blob: b7bb90ae787f7cb209aedff1caf3fa383f340f50 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012 Russell King
* Rewritten from the dovefb driver, and Armada510 manuals.
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "armada_crtc.h"
#include "armada_drm.h"
#include "armada_fb.h"
#include "armada_gem.h"
#include "armada_hw.h"
#include "armada_plane.h"
#include "armada_trace.h"
/*
* A note about interlacing. Let's consider HDMI 1920x1080i.
* The timing parameters we have from X are:
* Hact HsyA HsyI Htot Vact VsyA VsyI Vtot
* 1920 2448 2492 2640 1080 1084 1094 1125
* Which get translated to:
* Hact HsyA HsyI Htot Vact VsyA VsyI Vtot
* 1920 2448 2492 2640 540 542 547 562
*
* This is how it is defined by CEA-861-D - line and pixel numbers are
* referenced to the rising edge of VSYNC and HSYNC. Total clocks per
* line: 2640. The odd frame, the first active line is at line 21, and
* the even frame, the first active line is 584.
*
* LN: 560 561 562 563 567 568 569
* DE: ~~~|____________________________//__________________________
* HSYNC: ____|~|_____|~|_____|~|_____|~|_//__|~|_____|~|_____|~|_____
* VSYNC: _________________________|~~~~~~//~~~~~~~~~~~~~~~|__________
* 22 blanking lines. VSYNC at 1320 (referenced to the HSYNC rising edge).
*
* LN: 1123 1124 1125 1 5 6 7
* DE: ~~~|____________________________//__________________________
* HSYNC: ____|~|_____|~|_____|~|_____|~|_//__|~|_____|~|_____|~|_____
* VSYNC: ____________________|~~~~~~~~~~~//~~~~~~~~~~|_______________
* 23 blanking lines
*
* The Armada LCD Controller line and pixel numbers are, like X timings,
* referenced to the top left of the active frame.
*
* So, translating these to our LCD controller:
* Odd frame, 563 total lines, VSYNC at line 543-548, pixel 1128.
* Even frame, 562 total lines, VSYNC at line 542-547, pixel 2448.
* Note: Vsync front porch remains constant!
*
* if (odd_frame) {
* vtotal = mode->crtc_vtotal + 1;
* vbackporch = mode->crtc_vsync_start - mode->crtc_vdisplay + 1;
* vhorizpos = mode->crtc_hsync_start - mode->crtc_htotal / 2
* } else {
* vtotal = mode->crtc_vtotal;
* vbackporch = mode->crtc_vsync_start - mode->crtc_vdisplay;
* vhorizpos = mode->crtc_hsync_start;
* }
* vfrontporch = mode->crtc_vtotal - mode->crtc_vsync_end;
*
* So, we need to reprogram these registers on each vsync event:
* LCD_SPU_V_PORCH, LCD_SPU_ADV_REG, LCD_SPUT_V_H_TOTAL
*
* Note: we do not use the frame done interrupts because these appear
* to happen too early, and lead to jitter on the display (presumably
* they occur at the end of the last active line, before the vsync back
* porch, which we're reprogramming.)
*/
void
armada_drm_crtc_update_regs(struct armada_crtc *dcrtc, struct armada_regs *regs)
{
while (regs->offset != ~0) {
void __iomem *reg = dcrtc->base + regs->offset;
uint32_t val;
val = regs->mask;
if (val != 0)
val &= readl_relaxed(reg);
writel_relaxed(val | regs->val, reg);
++regs;
}
}
static void armada_drm_crtc_update(struct armada_crtc *dcrtc, bool enable)
{
uint32_t dumb_ctrl;
dumb_ctrl = dcrtc->cfg_dumb_ctrl;
if (enable)
dumb_ctrl |= CFG_DUMB_ENA;
/*
* When the dumb interface isn't in DUMB24_RGB888_0 mode, it might
* be using SPI or GPIO. If we set this to DUMB_BLANK, we will
* force LCD_D[23:0] to output blank color, overriding the GPIO or
* SPI usage. So leave it as-is unless in DUMB24_RGB888_0 mode.
