| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * DMM IOMMU driver support functions for TI OMAP processors. |
| * |
| * Copyright (C) 2011 Texas Instruments Incorporated - https://www.ti.com/ |
| * Author: Rob Clark <rob@ti.com> |
| * Andy Gross <andy.gross@ti.com> |
| */ |
| |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> /* platform_device() */ |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <linux/time.h> |
| #include <linux/vmalloc.h> |
| #include <linux/wait.h> |
| |
| #include "omap_dmm_tiler.h" |
| #include "omap_dmm_priv.h" |
| |
| #define DMM_DRIVER_NAME "dmm" |
| |
| /* mappings for associating views to luts */ |
| static struct tcm *containers[TILFMT_NFORMATS]; |
| static struct dmm *omap_dmm; |
| |
| #if defined(CONFIG_OF) |
| static const struct of_device_id dmm_of_match[]; |
| #endif |
| |
| /* global spinlock for protecting lists */ |
| static DEFINE_SPINLOCK(list_lock); |
| |
| /* Geometry table */ |
| #define GEOM(xshift, yshift, bytes_per_pixel) { \ |
| .x_shft = (xshift), \ |
| .y_shft = (yshift), \ |
| .cpp = (bytes_per_pixel), \ |
| .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \ |
| .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \ |
| } |
| |
| static const struct { |
| u32 x_shft; /* unused X-bits (as part of bpp) */ |
| u32 y_shft; /* unused Y-bits (as part of bpp) */ |
| u32 cpp; /* bytes/chars per pixel */ |
| u32 slot_w; /* width of each slot (in pixels) */ |
| u32 slot_h; /* height of each slot (in pixels) */ |
| } geom[TILFMT_NFORMATS] = { |
| [TILFMT_8BIT] = GEOM(0, 0, 1), |
| [TILFMT_16BIT] = GEOM(0, 1, 2), |
| [TILFMT_32BIT] = GEOM(1, 1, 4), |
| [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1), |
| }; |
| |
| |
| /* lookup table for registers w/ per-engine instances */ |
| static const u32 reg[][4] = { |
| [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1, |
| DMM_PAT_STATUS__2, DMM_PAT_STATUS__3}, |
| [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1, |
| DMM_PAT_DESCR__2, DMM_PAT_DESCR__3}, |
| }; |
| |
| static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst) |
| { |
| struct dma_async_tx_descriptor *tx; |
| enum dma_status status; |
| dma_cookie_t cookie; |
| |
| tx = dmaengine_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0); |
| if (!tx) { |
| dev_err(dmm->dev, "Failed to prepare DMA memcpy\n"); |
| return -EIO; |
| } |
| |
| cookie = tx->tx_submit(tx); |
| if (dma_submit_error(cookie)) { |
| dev_err(dmm->dev, "Failed to do DMA tx_submit\n"); |
| return -EIO; |
| } |
| |
| status = dma_sync_wait(dmm->wa_dma_chan, cookie); |
| if (status != DMA_COMPLETE) |
| dev_err(dmm->dev, "i878 wa DMA copy failure\n"); |
| |
| dmaengine_terminate_all(dmm->wa_dma_chan); |
| return 0; |
| } |
| |
| static u32 dmm_read_wa(struct dmm *dmm, u32 reg) |
| { |
| dma_addr_t src, dst; |
| int r; |
| |
| src = dmm->phys_base + reg; |
| dst = dmm->wa_dma_handle; |
| |
| r = dmm_dma_copy(dmm, src, dst); |
| if (r) { |
| dev_err(dmm->dev, "sDMA read transfer timeout\n"); |
| return readl(dmm->base + reg); |
| } |
| |
| /* |
| * As per i878 workaround, the DMA is used to access the DMM registers. |
| * Make sure that the readl is not moved by the compiler or the CPU |
| * earlier than the DMA finished writing the value to memory. |
| */ |
| rmb(); |
| return readl(dmm->wa_dma_data); |
| } |
| |
| static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg) |
| { |
| dma_addr_t src, dst; |
| int r; |
| |
| writel(val, dmm->wa_dma_data); |
| /* |
