| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Calxeda Highbank AHCI SATA platform driver |
| * Copyright 2012 Calxeda, Inc. |
| * |
| * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov |
| */ |
| #include <linux/kernel.h> |
| #include <linux/gfp.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/err.h> |
| #include <linux/io.h> |
| #include <linux/spinlock.h> |
| #include <linux/device.h> |
| #include <linux/of_device.h> |
| #include <linux/of_address.h> |
| #include <linux/platform_device.h> |
| #include <linux/libata.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/gpio/consumer.h> |
| |
| #include "ahci.h" |
| |
| #define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f)) |
| #define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2) |
| #define SERDES_CR_CTL 0x80a0 |
| #define SERDES_CR_ADDR 0x80a1 |
| #define SERDES_CR_DATA 0x80a2 |
| #define CR_BUSY 0x0001 |
| #define CR_START 0x0001 |
| #define CR_WR_RDN 0x0002 |
| #define CPHY_TX_INPUT_STS 0x2001 |
| #define CPHY_RX_INPUT_STS 0x2002 |
| #define CPHY_SATA_TX_OVERRIDE 0x8000 |
| #define CPHY_SATA_RX_OVERRIDE 0x4000 |
| #define CPHY_TX_OVERRIDE 0x2004 |
| #define CPHY_RX_OVERRIDE 0x2005 |
| #define SPHY_LANE 0x100 |
| #define SPHY_HALF_RATE 0x0001 |
| #define CPHY_SATA_DPLL_MODE 0x0700 |
| #define CPHY_SATA_DPLL_SHIFT 8 |
| #define CPHY_SATA_DPLL_RESET (1 << 11) |
| #define CPHY_SATA_TX_ATTEN 0x1c00 |
| #define CPHY_SATA_TX_ATTEN_SHIFT 10 |
| #define CPHY_PHY_COUNT 6 |
| #define CPHY_LANE_COUNT 4 |
| #define CPHY_PORT_COUNT (CPHY_PHY_COUNT * CPHY_LANE_COUNT) |
| |
| static DEFINE_SPINLOCK(cphy_lock); |
| /* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based |
| * sata ports to their phys and then to their lanes within the phys |
| */ |
| struct phy_lane_info { |
| void __iomem *phy_base; |
| u8 lane_mapping; |
| u8 phy_devs; |
| u8 tx_atten; |
| }; |
| static struct phy_lane_info port_data[CPHY_PORT_COUNT]; |
| |
| static DEFINE_SPINLOCK(sgpio_lock); |
| #define SCLOCK 0 |
| #define SLOAD 1 |
| #define SDATA 2 |
| #define SGPIO_PINS 3 |
| #define SGPIO_PORTS 8 |
| |
| struct ecx_plat_data { |
| u32 n_ports; |
| /* number of extra clocks that the SGPIO PIC controller expects */ |
| u32 pre_clocks; |
| u32 post_clocks; |
| struct gpio_desc *sgpio_gpiod[SGPIO_PINS]; |
| u32 sgpio_pattern; |
| u32 port_to_sgpio[SGPIO_PORTS]; |
| }; |
| |
| #define SGPIO_SIGNALS 3 |
| #define ECX_ACTIVITY_BITS 0x300000 |
| #define ECX_ACTIVITY_SHIFT 0 |
| #define ECX_LOCATE_BITS 0x80000 |
| #define ECX_LOCATE_SHIFT 1 |
| #define ECX_FAULT_BITS 0x400000 |
| #define ECX_FAULT_SHIFT 2 |
| static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port, |
| u32 shift) |
| { |
| return 1 << (3 * pdata->port_to_sgpio[port] + shift); |
| } |
| |
| static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state) |
| { |
| if (state & ECX_ACTIVITY_BITS) |
| pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, |
| ECX_ACTIVITY_SHIFT); |
| else |
| pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, |
| ECX_ACTIVITY_SHIFT); |
| if (state & ECX_LOCATE_BITS) |
| pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, |
| ECX_LOCATE_SHIFT); |
| else |
| pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, |
| ECX_LOCATE_SHIFT); |
| if (state & ECX_FAULT_BITS) |
| pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, |
| ECX_FAULT_SHIFT); |
| else |
| pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, |
| ECX_FAULT_SHIFT); |
| } |
| |
| /* |
| * Tell the LED controller that the signal has changed by raising the clock |
| * line for 50 uS and then lowering it for 50 uS. |
| */ |
| static void ecx_led_cycle_clock(struct ecx_plat_data *pdata) |
| { |
| gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 1); |