*/
if (!enable && (dumb_ctrl & DUMB_MASK) == DUMB24_RGB888_0) {
dumb_ctrl &= ~DUMB_MASK;
dumb_ctrl |= DUMB_BLANK;
}
armada_updatel(dumb_ctrl,
~(CFG_INV_CSYNC | CFG_INV_HSYNC | CFG_INV_VSYNC),
dcrtc->base + LCD_SPU_DUMB_CTRL);
}
static void armada_drm_crtc_queue_state_event(struct drm_crtc *crtc)
{
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
struct drm_pending_vblank_event *event;
/* If we have an event, we need vblank events enabled */
event = xchg(&crtc->state->event, NULL);
if (event) {
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
dcrtc->event = event;
}
}
static void armada_drm_update_gamma(struct drm_crtc *crtc)
{
struct drm_property_blob *blob = crtc->state->gamma_lut;
void __iomem *base = drm_to_armada_crtc(crtc)->base;
int i;
if (blob) {
struct drm_color_lut *lut = blob->data;
armada_updatel(CFG_CSB_256x8, CFG_CSB_256x8 | CFG_PDWN256x8,
base + LCD_SPU_SRAM_PARA1);
for (i = 0; i < 256; i++) {
writel_relaxed(drm_color_lut_extract(lut[i].red, 8),
base + LCD_SPU_SRAM_WRDAT);
writel_relaxed(i | SRAM_WRITE | SRAM_GAMMA_YR,
base + LCD_SPU_SRAM_CTRL);
readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN);
writel_relaxed(drm_color_lut_extract(lut[i].green, 8),
base + LCD_SPU_SRAM_WRDAT);
writel_relaxed(i | SRAM_WRITE | SRAM_GAMMA_UG,
base + LCD_SPU_SRAM_CTRL);
readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN);
writel_relaxed(drm_color_lut_extract(lut[i].blue, 8),
base + LCD_SPU_SRAM_WRDAT);
writel_relaxed(i | SRAM_WRITE | SRAM_GAMMA_VB,
base + LCD_SPU_SRAM_CTRL);
readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN);
}
armada_updatel(CFG_GAMMA_ENA, CFG_GAMMA_ENA,
base + LCD_SPU_DMA_CTRL0);
} else {
armada_updatel(0, CFG_GAMMA_ENA, base + LCD_SPU_DMA_CTRL0);
armada_updatel(CFG_PDWN256x8, CFG_CSB_256x8 | CFG_PDWN256x8,
base + LCD_SPU_SRAM_PARA1);
}
}
static enum drm_mode_status armada_drm_crtc_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
if (mode->vscan > 1)
return MODE_NO_VSCAN;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
if (mode->flags & DRM_MODE_FLAG_HSKEW)
return MODE_H_ILLEGAL;
/* We can't do interlaced modes if we don't have the SPU_ADV_REG */
if (!dcrtc->variant->has_spu_adv_reg &&
mode->flags & DRM_MODE_FLAG_INTERLACE)
return MODE_NO_INTERLACE;
if (mode->flags & (DRM_MODE_FLAG_BCAST | DRM_MODE_FLAG_PIXMUX |
DRM_MODE_FLAG_CLKDIV2))
return MODE_BAD;
return MODE_OK;
}
/* The mode_config.mutex will be held for this call */
static bool armada_drm_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode, struct drm_display_mode *adj)
{
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
int ret;
/*
* Set CRTC modesetting parameters for the adjusted mode. This is
* applied after the connectors, bridges, and encoders have fixed up
* this mode, as described above drm_atomic_helper_check_modeset().
*/
drm_mode_set_crtcinfo(adj, CRTC_INTERLACE_HALVE_V);
/*
* Validate the adjusted mode in case an encoder/bridge has set
* something we don't support.
*/
if (armada_drm_crtc_mode_valid(crtc, adj) != MODE_OK)
return false;
/* Check whether the display mode is possible */
ret = dcrtc->variant->compute_clock(dcrtc, adj, NULL);
if (ret)
return false;
return true;
}
/* These are locked by dev->vbl_lock */
static void armada_drm_crtc_disable_irq(struct armada_crtc *dcrtc, u32 mask)
{
if (dcrtc->irq_ena & mask) {
dcrtc->irq_ena &= ~mask;
writel(dcrtc->irq_ena, dcrtc->base + LCD_SPU_IRQ_ENA);
}
}
static void armada_drm_crtc_enable_irq(struct armada_crtc *dcrtc, u32 mask)
{
if ((dcrtc->irq_ena & mask) != mask) {
dcrtc->irq_ena |= mask;
writel(dcrtc->irq_ena, dcrtc->base + LCD_SPU_IRQ_ENA);
if (readl_relaxed(dcrtc->base + LCD_SPU_IRQ_ISR) & mask)
