csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr); |
| csio_warn(hw, "%u %s correctable ECC data error%s\n", |
| cnt, name[idx], cnt > 1 ? "s" : ""); |
| } |
| if (v & ECC_UE_INT_CAUSE_F) |
| csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]); |
| |
| csio_wr_reg32(hw, v, addr); |
| if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * MA interrupt handler. |
| */ |
| static void csio_ma_intr_handler(struct csio_hw *hw) |
| { |
| uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A); |
| |
| if (status & MEM_PERR_INT_CAUSE_F) |
| csio_fatal(hw, "MA parity error, parity status %#x\n", |
| csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A)); |
| if (status & MEM_WRAP_INT_CAUSE_F) { |
| v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A); |
| csio_fatal(hw, |
| "MA address wrap-around error by client %u to address %#x\n", |
| MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4); |
| } |
| csio_wr_reg32(hw, status, MA_INT_CAUSE_A); |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * SMB interrupt handler. |
| */ |
| static void csio_smb_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info smb_intr_info[] = { |
| { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, |
| { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, |
| { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * NC-SI interrupt handler. |
| */ |
| static void csio_ncsi_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info ncsi_intr_info[] = { |
| { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, |
| { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, |
| { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, |
| { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * XGMAC interrupt handler. |
| */ |
| static void csio_xgmac_intr_handler(struct csio_hw *hw, int port) |
| { |
| uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A)); |
| |
| v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; |
| if (!v) |
| return; |
| |
| if (v & TXFIFO_PRTY_ERR_F) |
| csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port); |
| if (v & RXFIFO_PRTY_ERR_F) |
| csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port); |
| csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A)); |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * PL interrupt handler. |
| */ |
| static void csio_pl_intr_handler(struct csio_hw *hw) |
| { |
| static struct intr_info pl_intr_info[] = { |
| { FATALPERR_F, "T4 fatal parity error", -1, 1 }, |
| { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, |
| { 0, NULL, 0, 0 } |
| }; |
| |
| if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info)) |
| csio_hw_fatal_err(hw); |
| } |
| |
| /* |
| * csio_hw_slow_intr_handler - control path interrupt handler |
| * @hw: HW module |
| * |
| * Interrupt handler for non-data global interrupt events, e.g., errors. |
| * The designation 'slow' is because it involves register reads, while |
| * data interrupts typically don't involve any MMIOs. |
| */ |
| int |
| csio_hw_slow_intr_handler(struct csio_hw *hw) |
| { |
| uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A); |
| |
| if (!(cause & CSIO_GLBL_INTR_MASK)) { |
| CSIO_INC_STATS(hw, n_plint_unexp); |
| return 0; |
| } |
| |
| csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause); |
| |
| CSIO_INC_STATS(hw, n_plint_cnt); |
| |
| if (cause & CIM_F) |
| csio_cim_intr_handler(hw); |
| |
| if (cause & MPS_F) |
| csio_mps_intr_handler(hw); |
| |
| if (cause & NCSI_F) |