| udelay(50); |
| gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 0); |
| udelay(50); |
| } |
| |
| static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state, |
| ssize_t size) |
| { |
| struct ahci_host_priv *hpriv = ap->host->private_data; |
| struct ecx_plat_data *pdata = hpriv->plat_data; |
| struct ahci_port_priv *pp = ap->private_data; |
| unsigned long flags; |
| int pmp, i; |
| struct ahci_em_priv *emp; |
| u32 sgpio_out; |
| |
| /* get the slot number from the message */ |
| pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8; |
| if (pmp < EM_MAX_SLOTS) |
| emp = &pp->em_priv[pmp]; |
| else |
| return -EINVAL; |
| |
| if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED)) |
| return size; |
| |
| spin_lock_irqsave(&sgpio_lock, flags); |
| ecx_parse_sgpio(pdata, ap->port_no, state); |
| sgpio_out = pdata->sgpio_pattern; |
| for (i = 0; i < pdata->pre_clocks; i++) |
| ecx_led_cycle_clock(pdata); |
| |
| gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 1); |
| ecx_led_cycle_clock(pdata); |
| gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 0); |
| /* |
| * bit-bang out the SGPIO pattern, by consuming a bit and then |
| * clocking it out. |
| */ |
| for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) { |
| gpiod_set_value(pdata->sgpio_gpiod[SDATA], sgpio_out & 1); |
| sgpio_out >>= 1; |
| ecx_led_cycle_clock(pdata); |
| } |
| for (i = 0; i < pdata->post_clocks; i++) |
| ecx_led_cycle_clock(pdata); |
| |
| /* save off new led state for port/slot */ |
| emp->led_state = state; |
| |
| spin_unlock_irqrestore(&sgpio_lock, flags); |
| return size; |
| } |
| |
| static void highbank_set_em_messages(struct device *dev, |
| struct ahci_host_priv *hpriv, |
| struct ata_port_info *pi) |
| { |
| struct device_node *np = dev->of_node; |
| struct ecx_plat_data *pdata = hpriv->plat_data; |
| int i; |
| |
| for (i = 0; i < SGPIO_PINS; i++) { |
| struct gpio_desc *gpiod; |
| |
| gpiod = devm_gpiod_get_index(dev, "calxeda,sgpio", i, |
| GPIOD_OUT_HIGH); |
| if (IS_ERR(gpiod)) { |
| dev_err(dev, "failed to get GPIO %d\n", i); |
| continue; |
| } |
| gpiod_set_consumer_name(gpiod, "CX SGPIO"); |
| |
| pdata->sgpio_gpiod[i] = gpiod; |
| } |
| of_property_read_u32_array(np, "calxeda,led-order", |
| pdata->port_to_sgpio, |
| pdata->n_ports); |
| if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks)) |
| pdata->pre_clocks = 0; |
| if (of_property_read_u32(np, "calxeda,post-clocks", |
| &pdata->post_clocks)) |
| pdata->post_clocks = 0; |
| |
| /* store em_loc */ |
| hpriv->em_loc = 0; |
| hpriv->em_buf_sz = 4; |
| hpriv->em_msg_type = EM_MSG_TYPE_LED; |
| pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY; |
| } |
| |
| static u32 __combo_phy_reg_read(u8 sata_port, u32 addr) |
| { |
| u32 data; |
| u8 dev = port_data[sata_port].phy_devs; |
| spin_lock(&cphy_lock); |
| writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); |
| data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr)); |
| spin_unlock(&cphy_lock); |
| return data; |
| } |
| |
| static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data) |
| { |
| u8 dev = port_data[sata_port].phy_devs; |
| spin_lock(&cphy_lock); |
| writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); |
| writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr)); |
| spin_unlock(&cphy_lock); |
| } |
| |
| static void combo_phy_wait_for_ready(u8 sata_port) |
| { |
| while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY) |
| udelay(5); |
| } |
| |
| static u32 combo_phy_read(u8 sata_port, u32 addr) |
| { |
| combo_phy_wait_for_ready(sata_port); |
| __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); |
| __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START); |
| combo_phy_wait_for_ready(sata_port); |