writel(0, dcrtc->base + LCD_SPU_IRQ_ISR);
}
}
static void armada_drm_crtc_irq(struct armada_crtc *dcrtc, u32 stat)
{
struct drm_pending_vblank_event *event;
void __iomem *base = dcrtc->base;
if (stat & DMA_FF_UNDERFLOW)
DRM_ERROR("video underflow on crtc %u\n", dcrtc->num);
if (stat & GRA_FF_UNDERFLOW)
DRM_ERROR("graphics underflow on crtc %u\n", dcrtc->num);
if (stat & VSYNC_IRQ)
drm_crtc_handle_vblank(&dcrtc->crtc);
spin_lock(&dcrtc->irq_lock);
if (stat & GRA_FRAME_IRQ && dcrtc->interlaced) {
int i = stat & GRA_FRAME_IRQ0 ? 0 : 1;
uint32_t val;
writel_relaxed(dcrtc->v[i].spu_v_porch, base + LCD_SPU_V_PORCH);
writel_relaxed(dcrtc->v[i].spu_v_h_total,
base + LCD_SPUT_V_H_TOTAL);
val = readl_relaxed(base + LCD_SPU_ADV_REG);
val &= ~(ADV_VSYNC_L_OFF | ADV_VSYNC_H_OFF | ADV_VSYNCOFFEN);
val |= dcrtc->v[i].spu_adv_reg;
writel_relaxed(val, base + LCD_SPU_ADV_REG);
}
if (stat & dcrtc->irq_ena & DUMB_FRAMEDONE) {
if (dcrtc->update_pending) {
armada_drm_crtc_update_regs(dcrtc, dcrtc->regs);
dcrtc->update_pending = false;
}
if (dcrtc->cursor_update) {
writel_relaxed(dcrtc->cursor_hw_pos,
base + LCD_SPU_HWC_OVSA_HPXL_VLN);
writel_relaxed(dcrtc->cursor_hw_sz,
base + LCD_SPU_HWC_HPXL_VLN);
armada_updatel(CFG_HWC_ENA,
CFG_HWC_ENA | CFG_HWC_1BITMOD |
CFG_HWC_1BITENA,
base + LCD_SPU_DMA_CTRL0);
dcrtc->cursor_update = false;
}
armada_drm_crtc_disable_irq(dcrtc, DUMB_FRAMEDONE_ENA);
}
spin_unlock(&dcrtc->irq_lock);
if (stat & VSYNC_IRQ && !dcrtc->update_pending) {
event = xchg(&dcrtc->event, NULL);
if (event) {
spin_lock(&dcrtc->crtc.dev->event_lock);
drm_crtc_send_vblank_event(&dcrtc->crtc, event);
spin_unlock(&dcrtc->crtc.dev->event_lock);
drm_crtc_vblank_put(&dcrtc->crtc);
}
}
}
static irqreturn_t armada_drm_irq(int irq, void *arg)
{
struct armada_crtc *dcrtc = arg;
u32 v, stat = readl_relaxed(dcrtc->base + LCD_SPU_IRQ_ISR);
/*
* Reading the ISR appears to clear bits provided CLEAN_SPU_IRQ_ISR
* is set. Writing has some other effect to acknowledge the IRQ -
* without this, we only get a single IRQ.
*/
writel_relaxed(0, dcrtc->base + LCD_SPU_IRQ_ISR);
trace_armada_drm_irq(&dcrtc->crtc, stat);
/* Mask out those interrupts we haven't enabled */
v = stat & dcrtc->irq_ena;
if (v & (VSYNC_IRQ|GRA_FRAME_IRQ|DUMB_FRAMEDONE)) {
armada_drm_crtc_irq(dcrtc, stat);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/* The mode_config.mutex will be held for this call */
static void armada_drm_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
struct drm_display_mode *adj = &crtc->state->adjusted_mode;
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
struct armada_regs regs[17];
uint32_t lm, rm, tm, bm, val, sclk;
unsigned long flags;
unsigned i;
bool interlaced = !!(adj->flags & DRM_MODE_FLAG_INTERLACE);
i = 0;
rm = adj->crtc_hsync_start - adj->crtc_hdisplay;
lm = adj->crtc_htotal - adj->crtc_hsync_end;
bm = adj->crtc_vsync_start - adj->crtc_vdisplay;
tm = adj->crtc_vtotal - adj->crtc_vsync_end;
DRM_DEBUG_KMS("[CRTC:%d:%s] mode " DRM_MODE_FMT "\n",
crtc->base.id, crtc->name, DRM_MODE_ARG(adj));
DRM_DEBUG_KMS("lm %d rm %d tm %d bm %d\n", lm, rm, tm, bm);
/* Now compute the divider for real */
dcrtc->variant->compute_clock(dcrtc, adj, &sclk);
armada_reg_queue_set(regs, i, sclk, LCD_CFG_SCLK_DIV);
spin_lock_irqsave(&dcrtc->irq_lock, flags);
dcrtc->interlaced = interlaced;
/* Even interlaced/progressive frame */
dcrtc->v[1].spu_v_h_total = adj->crtc_vtotal << 16 |
adj->crtc_htotal;
dcrtc->v[1].spu_v_porch = tm << 16 | bm;
val = adj->crtc_hsync_start;
dcrtc->v[1].spu_adv_reg = val << 20 | val | ADV_VSYNCOFFEN;
if (interlaced) {
/* Odd interlaced frame */
val -= adj->crtc_htotal / 2;
