| /* |
| * linux/kernel/time/tick-sched.c |
| * |
| * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
| * |
| * No idle tick implementation for low and high resolution timers |
| * |
| * Started by: Thomas Gleixner and Ingo Molnar |
| * |
| * Distribute under GPLv2. |
| */ |
| #include <linux/cpu.h> |
| #include <linux/err.h> |
| #include <linux/hrtimer.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/percpu.h> |
| #include <linux/profile.h> |
| #include <linux/sched.h> |
| #include <linux/module.h> |
| |
| #include <asm/irq_regs.h> |
| |
| #include "tick-internal.h" |
| |
| /* |
| * Per cpu nohz control structure |
| */ |
| static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); |
| |
| /* |
| * The time, when the last jiffy update happened. Protected by xtime_lock. |
| */ |
| static ktime_t last_jiffies_update; |
| |
| struct tick_sched *tick_get_tick_sched(int cpu) |
| { |
| return &per_cpu(tick_cpu_sched, cpu); |
| } |
| |
| /* |
| * Must be called with interrupts disabled ! |
| */ |
| static void tick_do_update_jiffies64(ktime_t now) |
| { |
| unsigned long ticks = 0; |
| ktime_t delta; |
| |
| /* |
| * Do a quick check without holding xtime_lock: |
| */ |
| delta = ktime_sub(now, last_jiffies_update); |
| if (delta.tv64 < tick_period.tv64) |
| return; |
| |
| /* Reevalute with xtime_lock held */ |
| write_seqlock(&xtime_lock); |
| |
| delta = ktime_sub(now, last_jiffies_update); |
| if (delta.tv64 >= tick_period.tv64) { |
| |
| delta = ktime_sub(delta, tick_period); |
| last_jiffies_update = ktime_add(last_jiffies_update, |
| tick_period); |
| |
| /* Slow path for long timeouts */ |
| if (unlikely(delta.tv64 >= tick_period.tv64)) { |
| s64 incr = ktime_to_ns(tick_period); |
| |
| ticks = ktime_divns(delta, incr); |
| |
| last_jiffies_update = ktime_add_ns(last_jiffies_update, |
| incr * ticks); |
| } |
| do_timer(++ticks); |
| |
| /* Keep the tick_next_period variable up to date */ |
| tick_next_period = ktime_add(last_jiffies_update, tick_period); |
| } |
| write_sequnlock(&xtime_lock); |
| } |
| |
| /* |
| * Initialize and return retrieve the jiffies update. |
| */ |
| static ktime_t tick_init_jiffy_update(void) |
| { |
| ktime_t period; |
| |
| write_seqlock(&xtime_lock); |
| /* Did we start the jiffies update yet ? */ |
| if (last_jiffies_update.tv64 == 0) |
| last_jiffies_update = tick_next_period; |
| period = last_jiffies_update; |
| write_sequnlock(&xtime_lock); |
| return period; |
| } |
| |
| /* |
| * NOHZ - aka dynamic tick functionality |
| */ |
| #ifdef CONFIG_NO_HZ |
| /* |
| * NO HZ enabled ? |
| */ |
| static int tick_nohz_enabled __read_mostly = 1; |
| |
| /* |
| * Enable / Disable tickless mode |
| */ |
| static int __init setup_tick_nohz(char *str) |
| { |
| if (!strcmp(str, "off")) |
| tick_nohz_enabled = 0; |
| else if (!strcmp(str, "on")) |
| tick_nohz_enabled = 1; |
| else |
| return 0; |
| return 1; |
| } |
| |
| __setup("nohz=", setup_tick_nohz); |
| |
| /** |
| * tick_nohz_update_jiffies - update jiffies when idle was interrupted |
| * |
| * Called from interrupt entry when the CPU was idle |
| * |
| * In case the sched_tick was stopped on this CPU, we have to check if jiffies |
| * must be updated. Otherwise an interrupt handler could use a stale jiffy |
| * value. We do this unconditionally on any cpu, as we don't know whether the |
| * cpu, which has the update task assigned is in a long sleep. |
| */ |
| static void tick_nohz_update_jiffies(ktime_t now) |
| { |
| int cpu = smp_processor_id(); |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| unsigned long flags; |
| |
| ts->idle_waketime = now; |