| * As per i878 workaround, the DMA is used to access the DMM registers. |
| * Make sure that the writel is not moved by the compiler or the CPU, so |
| * the data will be in place before we start the DMA to do the actual |
| * register write. |
| */ |
| wmb(); |
| |
| src = dmm->wa_dma_handle; |
| dst = dmm->phys_base + reg; |
| |
| r = dmm_dma_copy(dmm, src, dst); |
| if (r) { |
| dev_err(dmm->dev, "sDMA write transfer timeout\n"); |
| writel(val, dmm->base + reg); |
| } |
| } |
| |
| static u32 dmm_read(struct dmm *dmm, u32 reg) |
| { |
| if (dmm->dmm_workaround) { |
| u32 v; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dmm->wa_lock, flags); |
| v = dmm_read_wa(dmm, reg); |
| spin_unlock_irqrestore(&dmm->wa_lock, flags); |
| |
| return v; |
| } else { |
| return readl(dmm->base + reg); |
| } |
| } |
| |
| static void dmm_write(struct dmm *dmm, u32 val, u32 reg) |
| { |
| if (dmm->dmm_workaround) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dmm->wa_lock, flags); |
| dmm_write_wa(dmm, val, reg); |
| spin_unlock_irqrestore(&dmm->wa_lock, flags); |
| } else { |
| writel(val, dmm->base + reg); |
| } |
| } |
| |
| static int dmm_workaround_init(struct dmm *dmm) |
| { |
| dma_cap_mask_t mask; |
| |
| spin_lock_init(&dmm->wa_lock); |
| |
| dmm->wa_dma_data = dma_alloc_coherent(dmm->dev, sizeof(u32), |
| &dmm->wa_dma_handle, GFP_KERNEL); |
| if (!dmm->wa_dma_data) |
| return -ENOMEM; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_MEMCPY, mask); |
| |
| dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL); |
| if (!dmm->wa_dma_chan) { |
| dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static void dmm_workaround_uninit(struct dmm *dmm) |
| { |
| dma_release_channel(dmm->wa_dma_chan); |
| |
| dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); |
| } |
| |
| /* simple allocator to grab next 16 byte aligned memory from txn */ |
| static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa) |
| { |
| void *ptr; |
| struct refill_engine *engine = txn->engine_handle; |
| |
| /* dmm programming requires 16 byte aligned addresses */ |
| txn->current_pa = round_up(txn->current_pa, 16); |
| txn->current_va = (void *)round_up((long)txn->current_va, 16); |
| |
| ptr = txn->current_va; |
| *pa = txn->current_pa; |
| |
| txn->current_pa += sz; |
| txn->current_va += sz; |
| |
| BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE); |
| |
| return ptr; |
| } |
| |
| /* check status and spin until wait_mask comes true */ |
| static int wait_status(struct refill_engine *engine, u32 wait_mask) |
| { |
| struct dmm *dmm = engine->dmm; |
| u32 r = 0, err, i; |
| |
| i = DMM_FIXED_RETRY_COUNT; |
| while (true) { |
| r = dmm_read(dmm, reg[PAT_STATUS][engine->id]); |
| err = r & DMM_PATSTATUS_ERR; |
| if (err) { |
| dev_err(dmm->dev, |
| "%s: error (engine%d). PAT_STATUS: 0x%08x\n", |
| __func__, engine->id, r); |
| return -EFAULT; |
| } |
| |
| if ((r & wait_mask) == wait_mask) |
| break; |
| |
| if (--i == 0) { |
| dev_err(dmm->dev, |
| "%s: timeout (engine%d). PAT_STATUS: 0x%08x\n", |
| __func__, engine->id, r); |
| return -ETIMEDOUT; |
| } |
| |
| udelay(1); |
| } |
| |
| return 0; |
| } |
| |
| static void release_engine(struct refill_engine *engine) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&list_lock, flags); |
| list_add(&engine->idle_node, &omap_dmm->idle_head); |
| spin_unlock_irqrestore(&list_lock, flags); |
| |
| atomic_inc(&omap_dmm->engine_counter); |
| wake_up_interruptible(&omap_dmm->engine_queue); |
| } |