dcrtc->v[0].spu_adv_reg = val << 20 | val | ADV_VSYNCOFFEN;
dcrtc->v[0].spu_v_h_total = dcrtc->v[1].spu_v_h_total +
(1 << 16);
dcrtc->v[0].spu_v_porch = dcrtc->v[1].spu_v_porch + 1;
} else {
dcrtc->v[0] = dcrtc->v[1];
}
val = adj->crtc_vdisplay << 16 | adj->crtc_hdisplay;
armada_reg_queue_set(regs, i, val, LCD_SPU_V_H_ACTIVE);
armada_reg_queue_set(regs, i, (lm << 16) | rm, LCD_SPU_H_PORCH);
armada_reg_queue_set(regs, i, dcrtc->v[0].spu_v_porch, LCD_SPU_V_PORCH);
armada_reg_queue_set(regs, i, dcrtc->v[0].spu_v_h_total,
LCD_SPUT_V_H_TOTAL);
if (dcrtc->variant->has_spu_adv_reg)
armada_reg_queue_mod(regs, i, dcrtc->v[0].spu_adv_reg,
ADV_VSYNC_L_OFF | ADV_VSYNC_H_OFF |
ADV_VSYNCOFFEN, LCD_SPU_ADV_REG);
val = adj->flags & DRM_MODE_FLAG_NVSYNC ? CFG_VSYNC_INV : 0;
armada_reg_queue_mod(regs, i, val, CFG_VSYNC_INV, LCD_SPU_DMA_CTRL1);
/*
* The documentation doesn't indicate what the normal state of
* the sync signals are. Sebastian Hesselbart kindly probed
* these signals on his board to determine their state.
*
* The non-inverted state of the sync signals is active high.
* Setting these bits makes the appropriate signal active low.
*/
val = 0;
if (adj->flags & DRM_MODE_FLAG_NCSYNC)
val |= CFG_INV_CSYNC;
if (adj->flags & DRM_MODE_FLAG_NHSYNC)
val |= CFG_INV_HSYNC;
if (adj->flags & DRM_MODE_FLAG_NVSYNC)
val |= CFG_INV_VSYNC;
armada_reg_queue_mod(regs, i, val, CFG_INV_CSYNC | CFG_INV_HSYNC |
CFG_INV_VSYNC, LCD_SPU_DUMB_CTRL);
armada_reg_queue_end(regs, i);
armada_drm_crtc_update_regs(dcrtc, regs);
spin_unlock_irqrestore(&dcrtc->irq_lock, flags);
}
static int armada_drm_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
if (crtc_state->gamma_lut && drm_color_lut_size(crtc_state->gamma_lut) != 256)
return -EINVAL;
if (crtc_state->color_mgmt_changed)
crtc_state->planes_changed = true;
return 0;
}
static void armada_drm_crtc_atomic_begin(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
if (crtc_state->color_mgmt_changed)
armada_drm_update_gamma(crtc);
dcrtc->regs_idx = 0;
dcrtc->regs = dcrtc->atomic_regs;
}
static void armada_drm_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
armada_reg_queue_end(dcrtc->regs, dcrtc->regs_idx);
/*
* If we aren't doing a full modeset, then we need to queue
* the event here.
*/
if (!drm_atomic_crtc_needs_modeset(crtc_state)) {
dcrtc->update_pending = true;
armada_drm_crtc_queue_state_event(crtc);
spin_lock_irq(&dcrtc->irq_lock);
armada_drm_crtc_enable_irq(dcrtc, DUMB_FRAMEDONE_ENA);
spin_unlock_irq(&dcrtc->irq_lock);
} else {
spin_lock_irq(&dcrtc->irq_lock);
armada_drm_crtc_update_regs(dcrtc, dcrtc->regs);
spin_unlock_irq(&dcrtc->irq_lock);
}
}
static void armada_drm_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
struct drm_pending_vblank_event *event;
DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
if (old_state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
drm_crtc_vblank_put(crtc);
drm_crtc_vblank_off(crtc);
armada_drm_crtc_update(dcrtc, false);
if (!crtc->state->active) {
/*
* This modeset will be leaving the CRTC disabled, so
* call the backend to disable upstream clocks etc.
*/
if (dcrtc->variant->disable)
dcrtc->variant->disable(dcrtc);
/*
* We will not receive any further vblank events.
* Send the flip_done event manually.
*/
event = crtc->state->event;
crtc->state->event = NULL;
if (event) {
spin_lock_irq(&crtc->dev->event_lock);
drm_crtc_send_vblank_event(crtc, event);
spin_unlock_irq(&crtc->dev->event_lock);
}
}
}
static void armada_drm_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
if (!old_state->active) {
/*
* This modeset is enabling the CRTC after it having
* been disabled. Reverse the call to ->disable in
* the atomic_disable().