| |
| local_irq_save(flags); |
| tick_do_update_jiffies64(now); |
| local_irq_restore(flags); |
| |
| touch_softlockup_watchdog(); |
| } |
| |
| /* |
| * Updates the per cpu time idle statistics counters |
| */ |
| static void |
| update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) |
| { |
| ktime_t delta; |
| |
| if (ts->idle_active) { |
| delta = ktime_sub(now, ts->idle_entrytime); |
| if (nr_iowait_cpu(cpu) > 0) |
| ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); |
| else |
| ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); |
| ts->idle_entrytime = now; |
| } |
| |
| if (last_update_time) |
| *last_update_time = ktime_to_us(now); |
| |
| } |
| |
| static void tick_nohz_stop_idle(int cpu, ktime_t now) |
| { |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| |
| update_ts_time_stats(cpu, ts, now, NULL); |
| ts->idle_active = 0; |
| |
| sched_clock_idle_wakeup_event(0); |
| } |
| |
| static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) |
| { |
| ktime_t now; |
| |
| now = ktime_get(); |
| |
| update_ts_time_stats(cpu, ts, now, NULL); |
| |
| ts->idle_entrytime = now; |
| ts->idle_active = 1; |
| sched_clock_idle_sleep_event(); |
| return now; |
| } |
| |
| /** |
| * get_cpu_idle_time_us - get the total idle time of a cpu |
| * @cpu: CPU number to query |
| * @last_update_time: variable to store update time in. Do not update |
| * counters if NULL. |
| * |
| * Return the cummulative idle time (since boot) for a given |
| * CPU, in microseconds. |
| * |
| * This time is measured via accounting rather than sampling, |
| * and is as accurate as ktime_get() is. |
| * |
| * This function returns -1 if NOHZ is not enabled. |
| */ |
| u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) |
| { |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| ktime_t now, idle; |
| |
| if (!tick_nohz_enabled) |
| return -1; |
| |
| now = ktime_get(); |
| if (last_update_time) { |
| update_ts_time_stats(cpu, ts, now, last_update_time); |
| idle = ts->idle_sleeptime; |
| } else { |
| if (ts->idle_active && !nr_iowait_cpu(cpu)) { |
| ktime_t delta = ktime_sub(now, ts->idle_entrytime); |
| |
| idle = ktime_add(ts->idle_sleeptime, delta); |
| } else { |
| idle = ts->idle_sleeptime; |
| } |
| } |
| |
| return ktime_to_us(idle); |
| |
| } |
| EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); |
| |
| /** |
| * get_cpu_iowait_time_us - get the total iowait time of a cpu |
| * @cpu: CPU number to query |
| * @last_update_time: variable to store update time in. Do not update |
| * counters if NULL. |
| * |
| * Return the cummulative iowait time (since boot) for a given |
| * CPU, in microseconds. |
| * |
| * This time is measured via accounting rather than sampling, |
| * and is as accurate as ktime_get() is. |
| * |
| * This function returns -1 if NOHZ is not enabled. |
| */ |
| u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) |
| { |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| ktime_t now, iowait; |
| |
| if (!tick_nohz_enabled) |
| return -1; |
| |
| now = ktime_get(); |
| if (last_update_time) { |
| update_ts_time_stats(cpu, ts, now, last_update_time); |
| iowait = ts->iowait_sleeptime; |
| } else { |
| if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { |
| ktime_t delta = ktime_sub(now, ts->idle_entrytime); |
| |
| iowait = ktime_add(ts->iowait_sleeptime, delta); |
| } else { |
| iowait = ts->iowait_sleeptime; |
| } |
| } |
| |
| return ktime_to_us(iowait); |
| } |
| EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); |
| |
| static void tick_nohz_stop_sched_tick(struct tick_sched *ts) |
| { |
| unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; |
| ktime_t last_update, expires, now; |
| struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; |
| u64 time_delta; |
| int cpu; |
| |
| cpu = smp_processor_id(); |
| ts = &per_cpu(tick_cpu_sched, cpu); |
| |
| now = tick_nohz_start_idle(cpu, ts); |
| |
| /* |
| * If this cpu is offline and it is the one which updates |
| * jiffies, then give up the assignment and let it be taken by |
| * the cpu which runs the tick timer next. If we don't drop |
| * this here the jiffies might be stale and do_timer() never |
| * invoked. |
| */ |
| if (unlikely(!cpu_online(cpu))) { |
| if (cpu == tick_do_timer_cpu) |
| tick_do_timer_cpu = TICK_DO_TIMER_NONE; |
| } |
| |
| if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) |
| return; |
| |
| if (need_resched()) |
| return; |
| |
| if (unlikely(local_softirq_pending() && cpu_online(cpu))) { |
| static int ratelimit; |
| |
| if (ratelimit < 10) { |
| printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", |
| (unsigned int) local_softirq_pending()); |
| ratelimit++; |
| } |
| return; |
| } |
| |
| ts->idle_calls++; |
| /* Read jiffies and the time when jiffies were updated last */ |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| last_update = last_jiffies_update; |
| last_jiffies = jiffies; |
| time_delta = timekeeping_max_deferment(); |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) || |
| arch_needs_cpu(cpu)) { |
| next_jiffies = last_jiffies + 1; |
| delta_jiffies = 1; |
| } else { |
| /* Get the next timer wheel timer */ |
| next_jiffies = get_next_timer_interrupt(last_jiffies); |
| delta_jiffies = next_jiffies - last_jiffies; |
| } |
| /* |
| * Do not stop the tick, if we are only one off |
| * or if the cpu is required for rcu |
| */ |
| if (!ts->tick_stopped && delta_jiffies == 1) |
| goto out; |
| |
| /* Schedule the tick, if we are at least one jiffie off */ |
| if ((long)delta_jiffies >= 1) { |
| |
| /* |
| * If this cpu is the one which updates jiffies, then |
| * give up the assignment and let it be taken by the |
| * cpu which runs the tick timer next, which might be |
| * this cpu as well. If we don't drop this here the |
| * jiffies might be stale and do_timer() never |
| * invoked. Keep track of the fact that it was the one |
| * which had the do_timer() duty last. If this cpu is |
| * the one which had the do_timer() duty last, we |
| * limit the sleep time to the timekeeping |
| * max_deferement value which we retrieved |
| * above. Otherwise we can sleep as long as we want. |
| */ |
| if (cpu == tick_do_timer_cpu) { |
| tick_do_timer_cpu = TICK_DO_TIMER_NONE; |
| ts->do_timer_last = 1; |
| } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { |
| time_delta = KTIME_MAX; |
| ts->do_timer_last = 0; |
| } else if (!ts->do_timer_last) { |
| time_delta = KTIME_MAX; |
| } |
| |
| /* |
| * calculate the expiry time for the next timer wheel |
| * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals |
| * that there is no timer pending or at least extremely |
| * far into the future (12 days for HZ=1000). In this |
| * case we set the expiry to the end of time. |
| */ |
| if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { |
| /* |
| * Calculate the time delta for the next timer event. |
| * If the time delta exceeds the maximum time delta |
| * permitted by the current clocksource then adjust |
| * the time delta accordingly to ensure the |
| * clocksource does not wrap. |
| */ |
| time_delta = min_t(u64, time_delta, |
| tick_period.tv64 * delta_jiffies); |
| } |
| |
| if (time_delta < KTIME_MAX) |