| csio_ncsi_intr_handler(hw); |
| |
| if (cause & PL_F) |
| csio_pl_intr_handler(hw); |
| |
| if (cause & SMB_F) |
| csio_smb_intr_handler(hw); |
| |
| if (cause & XGMAC0_F) |
| csio_xgmac_intr_handler(hw, 0); |
| |
| if (cause & XGMAC1_F) |
| csio_xgmac_intr_handler(hw, 1); |
| |
| if (cause & XGMAC_KR0_F) |
| csio_xgmac_intr_handler(hw, 2); |
| |
| if (cause & XGMAC_KR1_F) |
| csio_xgmac_intr_handler(hw, 3); |
| |
| if (cause & PCIE_F) |
| hw->chip_ops->chip_pcie_intr_handler(hw); |
| |
| if (cause & MC_F) |
| csio_mem_intr_handler(hw, MEM_MC); |
| |
| if (cause & EDC0_F) |
| csio_mem_intr_handler(hw, MEM_EDC0); |
| |
| if (cause & EDC1_F) |
| csio_mem_intr_handler(hw, MEM_EDC1); |
| |
| if (cause & LE_F) |
| csio_le_intr_handler(hw); |
| |
| if (cause & TP_F) |
| csio_tp_intr_handler(hw); |
| |
| if (cause & MA_F) |
| csio_ma_intr_handler(hw); |
| |
| if (cause & PM_TX_F) |
| csio_pmtx_intr_handler(hw); |
| |
| if (cause & PM_RX_F) |
| csio_pmrx_intr_handler(hw); |
| |
| if (cause & ULP_RX_F) |
| csio_ulprx_intr_handler(hw); |
| |
| if (cause & CPL_SWITCH_F) |
| csio_cplsw_intr_handler(hw); |
| |
| if (cause & SGE_F) |
| csio_sge_intr_handler(hw); |
| |
| if (cause & ULP_TX_F) |
| csio_ulptx_intr_handler(hw); |
| |
| /* Clear the interrupts just processed for which we are the master. */ |
| csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A); |
| csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */ |
| |
| return 1; |
| } |
| |
| /***************************************************************************** |
| * HW <--> mailbox interfacing routines. |
| ****************************************************************************/ |
| /* |
| * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions |
| * |
| * @data: Private data pointer. |
| * |
| * Called from worker thread context. |
| */ |
| static void |
| csio_mberr_worker(void *data) |
| { |
| struct csio_hw *hw = (struct csio_hw *)data; |
| struct csio_mbm *mbm = &hw->mbm; |
| LIST_HEAD(cbfn_q); |
| struct csio_mb *mbp_next; |
| int rv; |
| |
| del_timer_sync(&mbm->timer); |
| |
| spin_lock_irq(&hw->lock); |
| if (list_empty(&mbm->cbfn_q)) { |
| spin_unlock_irq(&hw->lock); |
| return; |
| } |
| |
| list_splice_tail_init(&mbm->cbfn_q, &cbfn_q); |
| mbm->stats.n_cbfnq = 0; |
| |
| /* Try to start waiting mailboxes */ |
| if (!list_empty(&mbm->req_q)) { |
| mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list); |
| list_del_init(&mbp_next->list); |
| |
| rv = csio_mb_issue(hw, mbp_next); |
| if (rv != 0) |
| list_add_tail(&mbp_next->list, &mbm->req_q); |
| else |
| CSIO_DEC_STATS(mbm, n_activeq); |
| } |
| spin_unlock_irq(&hw->lock); |
| |
| /* Now callback completions */ |
| csio_mb_completions(hw, &cbfn_q); |
| } |
| |
| /* |
| * csio_hw_mb_timer - Top-level Mailbox timeout handler. |
| * |
| * @data: private data pointer |
| * |
| **/ |
| static void |
| csio_hw_mb_timer(struct timer_list *t) |
| { |
| struct csio_mbm *mbm = from_timer(mbm, t, timer); |
| struct csio_hw *hw = mbm->hw; |
| struct csio_mb *mbp = NULL; |
| |
| spin_lock_irq(&hw->lock); |
| mbp = csio_mb_tmo_handler(hw); |
| spin_unlock_irq(&hw->lock); |
| |
| /* Call back the function for the timed-out Mailbox */ |
| if (mbp) |
| mbp->mb_cbfn(hw, mbp); |
| |
| } |
| |
| /* |
| * csio_hw_mbm_cleanup - Cleanup Mailbox module. |
| * @hw: HW module |
| * |
| * Called with lock held, should exit with lock held. |
| * Cancels outstanding mailboxes (waiting, in-flight) and gathers them |