*/
if (dcrtc->variant->enable)
dcrtc->variant->enable(dcrtc, &crtc->state->adjusted_mode);
}
armada_drm_crtc_update(dcrtc, true);
drm_crtc_vblank_on(crtc);
if (crtc->state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
WARN_ON(drm_crtc_vblank_get(crtc));
armada_drm_crtc_queue_state_event(crtc);
}
static const struct drm_crtc_helper_funcs armada_crtc_helper_funcs = {
.mode_valid = armada_drm_crtc_mode_valid,
.mode_fixup = armada_drm_crtc_mode_fixup,
.mode_set_nofb = armada_drm_crtc_mode_set_nofb,
.atomic_check = armada_drm_crtc_atomic_check,
.atomic_begin = armada_drm_crtc_atomic_begin,
.atomic_flush = armada_drm_crtc_atomic_flush,
.atomic_disable = armada_drm_crtc_atomic_disable,
.atomic_enable = armada_drm_crtc_atomic_enable,
};
static void armada_load_cursor_argb(void __iomem *base, uint32_t *pix,
unsigned stride, unsigned width, unsigned height)
{
uint32_t addr;
unsigned y;
addr = SRAM_HWC32_RAM1;
for (y = 0; y < height; y++) {
uint32_t *p = &pix[y * stride];
unsigned x;
for (x = 0; x < width; x++, p++) {
uint32_t val = *p;
/*
* In "ARGB888" (HWC32) mode, writing to the SRAM
* requires these bits to contain:
* 31:24 = alpha 23:16 = blue 15:8 = green 7:0 = red
* So, it's actually ABGR8888. This is independent
* of the SWAPRB bits in DMA control register 0.
*/
val = (val & 0xff00ff00) |
(val & 0x000000ff) << 16 |
(val & 0x00ff0000) >> 16;
writel_relaxed(val,
base + LCD_SPU_SRAM_WRDAT);
writel_relaxed(addr | SRAM_WRITE,
base + LCD_SPU_SRAM_CTRL);
readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN);
addr += 1;
if ((addr & 0x00ff) == 0)
addr += 0xf00;
if ((addr & 0x30ff) == 0)
addr = SRAM_HWC32_RAM2;
}
}
}
static void armada_drm_crtc_cursor_tran(void __iomem *base)
{
unsigned addr;
for (addr = 0; addr < 256; addr++) {
/* write the default value */
writel_relaxed(0x55555555, base + LCD_SPU_SRAM_WRDAT);
writel_relaxed(addr | SRAM_WRITE | SRAM_HWC32_TRAN,
base + LCD_SPU_SRAM_CTRL);
}
}
static int armada_drm_crtc_cursor_update(struct armada_crtc *dcrtc, bool reload)
{
uint32_t xoff, xscr, w = dcrtc->cursor_w, s;
uint32_t yoff, yscr, h = dcrtc->cursor_h;
uint32_t para1;
/*
* Calculate the visible width and height of the cursor,
* screen position, and the position in the cursor bitmap.
*/
if (dcrtc->cursor_x < 0) {
xoff = -dcrtc->cursor_x;
xscr = 0;
w -= min(xoff, w);
} else if (dcrtc->cursor_x + w > dcrtc->crtc.mode.hdisplay) {
xoff = 0;
xscr = dcrtc->cursor_x;
w = max_t(int, dcrtc->crtc.mode.hdisplay - dcrtc->cursor_x, 0);
} else {
xoff = 0;
xscr = dcrtc->cursor_x;
}
if (dcrtc->cursor_y < 0) {
yoff = -dcrtc->cursor_y;
yscr = 0;
h -= min(yoff, h);
} else if (dcrtc->cursor_y + h > dcrtc->crtc.mode.vdisplay) {
yoff = 0;
yscr = dcrtc->cursor_y;
h = max_t(int, dcrtc->crtc.mode.vdisplay - dcrtc->cursor_y, 0);
} else {
yoff = 0;
yscr = dcrtc->cursor_y;
}
/* On interlaced modes, the vertical cursor size must be halved */
s = dcrtc->cursor_w;
if (dcrtc->interlaced) {
s *= 2;
yscr /= 2;
h /= 2;
}
if (!dcrtc->cursor_obj || !h || !w) {
spin_lock_irq(&dcrtc->irq_lock);
dcrtc->cursor_update = false;
armada_updatel(0, CFG_HWC_ENA, dcrtc->base + LCD_SPU_DMA_CTRL0);
spin_unlock_irq(&dcrtc->irq_lock);
return 0;
}
spin_lock_irq(&dcrtc->irq_lock);
para1 = readl_relaxed(dcrtc->base + LCD_SPU_SRAM_PARA1);
armada_updatel(CFG_CSB_256x32, CFG_CSB_256x32 | CFG_PDWN256x32,
dcrtc->base + LCD_SPU_SRAM_PARA1);
spin_unlock_irq(&dcrtc->irq_lock);
/*
* Initialize the transparency if the SRAM was powered down.