| expires = ktime_add_ns(last_update, time_delta); |
| else |
| expires.tv64 = KTIME_MAX; |
| |
| /* Skip reprogram of event if its not changed */ |
| if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) |
| goto out; |
| |
| /* |
| * nohz_stop_sched_tick can be called several times before |
| * the nohz_restart_sched_tick is called. This happens when |
| * interrupts arrive which do not cause a reschedule. In the |
| * first call we save the current tick time, so we can restart |
| * the scheduler tick in nohz_restart_sched_tick. |
| */ |
| if (!ts->tick_stopped) { |
| select_nohz_load_balancer(1); |
| |
| ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); |
| ts->tick_stopped = 1; |
| ts->idle_jiffies = last_jiffies; |
| } |
| |
| ts->idle_sleeps++; |
| |
| /* Mark expires */ |
| ts->idle_expires = expires; |
| |
| /* |
| * If the expiration time == KTIME_MAX, then |
| * in this case we simply stop the tick timer. |
| */ |
| if (unlikely(expires.tv64 == KTIME_MAX)) { |
| if (ts->nohz_mode == NOHZ_MODE_HIGHRES) |
| hrtimer_cancel(&ts->sched_timer); |
| goto out; |
| } |
| |
| if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { |
| hrtimer_start(&ts->sched_timer, expires, |
| HRTIMER_MODE_ABS_PINNED); |
| /* Check, if the timer was already in the past */ |
| if (hrtimer_active(&ts->sched_timer)) |
| goto out; |
| } else if (!tick_program_event(expires, 0)) |
| goto out; |
| /* |
| * We are past the event already. So we crossed a |
| * jiffie boundary. Update jiffies and raise the |
| * softirq. |
| */ |
| tick_do_update_jiffies64(ktime_get()); |
| } |
| raise_softirq_irqoff(TIMER_SOFTIRQ); |
| out: |
| ts->next_jiffies = next_jiffies; |
| ts->last_jiffies = last_jiffies; |
| ts->sleep_length = ktime_sub(dev->next_event, now); |
| } |
| |
| /** |
| * tick_nohz_idle_enter - stop the idle tick from the idle task |
| * |
| * When the next event is more than a tick into the future, stop the idle tick |
| * Called when we start the idle loop. |
| * |
| * If no use of RCU is made in the idle loop between |
| * tick_nohz_idle_enter() and tick_nohz_idle_exit() calls, then |
| * tick_nohz_idle_enter_norcu() should be called instead and the arch |
| * doesn't need to call rcu_idle_enter() and rcu_idle_exit() explicitly. |
| * |
| * Otherwise the arch is responsible of calling: |
| * |
| * - rcu_idle_enter() after its last use of RCU before the CPU is put |
| * to sleep. |
| * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. |
| */ |
| void __tick_nohz_idle_enter(void) |
| { |
| struct tick_sched *ts; |
| |
| ts = &__get_cpu_var(tick_cpu_sched); |
| /* |
| * set ts->inidle unconditionally. even if the system did not |
| * switch to nohz mode the cpu frequency governers rely on the |
| * update of the idle time accounting in tick_nohz_start_idle(). |
| */ |
| ts->inidle = 1; |
| tick_nohz_stop_sched_tick(ts); |
| } |
| |
| /** |
| * tick_nohz_irq_exit - update next tick event from interrupt exit |
| * |
| * When an interrupt fires while we are idle and it doesn't cause |
| * a reschedule, it may still add, modify or delete a timer, enqueue |
| * an RCU callback, etc... |
| * So we need to re-calculate and reprogram the next tick event. |
| */ |
| void tick_nohz_irq_exit(void) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| |
| if (!ts->inidle) |
| return; |
| |
| tick_nohz_stop_sched_tick(ts); |
| } |
| |
| /** |
| * tick_nohz_get_sleep_length - return the length of the current sleep |
| * |
| * Called from power state control code with interrupts disabled |
| */ |
| ktime_t tick_nohz_get_sleep_length(void) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| |