| return __combo_phy_reg_read(sata_port, SERDES_CR_DATA); |
| } |
| |
| static void combo_phy_write(u8 sata_port, u32 addr, u32 data) |
| { |
| combo_phy_wait_for_ready(sata_port); |
| __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); |
| __combo_phy_reg_write(sata_port, SERDES_CR_DATA, data); |
| __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START); |
| } |
| |
| static void highbank_cphy_disable_overrides(u8 sata_port) |
| { |
| u8 lane = port_data[sata_port].lane_mapping; |
| u32 tmp; |
| if (unlikely(port_data[sata_port].phy_base == NULL)) |
| return; |
| tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); |
| tmp &= ~CPHY_SATA_RX_OVERRIDE; |
| combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); |
| } |
| |
| static void cphy_override_tx_attenuation(u8 sata_port, u32 val) |
| { |
| u8 lane = port_data[sata_port].lane_mapping; |
| u32 tmp; |
| |
| if (val & 0x8) |
| return; |
| |
| tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE); |
| tmp &= ~CPHY_SATA_TX_OVERRIDE; |
| combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); |
| |
| tmp |= CPHY_SATA_TX_OVERRIDE; |
| combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); |
| |
| tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN; |
| combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); |
| } |
| |
| static void cphy_override_rx_mode(u8 sata_port, u32 val) |
| { |
| u8 lane = port_data[sata_port].lane_mapping; |
| u32 tmp; |
| tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); |
| tmp &= ~CPHY_SATA_RX_OVERRIDE; |
| combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); |
| |
| tmp |= CPHY_SATA_RX_OVERRIDE; |
| combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); |
| |
| tmp &= ~CPHY_SATA_DPLL_MODE; |
| tmp |= val << CPHY_SATA_DPLL_SHIFT; |
| combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); |
| |
| tmp |= CPHY_SATA_DPLL_RESET; |
| combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); |
| |
| tmp &= ~CPHY_SATA_DPLL_RESET; |
| combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); |
| |
| msleep(15); |
| } |
| |
| static void highbank_cphy_override_lane(u8 sata_port) |
| { |
| u8 lane = port_data[sata_port].lane_mapping; |
| u32 tmp, k = 0; |
| |
| if (unlikely(port_data[sata_port].phy_base == NULL)) |
| return; |
| do { |
| tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + |
| lane * SPHY_LANE); |
| } while ((tmp & SPHY_HALF_RATE) && (k++ < 1000)); |
| cphy_override_rx_mode(sata_port, 3); |
| cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten); |
| } |
| |
| static int highbank_initialize_phys(struct device *dev, void __iomem *addr) |
| { |
| struct device_node *sata_node = dev->of_node; |
| int phy_count = 0, phy, port = 0, i; |
| void __iomem *cphy_base[CPHY_PHY_COUNT] = {}; |
| struct device_node *phy_nodes[CPHY_PHY_COUNT] = {}; |
| u32 tx_atten[CPHY_PORT_COUNT] = {}; |
| |
| memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT); |
| |
| do { |
| u32 tmp; |
| struct of_phandle_args phy_data; |
| if (of_parse_phandle_with_args(sata_node, |
| "calxeda,port-phys", "#phy-cells", |
| port, &phy_data)) |
| break; |
| for (phy = 0; phy < phy_count; phy++) { |
| if (phy_nodes[phy] == phy_data.np) |
| break; |
| } |
| if (phy_nodes[phy] == NULL) { |
| phy_nodes[phy] = phy_data.np; |
| cphy_base[phy] = of_iomap(phy_nodes[phy], 0); |
| if (cphy_base[phy] == NULL) { |
| return 0; |
| } |
| phy_count += 1; |
| } |
| port_data[port].lane_mapping = phy_data.args[0]; |
| of_property_read_u32(phy_nodes[phy], "phydev", &tmp); |
| port_data[port].phy_devs = tmp; |
| port_data[port].phy_base = cphy_base[phy]; |
| of_node_put(phy_data.np); |
| port += 1; |
| } while (port < CPHY_PORT_COUNT); |
| of_property_read_u32_array(sata_node, "calxeda,tx-atten", |