* We must also reload the cursor data as well.
*/
if (!(para1 & CFG_CSB_256x32)) {
armada_drm_crtc_cursor_tran(dcrtc->base);
reload = true;
}
if (dcrtc->cursor_hw_sz != (h << 16 | w)) {
spin_lock_irq(&dcrtc->irq_lock);
dcrtc->cursor_update = false;
armada_updatel(0, CFG_HWC_ENA, dcrtc->base + LCD_SPU_DMA_CTRL0);
spin_unlock_irq(&dcrtc->irq_lock);
reload = true;
}
if (reload) {
struct armada_gem_object *obj = dcrtc->cursor_obj;
uint32_t *pix;
/* Set the top-left corner of the cursor image */
pix = obj->addr;
pix += yoff * s + xoff;
armada_load_cursor_argb(dcrtc->base, pix, s, w, h);
}
/* Reload the cursor position, size and enable in the IRQ handler */
spin_lock_irq(&dcrtc->irq_lock);
dcrtc->cursor_hw_pos = yscr << 16 | xscr;
dcrtc->cursor_hw_sz = h << 16 | w;
dcrtc->cursor_update = true;
armada_drm_crtc_enable_irq(dcrtc, DUMB_FRAMEDONE_ENA);
spin_unlock_irq(&dcrtc->irq_lock);
return 0;
}
static void cursor_update(void *data)
{
armada_drm_crtc_cursor_update(data, true);
}
static int armada_drm_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file, uint32_t handle, uint32_t w, uint32_t h)
{
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
struct armada_gem_object *obj = NULL;
int ret;
/* If no cursor support, replicate drm's return value */
if (!dcrtc->variant->has_spu_adv_reg)
return -ENXIO;
if (handle && w > 0 && h > 0) {
/* maximum size is 64x32 or 32x64 */
if (w > 64 || h > 64 || (w > 32 && h > 32))
return -ENOMEM;
obj = armada_gem_object_lookup(file, handle);
if (!obj)
return -ENOENT;
/* Must be a kernel-mapped object */
if (!obj->addr) {
drm_gem_object_put(&obj->obj);
return -EINVAL;
}
if (obj->obj.size < w * h * 4) {
DRM_ERROR("buffer is too small\n");
drm_gem_object_put(&obj->obj);
return -ENOMEM;
}
}
if (dcrtc->cursor_obj) {
dcrtc->cursor_obj->update = NULL;
dcrtc->cursor_obj->update_data = NULL;
drm_gem_object_put(&dcrtc->cursor_obj->obj);
}
dcrtc->cursor_obj = obj;
dcrtc->cursor_w = w;
dcrtc->cursor_h = h;
ret = armada_drm_crtc_cursor_update(dcrtc, true);
if (obj) {
obj->update_data = dcrtc;
obj->update = cursor_update;
}
return ret;
}
static int armada_drm_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
int ret;
/* If no cursor support, replicate drm's return value */
if (!dcrtc->variant->has_spu_adv_reg)
return -EFAULT;
dcrtc->cursor_x = x;
dcrtc->cursor_y = y;
ret = armada_drm_crtc_cursor_update(dcrtc, false);
return ret;
}
static void armada_drm_crtc_destroy(struct drm_crtc *crtc)
{
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
struct armada_private *priv = drm_to_armada_dev(crtc->dev);
if (dcrtc->cursor_obj)
drm_gem_object_put(&dcrtc->cursor_obj->obj);
priv->dcrtc[dcrtc->num] = NULL;
drm_crtc_cleanup(&dcrtc->crtc);
if (dcrtc->variant->disable)
dcrtc->variant->disable(dcrtc);
writel_relaxed(0, dcrtc->base + LCD_SPU_IRQ_ENA);
of_node_put(dcrtc->crtc.port);
kfree(dcrtc);
}
static int armada_drm_crtc_late_register(struct drm_crtc *crtc)
{
if (IS_ENABLED(CONFIG_DEBUG_FS))
armada_drm_crtc_debugfs_init(drm_to_armada_crtc(crtc));
return 0;
}
/* These are called under the vbl_lock. */
static int armada_drm_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
unsigned long flags;
spin_lock_irqsave(&dcrtc->irq_lock, flags);
armada_drm_crtc_enable_irq(dcrtc, VSYNC_IRQ_ENA);
spin_unlock_irqrestore(&dcrtc->irq_lock, flags);
return 0;
}
static void armada_drm_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc);
unsigned long flags;
spin_lock_irqsave(&dcrtc->irq_lock, flags);
armada_drm_crtc_disable_irq(dcrtc, VSYNC_IRQ_ENA);