| * into a local queue. Drops lock and calls the completions. Holds |
| * lock and returns. |
| */ |
| static void |
| csio_hw_mbm_cleanup(struct csio_hw *hw) |
| { |
| LIST_HEAD(cbfn_q); |
| |
| csio_mb_cancel_all(hw, &cbfn_q); |
| |
| spin_unlock_irq(&hw->lock); |
| csio_mb_completions(hw, &cbfn_q); |
| spin_lock_irq(&hw->lock); |
| } |
| |
| /***************************************************************************** |
| * Event handling |
| ****************************************************************************/ |
| int |
| csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg, |
| uint16_t len) |
| { |
| struct csio_evt_msg *evt_entry = NULL; |
| |
| if (type >= CSIO_EVT_MAX) |
| return -EINVAL; |
| |
| if (len > CSIO_EVT_MSG_SIZE) |
| return -EINVAL; |
| |
| if (hw->flags & CSIO_HWF_FWEVT_STOP) |
| return -EINVAL; |
| |
| if (list_empty(&hw->evt_free_q)) { |
| csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n", |
| type, len); |
| return -ENOMEM; |
| } |
| |
| evt_entry = list_first_entry(&hw->evt_free_q, |
| struct csio_evt_msg, list); |
| list_del_init(&evt_entry->list); |
| |
| /* copy event msg and queue the event */ |
| evt_entry->type = type; |
| memcpy((void *)evt_entry->data, evt_msg, len); |
| list_add_tail(&evt_entry->list, &hw->evt_active_q); |
| |
| CSIO_DEC_STATS(hw, n_evt_freeq); |
| CSIO_INC_STATS(hw, n_evt_activeq); |
| |
| return 0; |
| } |
| |
| static int |
| csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg, |
| uint16_t len, bool msg_sg) |
| { |
| struct csio_evt_msg *evt_entry = NULL; |
| struct csio_fl_dma_buf *fl_sg; |
| uint32_t off = 0; |
| unsigned long flags; |
| int n, ret = 0; |
| |
| if (type >= CSIO_EVT_MAX) |
| return -EINVAL; |
| |
| if (len > CSIO_EVT_MSG_SIZE) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&hw->lock, flags); |
| if (hw->flags & CSIO_HWF_FWEVT_STOP) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (list_empty(&hw->evt_free_q)) { |
| csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n", |
| type, len); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| evt_entry = list_first_entry(&hw->evt_free_q, |
| struct csio_evt_msg, list); |
| list_del_init(&evt_entry->list); |
| |
| /* copy event msg and queue the event */ |
| evt_entry->type = type; |
| |
| /* If Payload in SG list*/ |
| if (msg_sg) { |
| fl_sg = (struct csio_fl_dma_buf *) evt_msg; |
| for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) { |
| memcpy((void *)((uintptr_t)evt_entry->data + off), |
| fl_sg->flbufs[n].vaddr, |
| fl_sg->flbufs[n].len); |
| off += fl_sg->flbufs[n].len; |
| } |
| } else |
| memcpy((void *)evt_entry->data, evt_msg, len); |
| |
| list_add_tail(&evt_entry->list, &hw->evt_active_q); |
| CSIO_DEC_STATS(hw, n_evt_freeq); |
| CSIO_INC_STATS(hw, n_evt_activeq); |
| out: |
| spin_unlock_irqrestore(&hw->lock, flags); |
| return ret; |
| } |
| |
| static void |
| csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry) |
| { |
| if (evt_entry) { |
| spin_lock_irq(&hw->lock); |
| list_del_init(&evt_entry->list); |
| list_add_tail(&evt_entry->list, &hw->evt_free_q); |
| CSIO_DEC_STATS(hw, n_evt_activeq); |
| CSIO_INC_STATS(hw, n_evt_freeq); |
| spin_unlock_irq(&hw->lock); |
| } |
| } |
| |
| void |
| csio_evtq_flush(struct csio_hw *hw) |
| { |
| uint32_t count; |
| count = 30; |
| while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) { |
| spin_unlock_irq(&hw->lock); |
| msleep(2000); |
| spin_lock_irq(&hw->lock); |
| } |
| |
| CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING)); |