| |
| static irqreturn_t omap_dmm_irq_handler(int irq, void *arg) |
| { |
| struct dmm *dmm = arg; |
| u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS); |
| int i; |
| |
| /* ack IRQ */ |
| dmm_write(dmm, status, DMM_PAT_IRQSTATUS); |
| |
| for (i = 0; i < dmm->num_engines; i++) { |
| if (status & DMM_IRQSTAT_ERR_MASK) |
| dev_err(dmm->dev, |
| "irq error(engine%d): IRQSTAT 0x%02x\n", |
| i, status & 0xff); |
| |
| if (status & DMM_IRQSTAT_LST) { |
| if (dmm->engines[i].async) |
| release_engine(&dmm->engines[i]); |
| |
| complete(&dmm->engines[i].compl); |
| } |
| |
| status >>= 8; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Get a handle for a DMM transaction |
| */ |
| static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm) |
| { |
| struct dmm_txn *txn = NULL; |
| struct refill_engine *engine = NULL; |
| int ret; |
| unsigned long flags; |
| |
| |
| /* wait until an engine is available */ |
| ret = wait_event_interruptible(omap_dmm->engine_queue, |
| atomic_add_unless(&omap_dmm->engine_counter, -1, 0)); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| /* grab an idle engine */ |
| spin_lock_irqsave(&list_lock, flags); |
| if (!list_empty(&dmm->idle_head)) { |
| engine = list_entry(dmm->idle_head.next, struct refill_engine, |
| idle_node); |
| list_del(&engine->idle_node); |
| } |
| spin_unlock_irqrestore(&list_lock, flags); |
| |
| BUG_ON(!engine); |
| |
| txn = &engine->txn; |
| engine->tcm = tcm; |
| txn->engine_handle = engine; |
| txn->last_pat = NULL; |
| txn->current_va = engine->refill_va; |
| txn->current_pa = engine->refill_pa; |
| |
| return txn; |
| } |
| |
| /* |
| * Add region to DMM transaction. If pages or pages[i] is NULL, then the |
| * corresponding slot is cleared (ie. dummy_pa is programmed) |
| */ |
| static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area, |
| struct page **pages, u32 npages, u32 roll) |
| { |
| dma_addr_t pat_pa = 0, data_pa = 0; |
| u32 *data; |
| struct pat *pat; |
| struct refill_engine *engine = txn->engine_handle; |
| int columns = (1 + area->x1 - area->x0); |
| int rows = (1 + area->y1 - area->y0); |
| int i = columns*rows; |
| |
| pat = alloc_dma(txn, sizeof(*pat), &pat_pa); |
| |
| if (txn->last_pat) |
| txn->last_pat->next_pa = (u32)pat_pa; |
| |
| pat->area = *area; |
| |
| /* adjust Y coordinates based off of container parameters */ |
| pat->area.y0 += engine->tcm->y_offset; |
| pat->area.y1 += engine->tcm->y_offset; |
| |
| pat->ctrl = (struct pat_ctrl){ |
| .start = 1, |
| .lut_id = engine->tcm->lut_id, |
| }; |
| |
| data = alloc_dma(txn, 4*i, &data_pa); |
| /* FIXME: what if data_pa is more than 32-bit ? */ |
| pat->data_pa = data_pa; |
| |
| while (i--) { |
| int n = i + roll; |
| if (n >= npages) |
| n -= npages; |
| data[i] = (pages && pages[n]) ? |
| page_to_phys(pages[n]) : engine->dmm->dummy_pa; |
| } |
| |
| txn->last_pat = pat; |
| |
| return; |
| } |
| |
| /* |
| * Commit the DMM transaction. |
| */ |
| static int dmm_txn_commit(struct dmm_txn *txn, bool wait) |
| { |
| int ret = 0; |
| struct refill_engine *engine = txn->engine_handle; |
| struct dmm *dmm = engine->dmm; |
| |
| if (!txn->last_pat) { |
| dev_err(engine->dmm->dev, "need at least one txn\n"); |
| ret = -EINVAL; |
| goto cleanup; |
| } |
| |
| txn->last_pat->next_pa = 0; |
| /* ensure that the written descriptors are visible to DMM */ |
| wmb(); |
| |
| /* |
| * NOTE: the wmb() above should be enough, but there seems to be a bug |