spin_unlock_irqrestore(&dcrtc->irq_lock, flags);
}
static const struct drm_crtc_funcs armada_crtc_funcs = {
.reset = drm_atomic_helper_crtc_reset,
.cursor_set = armada_drm_crtc_cursor_set,
.cursor_move = armada_drm_crtc_cursor_move,
.destroy = armada_drm_crtc_destroy,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
.late_register = armada_drm_crtc_late_register,
.enable_vblank = armada_drm_crtc_enable_vblank,
.disable_vblank = armada_drm_crtc_disable_vblank,
};
int armada_crtc_select_clock(struct armada_crtc *dcrtc,
struct armada_clk_result *res,
const struct armada_clocking_params *params,
struct clk *clks[], size_t num_clks,
unsigned long desired_khz)
{
unsigned long desired_hz = desired_khz * 1000;
unsigned long desired_clk_hz; // requested clk input
unsigned long real_clk_hz; // actual clk input
unsigned long real_hz; // actual pixel clk
unsigned long permillage;
struct clk *clk;
u32 div;
int i;
DRM_DEBUG_KMS("[CRTC:%u:%s] desired clock=%luHz\n",
dcrtc->crtc.base.id, dcrtc->crtc.name, desired_hz);
for (i = 0; i < num_clks; i++) {
clk = clks[i];
if (!clk)
continue;
if (params->settable & BIT(i)) {
real_clk_hz = clk_round_rate(clk, desired_hz);
desired_clk_hz = desired_hz;
} else {
real_clk_hz = clk_get_rate(clk);
desired_clk_hz = real_clk_hz;
}
/* If the clock can do exactly the desired rate, we're done */
if (real_clk_hz == desired_hz) {
real_hz = real_clk_hz;
div = 1;
goto found;
}
/* Calculate the divider - if invalid, we can't do this rate */
div = DIV_ROUND_CLOSEST(real_clk_hz, desired_hz);
if (div == 0 || div > params->div_max)
continue;
/* Calculate the actual rate - HDMI requires -0.6%..+0.5% */
real_hz = DIV_ROUND_CLOSEST(real_clk_hz, div);
DRM_DEBUG_KMS("[CRTC:%u:%s] clk=%u %luHz div=%u real=%luHz\n",
dcrtc->crtc.base.id, dcrtc->crtc.name,
i, real_clk_hz, div, real_hz);
/* Avoid repeated division */
if (real_hz < desired_hz) {
permillage = real_hz / desired_khz;
if (permillage < params->permillage_min)
continue;
} else {
permillage = DIV_ROUND_UP(real_hz, desired_khz);
if (permillage > params->permillage_max)
continue;
}
goto found;
}
return -ERANGE;
found:
DRM_DEBUG_KMS("[CRTC:%u:%s] selected clk=%u %luHz div=%u real=%luHz\n",
dcrtc->crtc.base.id, dcrtc->crtc.name,
i, real_clk_hz, div, real_hz);
res->desired_clk_hz = desired_clk_hz;
res->clk = clk;
res->div = div;
return i;
}
static int armada_drm_crtc_create(struct drm_device *drm, struct device *dev,
struct resource *res, int irq, const struct armada_variant *variant,
struct device_node *port)
{
struct armada_private *priv = drm_to_armada_dev(drm);
struct armada_crtc *dcrtc;
struct drm_plane *primary;
void __iomem *base;
int ret;
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
dcrtc = kzalloc(sizeof(*dcrtc), GFP_KERNEL);
if (!dcrtc) {
DRM_ERROR("failed to allocate Armada crtc\n");
return -ENOMEM;
}
if (dev != drm->dev)
dev_set_drvdata(dev, dcrtc);
dcrtc->variant = variant;
dcrtc->base = base;
dcrtc->num = drm->mode_config.num_crtc;
dcrtc->cfg_dumb_ctrl = DUMB24_RGB888_0;
dcrtc->spu_iopad_ctrl = CFG_VSCALE_LN_EN | CFG_IOPAD_DUMB24;
spin_lock_init(&dcrtc->irq_lock);
dcrtc->irq_ena = CLEAN_SPU_IRQ_ISR;
/* Initialize some registers which we don't otherwise set */
writel_relaxed(0x00000001, dcrtc->base + LCD_CFG_SCLK_DIV);
writel_relaxed(0x00000000, dcrtc->base + LCD_SPU_BLANKCOLOR);
writel_relaxed(dcrtc->spu_iopad_ctrl,
dcrtc->base + LCD_SPU_IOPAD_CONTROL);
writel_relaxed(0x00000000, dcrtc->base + LCD_SPU_SRAM_PARA0);