| } |
| |
| static void |
| csio_evtq_stop(struct csio_hw *hw) |
| { |
| hw->flags |= CSIO_HWF_FWEVT_STOP; |
| } |
| |
| static void |
| csio_evtq_start(struct csio_hw *hw) |
| { |
| hw->flags &= ~CSIO_HWF_FWEVT_STOP; |
| } |
| |
| static void |
| csio_evtq_cleanup(struct csio_hw *hw) |
| { |
| struct list_head *evt_entry, *next_entry; |
| |
| /* Release outstanding events from activeq to freeq*/ |
| if (!list_empty(&hw->evt_active_q)) |
| list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q); |
| |
| hw->stats.n_evt_activeq = 0; |
| hw->flags &= ~CSIO_HWF_FWEVT_PENDING; |
| |
| /* Freeup event entry */ |
| list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) { |
| kfree(evt_entry); |
| CSIO_DEC_STATS(hw, n_evt_freeq); |
| } |
| |
| hw->stats.n_evt_freeq = 0; |
| } |
| |
| |
| static void |
| csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len, |
| struct csio_fl_dma_buf *flb, void *priv) |
| { |
| __u8 op; |
| void *msg = NULL; |
| uint32_t msg_len = 0; |
| bool msg_sg = 0; |
| |
| op = ((struct rss_header *) wr)->opcode; |
| if (op == CPL_FW6_PLD) { |
| CSIO_INC_STATS(hw, n_cpl_fw6_pld); |
| if (!flb || !flb->totlen) { |
| CSIO_INC_STATS(hw, n_cpl_unexp); |
| return; |
| } |
| |
| msg = (void *) flb; |
| msg_len = flb->totlen; |
| msg_sg = 1; |
| } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) { |
| |
| CSIO_INC_STATS(hw, n_cpl_fw6_msg); |
| /* skip RSS header */ |
| msg = (void *)((uintptr_t)wr + sizeof(__be64)); |
| msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) : |
| sizeof(struct cpl_fw4_msg); |
| } else { |
| csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op); |
| CSIO_INC_STATS(hw, n_cpl_unexp); |
| return; |
| } |
| |
| /* |
| * Enqueue event to EventQ. Events processing happens |
| * in Event worker thread context |
| */ |
| if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg, |
| (uint16_t)msg_len, msg_sg)) |
| CSIO_INC_STATS(hw, n_evt_drop); |
| } |
| |
| void |
| csio_evtq_worker(struct work_struct *work) |
| { |
| struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work); |
| struct list_head *evt_entry, *next_entry; |
| LIST_HEAD(evt_q); |
| struct csio_evt_msg *evt_msg; |
| struct cpl_fw6_msg *msg; |
| struct csio_rnode *rn; |
| int rv = 0; |
| uint8_t evtq_stop = 0; |
| |
| csio_dbg(hw, "event worker thread active evts#%d\n", |
| hw->stats.n_evt_activeq); |
| |
| spin_lock_irq(&hw->lock); |
| while (!list_empty(&hw->evt_active_q)) { |
| list_splice_tail_init(&hw->evt_active_q, &evt_q); |
| spin_unlock_irq(&hw->lock); |
| |
| list_for_each_safe(evt_entry, next_entry, &evt_q) { |
| evt_msg = (struct csio_evt_msg *) evt_entry; |
| |
| /* Drop events if queue is STOPPED */ |
| spin_lock_irq(&hw->lock); |
| if (hw->flags & CSIO_HWF_FWEVT_STOP) |
| evtq_stop = 1; |
| spin_unlock_irq(&hw->lock); |
| if (evtq_stop) { |
| CSIO_INC_STATS(hw, n_evt_drop); |
| goto free_evt; |
| } |
| |
| switch (evt_msg->type) { |
| case CSIO_EVT_FW: |
| msg = (struct cpl_fw6_msg *)(evt_msg->data); |
| |
| if ((msg->opcode == CPL_FW6_MSG || |
| msg->opcode == CPL_FW4_MSG) && |
| !msg->type) { |
| rv = csio_mb_fwevt_handler(hw, |
| msg->data); |
| if (!rv) |
| break; |
| /* Handle any remaining fw events */ |
| csio_fcoe_fwevt_handler(hw, |
| msg->opcode, msg->data); |
| } else if (msg->opcode == CPL_FW6_PLD) { |
| |
| csio_fcoe_fwevt_handler(hw, |
| msg->opcode, msg->data); |
| } else { |
| csio_warn(hw, |
| "Unhandled FW msg op %x type %x\n", |