| * in OMAP's memory barrier implementation, which in some rare cases may |
| * cause the writes not to be observable after wmb(). |
| */ |
| |
| /* read back to ensure the data is in RAM */ |
| readl(&txn->last_pat->next_pa); |
| |
| /* write to PAT_DESCR to clear out any pending transaction */ |
| dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]); |
| |
| /* wait for engine ready: */ |
| ret = wait_status(engine, DMM_PATSTATUS_READY); |
| if (ret) { |
| ret = -EFAULT; |
| goto cleanup; |
| } |
| |
| /* mark whether it is async to denote list management in IRQ handler */ |
| engine->async = wait ? false : true; |
| reinit_completion(&engine->compl); |
| /* verify that the irq handler sees the 'async' and completion value */ |
| smp_mb(); |
| |
| /* kick reload */ |
| dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]); |
| |
| if (wait) { |
| if (!wait_for_completion_timeout(&engine->compl, |
| msecs_to_jiffies(100))) { |
| dev_err(dmm->dev, "timed out waiting for done\n"); |
| ret = -ETIMEDOUT; |
| goto cleanup; |
| } |
| |
| /* Check the engine status before continue */ |
| ret = wait_status(engine, DMM_PATSTATUS_READY | |
| DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE); |
| } |
| |
| cleanup: |
| /* only place engine back on list if we are done with it */ |
| if (ret || wait) |
| release_engine(engine); |
| |
| return ret; |
| } |
| |
| /* |
| * DMM programming |
| */ |
| static int fill(struct tcm_area *area, struct page **pages, |
| u32 npages, u32 roll, bool wait) |
| { |
| int ret = 0; |
| struct tcm_area slice, area_s; |
| struct dmm_txn *txn; |
| |
| /* |
| * FIXME |
| * |
| * Asynchronous fill does not work reliably, as the driver does not |
| * handle errors in the async code paths. The fill operation may |
| * silently fail, leading to leaking DMM engines, which may eventually |
| * lead to deadlock if we run out of DMM engines. |
| * |
| * For now, always set 'wait' so that we only use sync fills. Async |
| * fills should be fixed, or alternatively we could decide to only |
| * support sync fills and so the whole async code path could be removed. |
| */ |
| |
| wait = true; |
| |
| txn = dmm_txn_init(omap_dmm, area->tcm); |
| if (IS_ERR_OR_NULL(txn)) |
| return -ENOMEM; |
| |
| tcm_for_each_slice(slice, *area, area_s) { |
| struct pat_area p_area = { |
| .x0 = slice.p0.x, .y0 = slice.p0.y, |
| .x1 = slice.p1.x, .y1 = slice.p1.y, |
| }; |
| |
| dmm_txn_append(txn, &p_area, pages, npages, roll); |
| |
| roll += tcm_sizeof(slice); |
| } |
| |
| ret = dmm_txn_commit(txn, wait); |
| |
| return ret; |
| } |
| |
| /* |
| * Pin/unpin |
| */ |
| |
| /* note: slots for which pages[i] == NULL are filled w/ dummy page |
| */ |
| int tiler_pin(struct tiler_block *block, struct page **pages, |
| u32 npages, u32 roll, bool wait) |
| { |
| int ret; |
| |
| ret = fill(&block->area, pages, npages, roll, wait); |
| |
| if (ret) |
| tiler_unpin(block); |
| |
| return ret; |
| } |
| |
| int tiler_unpin(struct tiler_block *block) |
| { |
| return fill(&block->area, NULL, 0, 0, false); |
| } |
| |
| /* |
| * Reserve/release |
| */ |
| struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w, |
| u16 h, u16 align) |
| { |
| struct tiler_block *block; |
| u32 min_align = 128; |
| int ret; |
| unsigned long flags; |
| u32 slot_bytes; |
| |
| block = kzalloc(sizeof(*block), GFP_KERNEL); |
| if (!block) |
| return ERR_PTR(-ENOMEM); |
| |
| BUG_ON(!validfmt(fmt)); |
| |
| /* convert width/height to slots */ |
| w = DIV_ROUND_UP(w, geom[fmt].slot_w); |