| return ts->sleep_length; |
| } |
| |
| static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) |
| { |
| hrtimer_cancel(&ts->sched_timer); |
| hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); |
| |
| while (1) { |
| /* Forward the time to expire in the future */ |
| hrtimer_forward(&ts->sched_timer, now, tick_period); |
| |
| if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { |
| hrtimer_start_expires(&ts->sched_timer, |
| HRTIMER_MODE_ABS_PINNED); |
| /* Check, if the timer was already in the past */ |
| if (hrtimer_active(&ts->sched_timer)) |
| break; |
| } else { |
| if (!tick_program_event( |
| hrtimer_get_expires(&ts->sched_timer), 0)) |
| break; |
| } |
| /* Update jiffies and reread time */ |
| tick_do_update_jiffies64(now); |
| now = ktime_get(); |
| } |
| } |
| |
| /** |
| * tick_nohz_idle_exit - restart the idle tick from the idle task |
| * |
| * Restart the idle tick when the CPU is woken up from idle |
| * This also exit the RCU extended quiescent state. The CPU |
| * can use RCU again after this function is called. |
| */ |
| void tick_nohz_idle_exit(void) |
| { |
| int cpu = smp_processor_id(); |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
| unsigned long ticks; |
| #endif |
| ktime_t now; |
| |
| local_irq_disable(); |
| |
| if (ts->idle_active || (ts->inidle && ts->tick_stopped)) |
| now = ktime_get(); |
| |
| if (ts->idle_active) |
| tick_nohz_stop_idle(cpu, now); |
| |
| if (!ts->inidle || !ts->tick_stopped) { |
| ts->inidle = 0; |
| local_irq_enable(); |
| return; |
| } |
| |
| ts->inidle = 0; |
| |
| /* Update jiffies first */ |
| select_nohz_load_balancer(0); |
| tick_do_update_jiffies64(now); |
| |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
| /* |
| * We stopped the tick in idle. Update process times would miss the |
| * time we slept as update_process_times does only a 1 tick |
| * accounting. Enforce that this is accounted to idle ! |
| */ |
| ticks = jiffies - ts->idle_jiffies; |
| /* |
| * We might be one off. Do not randomly account a huge number of ticks! |
| */ |
| if (ticks && ticks < LONG_MAX) |
| account_idle_ticks(ticks); |
| #endif |
| |
| touch_softlockup_watchdog(); |
| /* |
| * Cancel the scheduled timer and restore the tick |
| */ |
| ts->tick_stopped = 0; |
| ts->idle_exittime = now; |
| |
| tick_nohz_restart(ts, now); |
| |
| local_irq_enable(); |
| } |
| |
| static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) |
| { |
| hrtimer_forward(&ts->sched_timer, now, tick_period); |
| return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); |
| } |
| |
| /* |
| * The nohz low res interrupt handler |
| */ |
| static void tick_nohz_handler(struct clock_event_device *dev) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| struct pt_regs *regs = get_irq_regs(); |
| int cpu = smp_processor_id(); |
| ktime_t now = ktime_get(); |
| |
| dev->next_event.tv64 = KTIME_MAX; |
| |
| /* |
| * Check if the do_timer duty was dropped. We don't care about |
| * concurrency: This happens only when the cpu in charge went |
| * into a long sleep. If two cpus happen to assign themself to |
| * this duty, then the jiffies update is still serialized by |
| * xtime_lock. |
| */ |
| if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) |
| tick_do_timer_cpu = cpu; |
| |
| /* Check, if the jiffies need an update */ |
| if (tick_do_timer_cpu == cpu) |
| tick_do_update_jiffies64(now); |
| |
| /* |
| * When we are idle and the tick is stopped, we have to touch |
| * the watchdog as we might not schedule for a really long |
| * time. This happens on complete idle SMP systems while |