| msg->opcode, msg->type); |
| CSIO_INC_STATS(hw, n_evt_drop); |
| } |
| break; |
| |
| case CSIO_EVT_MBX: |
| csio_mberr_worker(hw); |
| break; |
| |
| case CSIO_EVT_DEV_LOSS: |
| memcpy(&rn, evt_msg->data, sizeof(rn)); |
| csio_rnode_devloss_handler(rn); |
| break; |
| |
| default: |
| csio_warn(hw, "Unhandled event %x on evtq\n", |
| evt_msg->type); |
| CSIO_INC_STATS(hw, n_evt_unexp); |
| break; |
| } |
| free_evt: |
| csio_free_evt(hw, evt_msg); |
| } |
| |
| spin_lock_irq(&hw->lock); |
| } |
| hw->flags &= ~CSIO_HWF_FWEVT_PENDING; |
| spin_unlock_irq(&hw->lock); |
| } |
| |
| int |
| csio_fwevtq_handler(struct csio_hw *hw) |
| { |
| int rv; |
| |
| if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) { |
| CSIO_INC_STATS(hw, n_int_stray); |
| return -EINVAL; |
| } |
| |
| rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx, |
| csio_process_fwevtq_entry, NULL); |
| return rv; |
| } |
| |
| /**************************************************************************** |
| * Entry points |
| ****************************************************************************/ |
| |
| /* Management module */ |
| /* |
| * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q. |
| * mgmt - mgmt module |
| * @io_req - io request |
| * |
| * Return - 0:if given IO Req exists in active Q. |
| * -EINVAL :if lookup fails. |
| */ |
| int |
| csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req) |
| { |
| struct list_head *tmp; |
| |
| /* Lookup ioreq in the ACTIVEQ */ |
| list_for_each(tmp, &mgmtm->active_q) { |
| if (io_req == (struct csio_ioreq *)tmp) |
| return 0; |
| } |
| return -EINVAL; |
| } |
| |
| #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */ |
| |
| /* |
| * csio_mgmts_tmo_handler - MGMT IO Timeout handler. |
| * @data - Event data. |
| * |
| * Return - none. |
| */ |
| static void |
| csio_mgmt_tmo_handler(struct timer_list *t) |
| { |
| struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer); |
| struct list_head *tmp; |
| struct csio_ioreq *io_req; |
| |
| csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n"); |
| |
| spin_lock_irq(&mgmtm->hw->lock); |
| |
| list_for_each(tmp, &mgmtm->active_q) { |
| io_req = (struct csio_ioreq *) tmp; |
| io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO); |
| |
| if (!io_req->tmo) { |
| /* Dequeue the request from retry Q. */ |
| tmp = csio_list_prev(tmp); |
| list_del_init(&io_req->sm.sm_list); |
| if (io_req->io_cbfn) { |
| /* io_req will be freed by completion handler */ |
| io_req->wr_status = -ETIMEDOUT; |
| io_req->io_cbfn(mgmtm->hw, io_req); |
| } else { |
| CSIO_DB_ASSERT(0); |
| } |
| } |
| } |
| |
| /* If retry queue is not empty, re-arm timer */ |
| if (!list_empty(&mgmtm->active_q)) |
| mod_timer(&mgmtm->mgmt_timer, |
| jiffies + msecs_to_jiffies(ECM_MIN_TMO)); |
| spin_unlock_irq(&mgmtm->hw->lock); |
| } |
| |
| static void |
| csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm) |
| { |
| struct csio_hw *hw = mgmtm->hw; |
| struct csio_ioreq *io_req; |
| struct list_head *tmp; |
| uint32_t count; |
| |
| count = 30; |
| /* Wait for all outstanding req to complete gracefully */ |
| while ((!list_empty(&mgmtm->active_q)) && count--) { |
| spin_unlock_irq(&hw->lock); |
| msleep(2000); |
| spin_lock_irq(&hw->lock); |
| } |
| |
| /* release outstanding req from ACTIVEQ */ |
| list_for_each(tmp, &mgmtm->active_q) { |
| io_req = (struct csio_ioreq *) tmp; |
| tmp = csio_list_prev(tmp); |
| list_del_init(&io_req->sm.sm_list); |
| mgmtm->stats.n_active--; |