| h = DIV_ROUND_UP(h, geom[fmt].slot_h); |
| |
| /* convert alignment to slots */ |
| slot_bytes = geom[fmt].slot_w * geom[fmt].cpp; |
| min_align = max(min_align, slot_bytes); |
| align = (align > min_align) ? ALIGN(align, min_align) : min_align; |
| align /= slot_bytes; |
| |
| block->fmt = fmt; |
| |
| ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes, |
| &block->area); |
| if (ret) { |
| kfree(block); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* add to allocation list */ |
| spin_lock_irqsave(&list_lock, flags); |
| list_add(&block->alloc_node, &omap_dmm->alloc_head); |
| spin_unlock_irqrestore(&list_lock, flags); |
| |
| return block; |
| } |
| |
| struct tiler_block *tiler_reserve_1d(size_t size) |
| { |
| struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); |
| int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| unsigned long flags; |
| |
| if (!block) |
| return ERR_PTR(-ENOMEM); |
| |
| block->fmt = TILFMT_PAGE; |
| |
| if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages, |
| &block->area)) { |
| kfree(block); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| spin_lock_irqsave(&list_lock, flags); |
| list_add(&block->alloc_node, &omap_dmm->alloc_head); |
| spin_unlock_irqrestore(&list_lock, flags); |
| |
| return block; |
| } |
| |
| /* note: if you have pin'd pages, you should have already unpin'd first! */ |
| int tiler_release(struct tiler_block *block) |
| { |
| int ret = tcm_free(&block->area); |
| unsigned long flags; |
| |
| if (block->area.tcm) |
| dev_err(omap_dmm->dev, "failed to release block\n"); |
| |
| spin_lock_irqsave(&list_lock, flags); |
| list_del(&block->alloc_node); |
| spin_unlock_irqrestore(&list_lock, flags); |
| |
| kfree(block); |
| return ret; |
| } |
| |
| /* |
| * Utils |
| */ |
| |
| /* calculate the tiler space address of a pixel in a view orientation... |
| * below description copied from the display subsystem section of TRM: |
| * |
| * When the TILER is addressed, the bits: |
| * [28:27] = 0x0 for 8-bit tiled |
| * 0x1 for 16-bit tiled |
| * 0x2 for 32-bit tiled |
| * 0x3 for page mode |
| * [31:29] = 0x0 for 0-degree view |
| * 0x1 for 180-degree view + mirroring |
| * 0x2 for 0-degree view + mirroring |
| * 0x3 for 180-degree view |
| * 0x4 for 270-degree view + mirroring |
| * 0x5 for 270-degree view |
| * 0x6 for 90-degree view |
| * 0x7 for 90-degree view + mirroring |
| * Otherwise the bits indicated the corresponding bit address to access |
| * the SDRAM. |
| */ |
| static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y) |
| { |
| u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment; |
| |
| x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft; |
| y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft; |
| alignment = geom[fmt].x_shft + geom[fmt].y_shft; |
| |
| /* validate coordinate */ |
| x_mask = MASK(x_bits); |
| y_mask = MASK(y_bits); |
| |
| if (x < 0 || x > x_mask || y < 0 || y > y_mask) { |
| DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u", |
| x, x, x_mask, y, y, y_mask); |
| return 0; |
| } |
| |
| /* account for mirroring */ |
| if (orient & MASK_X_INVERT) |
| x ^= x_mask; |
| if (orient & MASK_Y_INVERT) |
| y ^= y_mask; |
| |
| /* get coordinate address */ |
| if (orient & MASK_XY_FLIP) |
| tmp = ((x << y_bits) + y); |
| else |
| tmp = ((y << x_bits) + x); |
| |
| return TIL_ADDR((tmp << alignment), orient, fmt); |
| } |
| |
| dma_addr_t tiler_ssptr(struct tiler_block *block) |
| { |
| BUG_ON(!validfmt(block->fmt)); |