| tx_atten, port); |
| for (i = 0; i < port; i++) |
| port_data[i].tx_atten = (u8) tx_atten[i]; |
| return 0; |
| } |
| |
| /* |
| * The Calxeda SATA phy intermittently fails to bring up a link with Gen3 |
| * Retrying the phy hard reset can work around the issue, but the drive |
| * may fail again. In less than 150 out of 15000 test runs, it took more |
| * than 10 tries for the link to be established (but never more than 35). |
| * Triple the maximum observed retry count to provide plenty of margin for |
| * rare events and to guarantee that the link is established. |
| * |
| * Also, the default 2 second time-out on a failed drive is too long in |
| * this situation. The uboot implementation of the same driver function |
| * uses a much shorter time-out period and never experiences a time out |
| * issue. Reducing the time-out to 500ms improves the responsiveness. |
| * The other timing constants were kept the same as the stock AHCI driver. |
| * This change was also tested 15000 times on 24 drives and none of them |
| * experienced a time out. |
| */ |
| static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| static const unsigned long timing[] = { 5, 100, 500}; |
| struct ata_port *ap = link->ap; |
| struct ahci_port_priv *pp = ap->private_data; |
| struct ahci_host_priv *hpriv = ap->host->private_data; |
| u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG; |
| struct ata_taskfile tf; |
| bool online; |
| u32 sstatus; |
| int rc; |
| int retry = 100; |
| |
| hpriv->stop_engine(ap); |
| |
| /* clear D2H reception area to properly wait for D2H FIS */ |
| ata_tf_init(link->device, &tf); |
| tf.command = ATA_BUSY; |
| ata_tf_to_fis(&tf, 0, 0, d2h_fis); |
| |
| do { |
| highbank_cphy_disable_overrides(link->ap->port_no); |
| rc = sata_link_hardreset(link, timing, deadline, &online, NULL); |
| highbank_cphy_override_lane(link->ap->port_no); |
| |
| /* If the status is 1, we are connected, but the link did not |
| * come up. So retry resetting the link again. |
| */ |
| if (sata_scr_read(link, SCR_STATUS, &sstatus)) |
| break; |
| if (!(sstatus & 0x3)) |
| break; |
| } while (!online && retry--); |
| |
| hpriv->start_engine(ap); |
| |
| if (online) |
| *class = ahci_dev_classify(ap); |
| |
| return rc; |
| } |
| |
| static struct ata_port_operations ahci_highbank_ops = { |
| .inherits = &ahci_ops, |
| .hardreset = ahci_highbank_hardreset, |
| .transmit_led_message = ecx_transmit_led_message, |
| }; |
| |
| static const struct ata_port_info ahci_highbank_port_info = { |
| .flags = AHCI_FLAG_COMMON, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &ahci_highbank_ops, |
| }; |
| |
| static struct scsi_host_template ahci_highbank_platform_sht = { |
| AHCI_SHT("sata_highbank"), |
| }; |
| |
| static const struct of_device_id ahci_of_match[] = { |
| { .compatible = "calxeda,hb-ahci" }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, ahci_of_match); |
| |
| static int ahci_highbank_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct ahci_host_priv *hpriv; |
| struct ecx_plat_data *pdata; |
| struct ata_host *host; |
| struct resource *mem; |
| int irq; |
| int i; |
| int rc; |
| u32 n_ports; |
| struct ata_port_info pi = ahci_highbank_port_info; |
| const struct ata_port_info *ppi[] = { &pi, NULL }; |
| |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!mem) { |
| dev_err(dev, "no mmio space\n"); |
| return -EINVAL; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(dev, "no irq\n"); |
| return irq; |
| } |
| if (!irq) |
| return -EINVAL; |
| |
| hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL); |
| if (!hpriv) { |
| dev_err(dev, "can't alloc ahci_host_priv\n"); |
| return -ENOMEM; |
| } |
| pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) { |