| if (io_req->io_cbfn) { |
| /* io_req will be freed by completion handler */ |
| io_req->wr_status = -ETIMEDOUT; |
| io_req->io_cbfn(mgmtm->hw, io_req); |
| } |
| } |
| } |
| |
| /* |
| * csio_mgmt_init - Mgmt module init entry point |
| * @mgmtsm - mgmt module |
| * @hw - HW module |
| * |
| * Initialize mgmt timer, resource wait queue, active queue, |
| * completion q. Allocate Egress and Ingress |
| * WR queues and save off the queue index returned by the WR |
| * module for future use. Allocate and save off mgmt reqs in the |
| * mgmt_req_freelist for future use. Make sure their SM is initialized |
| * to uninit state. |
| * Returns: 0 - on success |
| * -ENOMEM - on error. |
| */ |
| static int |
| csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw) |
| { |
| timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0); |
| |
| INIT_LIST_HEAD(&mgmtm->active_q); |
| INIT_LIST_HEAD(&mgmtm->cbfn_q); |
| |
| mgmtm->hw = hw; |
| /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/ |
| |
| return 0; |
| } |
| |
| /* |
| * csio_mgmtm_exit - MGMT module exit entry point |
| * @mgmtsm - mgmt module |
| * |
| * This function called during MGMT module uninit. |
| * Stop timers, free ioreqs allocated. |
| * Returns: None |
| * |
| */ |
| static void |
| csio_mgmtm_exit(struct csio_mgmtm *mgmtm) |
| { |
| del_timer_sync(&mgmtm->mgmt_timer); |
| } |
| |
| |
| /** |
| * csio_hw_start - Kicks off the HW State machine |
| * @hw: Pointer to HW module. |
| * |
| * It is assumed that the initialization is a synchronous operation. |
| * So when we return afer posting the event, the HW SM should be in |
| * the ready state, if there were no errors during init. |
| */ |
| int |
| csio_hw_start(struct csio_hw *hw) |
| { |
| spin_lock_irq(&hw->lock); |
| csio_post_event(&hw->sm, CSIO_HWE_CFG); |
| spin_unlock_irq(&hw->lock); |
| |
| if (csio_is_hw_ready(hw)) |
| return 0; |
| else if (csio_match_state(hw, csio_hws_uninit)) |
| return -EINVAL; |
| else |
| return -ENODEV; |
| } |
| |
| int |
| csio_hw_stop(struct csio_hw *hw) |
| { |
| csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE); |
| |
| if (csio_is_hw_removing(hw)) |
| return 0; |
| else |
| return -EINVAL; |
| } |
| |
| /* Max reset retries */ |
| #define CSIO_MAX_RESET_RETRIES 3 |
| |
| /** |
| * csio_hw_reset - Reset the hardware |
| * @hw: HW module. |
| * |
| * Caller should hold lock across this function. |
| */ |
| int |
| csio_hw_reset(struct csio_hw *hw) |
| { |
| if (!csio_is_hw_master(hw)) |
| return -EPERM; |
| |
| if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) { |
| csio_dbg(hw, "Max hw reset attempts reached.."); |
| return -EINVAL; |
| } |
| |
| hw->rst_retries++; |
| csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET); |
| |
| if (csio_is_hw_ready(hw)) { |
| hw->rst_retries = 0; |
| hw->stats.n_reset_start = jiffies_to_msecs(jiffies); |
| return 0; |
| } else |
| return -EINVAL; |
| } |
| |
| /* |
| * csio_hw_get_device_id - Caches the Adapter's vendor & device id. |
| * @hw: HW module. |
| */ |
| static void |
| csio_hw_get_device_id(struct csio_hw *hw) |
| { |
| /* Is the adapter device id cached already ?*/ |
| if (csio_is_dev_id_cached(hw)) |
| return; |
| |
| /* Get the PCI vendor & device id */ |
| pci_read_config_word(hw->pdev, PCI_VENDOR_ID, |
| &hw->params.pci.vendor_id); |
| pci_read_config_word(hw->pdev, PCI_DEVICE_ID, |
| &hw->params.pci.device_id); |
| |
| csio_dev_id_cached(hw); |
| hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK); |