| |
| return TILVIEW_8BIT + tiler_get_address(block->fmt, 0, |
| block->area.p0.x * geom[block->fmt].slot_w, |
| block->area.p0.y * geom[block->fmt].slot_h); |
| } |
| |
| dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient, |
| u32 x, u32 y) |
| { |
| struct tcm_pt *p = &block->area.p0; |
| BUG_ON(!validfmt(block->fmt)); |
| |
| return tiler_get_address(block->fmt, orient, |
| (p->x * geom[block->fmt].slot_w) + x, |
| (p->y * geom[block->fmt].slot_h) + y); |
| } |
| |
| void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h) |
| { |
| BUG_ON(!validfmt(fmt)); |
| *w = round_up(*w, geom[fmt].slot_w); |
| *h = round_up(*h, geom[fmt].slot_h); |
| } |
| |
| u32 tiler_stride(enum tiler_fmt fmt, u32 orient) |
| { |
| BUG_ON(!validfmt(fmt)); |
| |
| if (orient & MASK_XY_FLIP) |
| return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft); |
| else |
| return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft); |
| } |
| |
| size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h) |
| { |
| tiler_align(fmt, &w, &h); |
| return geom[fmt].cpp * w * h; |
| } |
| |
| size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h) |
| { |
| BUG_ON(!validfmt(fmt)); |
| return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h; |
| } |
| |
| u32 tiler_get_cpu_cache_flags(void) |
| { |
| return omap_dmm->plat_data->cpu_cache_flags; |
| } |
| |
| bool dmm_is_available(void) |
| { |
| return omap_dmm ? true : false; |
| } |
| |
| static void omap_dmm_remove(struct platform_device *dev) |
| { |
| struct tiler_block *block, *_block; |
| int i; |
| unsigned long flags; |
| |
| if (omap_dmm) { |
| /* Disable all enabled interrupts */ |
| dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR); |
| free_irq(omap_dmm->irq, omap_dmm); |
| |
| /* free all area regions */ |
| spin_lock_irqsave(&list_lock, flags); |
| list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head, |
| alloc_node) { |
| list_del(&block->alloc_node); |
| kfree(block); |
| } |
| spin_unlock_irqrestore(&list_lock, flags); |
| |
| for (i = 0; i < omap_dmm->num_lut; i++) |
| if (omap_dmm->tcm && omap_dmm->tcm[i]) |
| omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]); |
| kfree(omap_dmm->tcm); |
| |
| kfree(omap_dmm->engines); |
| if (omap_dmm->refill_va) |
| dma_free_wc(omap_dmm->dev, |
| REFILL_BUFFER_SIZE * omap_dmm->num_engines, |
| omap_dmm->refill_va, omap_dmm->refill_pa); |
| if (omap_dmm->dummy_page) |
| __free_page(omap_dmm->dummy_page); |
| |
| if (omap_dmm->dmm_workaround) |
| dmm_workaround_uninit(omap_dmm); |
| |
| iounmap(omap_dmm->base); |
| kfree(omap_dmm); |
| omap_dmm = NULL; |
| } |
| } |
| |
| static int omap_dmm_probe(struct platform_device *dev) |
| { |
| int ret = -EFAULT, i; |
| struct tcm_area area = {0}; |
| u32 hwinfo, pat_geom; |
| struct resource *mem; |
| |
| omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL); |
| if (!omap_dmm) |
| goto fail; |
| |
| /* initialize lists */ |
| INIT_LIST_HEAD(&omap_dmm->alloc_head); |
| INIT_LIST_HEAD(&omap_dmm->idle_head); |
| |
| init_waitqueue_head(&omap_dmm->engine_queue); |
| |
| if (dev->dev.of_node) { |
| const struct of_device_id *match; |
| |
| match = of_match_node(dmm_of_match, dev->dev.of_node); |
| if (!match) { |
| dev_err(&dev->dev, "failed to find matching device node\n"); |
| ret = -ENODEV; |
| goto fail; |
| } |
| |
| omap_dmm->plat_data = match->data; |
| } |
| |
| /* lookup hwmod data - base address and irq */ |
| mem = platform_get_resource(dev, IORESOURCE_MEM, 0); |