| * waiting on the login prompt. We also increment the "start |
| * of idle" jiffy stamp so the idle accounting adjustment we |
| * do when we go busy again does not account too much ticks. |
| */ |
| if (ts->tick_stopped) { |
| touch_softlockup_watchdog(); |
| ts->idle_jiffies++; |
| } |
| |
| update_process_times(user_mode(regs)); |
| profile_tick(CPU_PROFILING); |
| |
| while (tick_nohz_reprogram(ts, now)) { |
| now = ktime_get(); |
| tick_do_update_jiffies64(now); |
| } |
| } |
| |
| /** |
| * tick_nohz_switch_to_nohz - switch to nohz mode |
| */ |
| static void tick_nohz_switch_to_nohz(void) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| ktime_t next; |
| |
| if (!tick_nohz_enabled) |
| return; |
| |
| local_irq_disable(); |
| if (tick_switch_to_oneshot(tick_nohz_handler)) { |
| local_irq_enable(); |
| return; |
| } |
| |
| ts->nohz_mode = NOHZ_MODE_LOWRES; |
| |
| /* |
| * Recycle the hrtimer in ts, so we can share the |
| * hrtimer_forward with the highres code. |
| */ |
| hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| /* Get the next period */ |
| next = tick_init_jiffy_update(); |
| |
| for (;;) { |
| hrtimer_set_expires(&ts->sched_timer, next); |
| if (!tick_program_event(next, 0)) |
| break; |
| next = ktime_add(next, tick_period); |
| } |
| local_irq_enable(); |
| } |
| |
| /* |
| * When NOHZ is enabled and the tick is stopped, we need to kick the |
| * tick timer from irq_enter() so that the jiffies update is kept |
| * alive during long running softirqs. That's ugly as hell, but |
| * correctness is key even if we need to fix the offending softirq in |
| * the first place. |
| * |
| * Note, this is different to tick_nohz_restart. We just kick the |
| * timer and do not touch the other magic bits which need to be done |
| * when idle is left. |
| */ |
| static void tick_nohz_kick_tick(int cpu, ktime_t now) |
| { |
| #if 0 |
| /* Switch back to 2.6.27 behaviour */ |
| |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| ktime_t delta; |
| |
| /* |
| * Do not touch the tick device, when the next expiry is either |
| * already reached or less/equal than the tick period. |
| */ |
| delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); |
| if (delta.tv64 <= tick_period.tv64) |
| return; |
| |
| tick_nohz_restart(ts, now); |
| #endif |
| } |
| |
| static inline void tick_check_nohz(int cpu) |
| { |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| ktime_t now; |
| |
| if (!ts->idle_active && !ts->tick_stopped) |
| return; |
| now = ktime_get(); |
| if (ts->idle_active) |
| tick_nohz_stop_idle(cpu, now); |
| if (ts->tick_stopped) { |
| tick_nohz_update_jiffies(now); |
| tick_nohz_kick_tick(cpu, now); |
| } |
| } |
| |
| #else |
| |
| static inline void tick_nohz_switch_to_nohz(void) { } |
| static inline void tick_check_nohz(int cpu) { } |
| |
| #endif /* NO_HZ */ |
| |
| /* |
| * Called from irq_enter to notify about the possible interruption of idle() |
| */ |
| void tick_check_idle(int cpu) |
| { |
| tick_check_oneshot_broadcast(cpu); |
| tick_check_nohz(cpu); |
| } |
| |
| /* |
| * High resolution timer specific code |
| */ |
| #ifdef CONFIG_HIGH_RES_TIMERS |
| /* |
| * We rearm the timer until we get disabled by the idle code. |
| * Called with interrupts disabled and timer->base->cpu_base->lock held. |
| */ |
| static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) |
| { |
| struct tick_sched *ts = |
| container_of(timer, struct tick_sched, sched_timer); |
| struct pt_regs *regs = get_irq_regs(); |
| ktime_t now = ktime_get(); |
| int cpu = smp_processor_id(); |
| |
| #ifdef CONFIG_NO_HZ |
| /* |