| |
| } /* csio_hw_get_device_id */ |
| |
| /* |
| * csio_hw_set_description - Set the model, description of the hw. |
| * @hw: HW module. |
| * @ven_id: PCI Vendor ID |
| * @dev_id: PCI Device ID |
| */ |
| static void |
| csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id) |
| { |
| uint32_t adap_type, prot_type; |
| |
| if (ven_id == CSIO_VENDOR_ID) { |
| prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK); |
| adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK); |
| |
| if (prot_type == CSIO_T5_FCOE_ASIC) { |
| memcpy(hw->hw_ver, |
| csio_t5_fcoe_adapters[adap_type].model_no, 16); |
| memcpy(hw->model_desc, |
| csio_t5_fcoe_adapters[adap_type].description, |
| 32); |
| } else { |
| char tempName[32] = "Chelsio FCoE Controller"; |
| memcpy(hw->model_desc, tempName, 32); |
| } |
| } |
| } /* csio_hw_set_description */ |
| |
| /** |
| * csio_hw_init - Initialize HW module. |
| * @hw: Pointer to HW module. |
| * |
| * Initialize the members of the HW module. |
| */ |
| int |
| csio_hw_init(struct csio_hw *hw) |
| { |
| int rv = -EINVAL; |
| uint32_t i; |
| uint16_t ven_id, dev_id; |
| struct csio_evt_msg *evt_entry; |
| |
| INIT_LIST_HEAD(&hw->sm.sm_list); |
| csio_init_state(&hw->sm, csio_hws_uninit); |
| spin_lock_init(&hw->lock); |
| INIT_LIST_HEAD(&hw->sln_head); |
| |
| /* Get the PCI vendor & device id */ |
| csio_hw_get_device_id(hw); |
| |
| strcpy(hw->name, CSIO_HW_NAME); |
| |
| /* Initialize the HW chip ops T5 specific ops */ |
| hw->chip_ops = &t5_ops; |
| |
| /* Set the model & its description */ |
| |
| ven_id = hw->params.pci.vendor_id; |
| dev_id = hw->params.pci.device_id; |
| |
| csio_hw_set_description(hw, ven_id, dev_id); |
| |
| /* Initialize default log level */ |
| hw->params.log_level = (uint32_t) csio_dbg_level; |
| |
| csio_set_fwevt_intr_idx(hw, -1); |
| csio_set_nondata_intr_idx(hw, -1); |
| |
| /* Init all the modules: Mailbox, WorkRequest and Transport */ |
| if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer)) |
| goto err; |
| |
| rv = csio_wrm_init(csio_hw_to_wrm(hw), hw); |
| if (rv) |
| goto err_mbm_exit; |
| |
| rv = csio_scsim_init(csio_hw_to_scsim(hw), hw); |
| if (rv) |
| goto err_wrm_exit; |
| |
| rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw); |
| if (rv) |
| goto err_scsim_exit; |
| /* Pre-allocate evtq and initialize them */ |
| INIT_LIST_HEAD(&hw->evt_active_q); |
| INIT_LIST_HEAD(&hw->evt_free_q); |
| for (i = 0; i < csio_evtq_sz; i++) { |
| |
| evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL); |
| if (!evt_entry) { |
| rv = -ENOMEM; |
| csio_err(hw, "Failed to initialize eventq"); |
| goto err_evtq_cleanup; |
| } |
| |
| list_add_tail(&evt_entry->list, &hw->evt_free_q); |
| CSIO_INC_STATS(hw, n_evt_freeq); |
| } |
| |
| hw->dev_num = dev_num; |
| dev_num++; |
| |
| return 0; |
| |
| err_evtq_cleanup: |
| csio_evtq_cleanup(hw); |
| csio_mgmtm_exit(csio_hw_to_mgmtm(hw)); |
| err_scsim_exit: |
| csio_scsim_exit(csio_hw_to_scsim(hw)); |
| err_wrm_exit: |
| csio_wrm_exit(csio_hw_to_wrm(hw), hw); |
| err_mbm_exit: |
| csio_mbm_exit(csio_hw_to_mbm(hw)); |
| err: |
| return rv; |
| } |
| |
| /** |
| * csio_hw_exit - Un-initialize HW module. |
| * @hw: Pointer to HW module. |
| * |
| */ |
| void |
| csio_hw_exit(struct csio_hw *hw) |
| { |
| csio_evtq_cleanup(hw); |
| csio_mgmtm_exit(csio_hw_to_mgmtm(hw)); |
| csio_scsim_exit(csio_hw_to_scsim(hw)); |
| csio_wrm_exit(csio_hw_to_wrm(hw), hw); |
| csio_mbm_exit(csio_hw_to_mbm(hw)); |
| } |