| dev_err(dev, "can't alloc ecx_plat_data\n"); |
| return -ENOMEM; |
| } |
| |
| hpriv->irq = irq; |
| hpriv->flags |= (unsigned long)pi.private_data; |
| |
| hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem)); |
| if (!hpriv->mmio) { |
| dev_err(dev, "can't map %pR\n", mem); |
| return -ENOMEM; |
| } |
| |
| rc = highbank_initialize_phys(dev, hpriv->mmio); |
| if (rc) |
| return rc; |
| |
| |
| ahci_save_initial_config(dev, hpriv); |
| |
| /* prepare host */ |
| if (hpriv->cap & HOST_CAP_NCQ) |
| pi.flags |= ATA_FLAG_NCQ; |
| |
| if (hpriv->cap & HOST_CAP_PMP) |
| pi.flags |= ATA_FLAG_PMP; |
| |
| if (hpriv->cap & HOST_CAP_64) |
| dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); |
| |
| /* CAP.NP sometimes indicate the index of the last enabled |
| * port, at other times, that of the last possible port, so |
| * determining the maximum port number requires looking at |
| * both CAP.NP and port_map. |
| */ |
| n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map)); |
| |
| pdata->n_ports = n_ports; |
| hpriv->plat_data = pdata; |
| highbank_set_em_messages(dev, hpriv, &pi); |
| |
| host = ata_host_alloc_pinfo(dev, ppi, n_ports); |
| if (!host) { |
| rc = -ENOMEM; |
| goto err0; |
| } |
| |
| host->private_data = hpriv; |
| |
| if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss) |
| host->flags |= ATA_HOST_PARALLEL_SCAN; |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| ata_port_desc(ap, "mmio %pR", mem); |
| ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80); |
| |
| /* set enclosure management message type */ |
| if (ap->flags & ATA_FLAG_EM) |
| ap->em_message_type = hpriv->em_msg_type; |
| |
| /* disabled/not-implemented port */ |
| if (!(hpriv->port_map & (1 << i))) |
| ap->ops = &ata_dummy_port_ops; |
| } |
| |
| rc = ahci_reset_controller(host); |
| if (rc) |
| goto err0; |
| |
| ahci_init_controller(host); |
| ahci_print_info(host, "platform"); |
| |
| rc = ahci_host_activate(host, &ahci_highbank_platform_sht); |
| if (rc) |
| goto err0; |
| |
| return 0; |
| err0: |
| return rc; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int ahci_highbank_suspend(struct device *dev) |
| { |
| struct ata_host *host = dev_get_drvdata(dev); |
| struct ahci_host_priv *hpriv = host->private_data; |
| void __iomem *mmio = hpriv->mmio; |
| u32 ctl; |
| |
| if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) { |
| dev_err(dev, "firmware update required for suspend/resume\n"); |
| return -EIO; |
| } |
| |
| /* |
| * AHCI spec rev1.1 section 8.3.3: |
| * Software must disable interrupts prior to requesting a |
| * transition of the HBA to D3 state. |
| */ |
| ctl = readl(mmio + HOST_CTL); |
| ctl &= ~HOST_IRQ_EN; |
| writel(ctl, mmio + HOST_CTL); |
| readl(mmio + HOST_CTL); /* flush */ |
| |
| return ata_host_suspend(host, PMSG_SUSPEND); |
| } |
| |
| static int ahci_highbank_resume(struct device *dev) |
| { |
| struct ata_host *host = dev_get_drvdata(dev); |
| int rc; |
| |
| if (dev->power.power_state.event == PM_EVENT_SUSPEND) { |
| rc = ahci_reset_controller(host); |
| if (rc) |
| return rc; |
| |
| ahci_init_controller(host); |
| } |
| |
| ata_host_resume(host); |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops, |
| ahci_highbank_suspend, ahci_highbank_resume); |
| |
| static struct platform_driver ahci_highbank_driver = { |
| .remove = ata_platform_remove_one, |
| .driver = { |
| .name = "highbank-ahci", |
| .of_match_table = ahci_of_match, |
| .pm = &ahci_highbank_pm_ops, |
| }, |
| .probe = ahci_highbank_probe, |
| }; |
| |
| module_platform_driver(ahci_highbank_driver); |
| |
| MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver"); |
| MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("sata:highbank"); |