writel_relaxed(CFG_PDWN256x32 | CFG_PDWN256x24 | CFG_PDWN256x8 |
CFG_PDWN32x32 | CFG_PDWN16x66 | CFG_PDWN32x66 |
CFG_PDWN64x66, dcrtc->base + LCD_SPU_SRAM_PARA1);
writel_relaxed(0x2032ff81, dcrtc->base + LCD_SPU_DMA_CTRL1);
writel_relaxed(dcrtc->irq_ena, dcrtc->base + LCD_SPU_IRQ_ENA);
readl_relaxed(dcrtc->base + LCD_SPU_IRQ_ISR);
writel_relaxed(0, dcrtc->base + LCD_SPU_IRQ_ISR);
ret = devm_request_irq(dev, irq, armada_drm_irq, 0, "armada_drm_crtc",
dcrtc);
if (ret < 0)
goto err_crtc;
if (dcrtc->variant->init) {
ret = dcrtc->variant->init(dcrtc, dev);
if (ret)
goto err_crtc;
}
/* Ensure AXI pipeline is enabled */
armada_updatel(CFG_ARBFAST_ENA, 0, dcrtc->base + LCD_SPU_DMA_CTRL0);
priv->dcrtc[dcrtc->num] = dcrtc;
dcrtc->crtc.port = port;
primary = kzalloc(sizeof(*primary), GFP_KERNEL);
if (!primary) {
ret = -ENOMEM;
goto err_crtc;
}
ret = armada_drm_primary_plane_init(drm, primary);
if (ret) {
kfree(primary);
goto err_crtc;
}
ret = drm_crtc_init_with_planes(drm, &dcrtc->crtc, primary, NULL,
&armada_crtc_funcs, NULL);
if (ret)
goto err_crtc_init;
drm_crtc_helper_add(&dcrtc->crtc, &armada_crtc_helper_funcs);
ret = drm_mode_crtc_set_gamma_size(&dcrtc->crtc, 256);
if (ret)
return ret;
drm_crtc_enable_color_mgmt(&dcrtc->crtc, 0, false, 256);
return armada_overlay_plane_create(drm, 1 << dcrtc->num);
err_crtc_init:
primary->funcs->destroy(primary);
err_crtc:
kfree(dcrtc);
return ret;
}
static int
armada_lcd_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = data;
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
int irq = platform_get_irq(pdev, 0);
const struct armada_variant *variant;
struct device_node *port = NULL;
if (irq < 0)
return irq;
if (!dev->of_node) {
const struct platform_device_id *id;
id = platform_get_device_id(pdev);
if (!id)
return -ENXIO;
variant = (const struct armada_variant *)id->driver_data;
} else {
const struct of_device_id *match;
struct device_node *np, *parent = dev->of_node;
match = of_match_device(dev->driver->of_match_table, dev);
if (!match)
return -ENXIO;
np = of_get_child_by_name(parent, "ports");
if (np)
parent = np;
port = of_get_child_by_name(parent, "port");
of_node_put(np);
if (!port) {
dev_err(dev, "no port node found in %pOF\n", parent);
return -ENXIO;
}
variant = match->data;
}
return armada_drm_crtc_create(drm, dev, res, irq, variant, port);
}
static void
armada_lcd_unbind(struct device *dev, struct device *master, void *data)
{
struct armada_crtc *dcrtc = dev_get_drvdata(dev);
armada_drm_crtc_destroy(&dcrtc->crtc);
}
static const struct component_ops armada_lcd_ops = {
.bind = armada_lcd_bind,
.unbind = armada_lcd_unbind,
};
static int armada_lcd_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &armada_lcd_ops);
}
static int armada_lcd_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &armada_lcd_ops);
return 0;
}
static const struct of_device_id armada_lcd_of_match[] = {
{
.compatible = "marvell,dove-lcd",
.data = &armada510_ops,
},
{}
};
MODULE_DEVICE_TABLE(of, armada_lcd_of_match);
static const struct platform_device_id armada_lcd_platform_ids[] = {
{
.name = "armada-lcd",
.driver_data = (unsigned long)&armada510_ops,
}, {
.name = "armada-510-lcd",
.driver_data = (unsigned long)&armada510_ops,
},
{ },
};
MODULE_DEVICE_TABLE(platform, armada_lcd_platform_ids);
struct platform_driver armada_lcd_platform_driver = {
.probe = armada_lcd_probe,
.remove = armada_lcd_remove,
.driver = {
.name = "armada-lcd",
.owner = THIS_MODULE,
.of_match_table = armada_lcd_of_match,
},
.id_table = armada_lcd_platform_ids,
};