| * Check if the do_timer duty was dropped. We don't care about |
| * concurrency: This happens only when the cpu in charge went |
| * into a long sleep. If two cpus happen to assign themself to |
| * this duty, then the jiffies update is still serialized by |
| * xtime_lock. |
| */ |
| if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) |
| tick_do_timer_cpu = cpu; |
| #endif |
| |
| /* Check, if the jiffies need an update */ |
| if (tick_do_timer_cpu == cpu) |
| tick_do_update_jiffies64(now); |
| |
| /* |
| * Do not call, when we are not in irq context and have |
| * no valid regs pointer |
| */ |
| if (regs) { |
| /* |
| * When we are idle and the tick is stopped, we have to touch |
| * the watchdog as we might not schedule for a really long |
| * time. This happens on complete idle SMP systems while |
| * waiting on the login prompt. We also increment the "start of |
| * idle" jiffy stamp so the idle accounting adjustment we do |
| * when we go busy again does not account too much ticks. |
| */ |
| if (ts->tick_stopped) { |
| touch_softlockup_watchdog(); |
| ts->idle_jiffies++; |
| } |
| update_process_times(user_mode(regs)); |
| profile_tick(CPU_PROFILING); |
| } |
| |
| hrtimer_forward(timer, now, tick_period); |
| |
| return HRTIMER_RESTART; |
| } |
| |
| /** |
| * tick_setup_sched_timer - setup the tick emulation timer |
| */ |
| void tick_setup_sched_timer(void) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| ktime_t now = ktime_get(); |
| |
| /* |
| * Emulate tick processing via per-CPU hrtimers: |
| */ |
| hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| ts->sched_timer.function = tick_sched_timer; |
| |
| /* Get the next period (per cpu) */ |
| hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); |
| |
| for (;;) { |
| hrtimer_forward(&ts->sched_timer, now, tick_period); |
| hrtimer_start_expires(&ts->sched_timer, |
| HRTIMER_MODE_ABS_PINNED); |
| /* Check, if the timer was already in the past */ |
| if (hrtimer_active(&ts->sched_timer)) |
| break; |
| now = ktime_get(); |
| } |
| |
| #ifdef CONFIG_NO_HZ |
| if (tick_nohz_enabled) |
| ts->nohz_mode = NOHZ_MODE_HIGHRES; |
| #endif |
| } |
| #endif /* HIGH_RES_TIMERS */ |
| |
| #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS |
| void tick_cancel_sched_timer(int cpu) |
| { |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| |
| # ifdef CONFIG_HIGH_RES_TIMERS |
| if (ts->sched_timer.base) |
| hrtimer_cancel(&ts->sched_timer); |
| # endif |
| |
| ts->nohz_mode = NOHZ_MODE_INACTIVE; |
| } |
| #endif |
| |
| /** |
| * Async notification about clocksource changes |
| */ |
| void tick_clock_notify(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); |
| } |
| |
| /* |
| * Async notification about clock event changes |
| */ |
| void tick_oneshot_notify(void) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| |
| set_bit(0, &ts->check_clocks); |
| } |
| |
| /** |
| * Check, if a change happened, which makes oneshot possible. |
| * |
| * Called cyclic from the hrtimer softirq (driven by the timer |
| * softirq) allow_nohz signals, that we can switch into low-res nohz |
| * mode, because high resolution timers are disabled (either compile |
| * or runtime). |
| */ |
| int tick_check_oneshot_change(int allow_nohz) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| |
| if (!test_and_clear_bit(0, &ts->check_clocks)) |
| return 0; |
| |
| if (ts->nohz_mode != NOHZ_MODE_INACTIVE) |
| return 0; |
| |
| if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) |
| return 0; |
| |
| if (!allow_nohz) |
| return 1; |
| |
| tick_nohz_switch_to_nohz(); |
| return 0; |
| } |