| if (!mem) { |
| dev_err(&dev->dev, "failed to get base address resource\n"); |
| goto fail; |
| } |
| |
| omap_dmm->phys_base = mem->start; |
| omap_dmm->base = ioremap(mem->start, SZ_2K); |
| |
| if (!omap_dmm->base) { |
| dev_err(&dev->dev, "failed to get dmm base address\n"); |
| goto fail; |
| } |
| |
| omap_dmm->irq = platform_get_irq(dev, 0); |
| if (omap_dmm->irq < 0) |
| goto fail; |
| |
| omap_dmm->dev = &dev->dev; |
| |
| if (of_machine_is_compatible("ti,dra7")) { |
| /* |
| * DRA7 Errata i878 says that MPU should not be used to access |
| * RAM and DMM at the same time. As it's not possible to prevent |
| * MPU accessing RAM, we need to access DMM via a proxy. |
| */ |
| if (!dmm_workaround_init(omap_dmm)) { |
| omap_dmm->dmm_workaround = true; |
| dev_info(&dev->dev, |
| "workaround for errata i878 in use\n"); |
| } else { |
| dev_warn(&dev->dev, |
| "failed to initialize work-around for i878\n"); |
| } |
| } |
| |
| hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO); |
| omap_dmm->num_engines = (hwinfo >> 24) & 0x1F; |
| omap_dmm->num_lut = (hwinfo >> 16) & 0x1F; |
| omap_dmm->container_width = 256; |
| omap_dmm->container_height = 128; |
| |
| atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines); |
| |
| /* read out actual LUT width and height */ |
| pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY); |
| omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5; |
| omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5; |
| |
| /* increment LUT by one if on OMAP5 */ |
| /* LUT has twice the height, and is split into a separate container */ |
| if (omap_dmm->lut_height != omap_dmm->container_height) |
| omap_dmm->num_lut++; |
| |
| /* initialize DMM registers */ |
| dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0); |
| dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1); |
| dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0); |
| dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE); |
| dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0); |
| dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1); |
| |
| omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32); |
| if (!omap_dmm->dummy_page) { |
| dev_err(&dev->dev, "could not allocate dummy page\n"); |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| /* set dma mask for device */ |
| ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32)); |
| if (ret) |
| goto fail; |
| |
| omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page); |
| |
| /* alloc refill memory */ |
| omap_dmm->refill_va = dma_alloc_wc(&dev->dev, |
| REFILL_BUFFER_SIZE * omap_dmm->num_engines, |
| &omap_dmm->refill_pa, GFP_KERNEL); |
| if (!omap_dmm->refill_va) { |
| dev_err(&dev->dev, "could not allocate refill memory\n"); |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| /* alloc engines */ |
| omap_dmm->engines = kcalloc(omap_dmm->num_engines, |
| sizeof(*omap_dmm->engines), GFP_KERNEL); |
| if (!omap_dmm->engines) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| for (i = 0; i < omap_dmm->num_engines; i++) { |
| omap_dmm->engines[i].id = i; |
| omap_dmm->engines[i].dmm = omap_dmm; |
| omap_dmm->engines[i].refill_va = omap_dmm->refill_va + |
| (REFILL_BUFFER_SIZE * i); |
| omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa + |
| (REFILL_BUFFER_SIZE * i); |
| init_completion(&omap_dmm->engines[i].compl); |
| |
| list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head); |
| } |
| |
| omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm), |
| GFP_KERNEL); |
| if (!omap_dmm->tcm) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| /* init containers */ |
| /* Each LUT is associated with a TCM (container manager). We use the |
| lut_id to denote the lut_id used to identify the correct LUT for |
| programming during reill operations */ |
| for (i = 0; i < omap_dmm->num_lut; i++) { |
| omap_dmm->tcm[i] = sita_init(omap_dmm->container_width, |
| omap_dmm->container_height); |
| |
| if (!omap_dmm->tcm[i]) { |
| dev_err(&dev->dev, "failed to allocate container\n"); |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| omap_dmm->tcm[i]->lut_id = i; |
| } |
| |
| /* assign access mode containers to applicable tcm container */ |
| /* OMAP 4 has 1 container for all 4 views */ |
| /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */ |
| containers[TILFMT_8BIT] = omap_dmm->tcm[0]; |
| containers[TILFMT_16BIT] = omap_dmm->tcm[0]; |
| containers[TILFMT_32BIT] = omap_dmm->tcm[0]; |
| |
| if (omap_dmm->container_height != omap_dmm->lut_height) { |
| /* second LUT is used for PAGE mode. Programming must use |
| y offset that is added to all y coordinates. LUT id is still |
| 0, because it is the same LUT, just the upper 128 lines */ |
| containers[TILFMT_PAGE] = omap_dmm->tcm[1]; |
| omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET; |
| omap_dmm->tcm[1]->lut_id = 0; |
| } else { |
| containers[TILFMT_PAGE] = omap_dmm->tcm[0]; |
| } |
| |
| area = (struct tcm_area) { |
| .tcm = NULL, |
| .p1.x = omap_dmm->container_width - 1, |
| .p1.y = omap_dmm->container_height - 1, |
| }; |
| |
| ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED, |
| "omap_dmm_irq_handler", omap_dmm); |
| |
| if (ret) { |
| dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n", |
| omap_dmm->irq, ret); |
| omap_dmm->irq = -1; |
| goto fail; |
| } |
| |
| /* Enable all interrupts for each refill engine except |
| * ERR_LUT_MISS<n> (which is just advisory, and we don't care |
| * about because we want to be able to refill live scanout |
| * buffers for accelerated pan/scroll) and FILL_DSC<n> which |
| * we just generally don't care about. |
| */ |
| dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET); |
| |
| /* initialize all LUTs to dummy page entries */ |
| for (i = 0; i < omap_dmm->num_lut; i++) { |
| area.tcm = omap_dmm->tcm[i]; |
| if (fill(&area, NULL, 0, 0, true)) |
| dev_err(omap_dmm->dev, "refill failed"); |
| } |
| |
| dev_info(omap_dmm->dev, "initialized all PAT entries\n"); |
| |
| return 0; |
| |
| fail: |
| omap_dmm_remove(dev); |
| return ret; |
| } |
| |
| /* |
| * debugfs support |
| */ |
| |
| #ifdef CONFIG_DEBUG_FS |
| |
| static const char *alphabet = "abcdefghijklmnopqrstuvwxyz" |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; |
| static const char *special = ".,:;'\"`~!^-+"; |
| |
| static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a, |
| char c, bool ovw) |
| { |
| int x, y; |
| for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++) |
| for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++) |
| if (map[y][x] == ' ' || ovw) |
| map[y][x] = c; |
| } |
| |
| static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p, |
| char c) |
| { |
| map[p->y / ydiv][p->x / xdiv] = c; |
| } |
| |
| static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p) |
| { |
| return map[p->y / ydiv][p->x / xdiv]; |
| } |
| |
| static int map_width(int xdiv, int x0, int x1) |
| { |
| return (x1 / xdiv) - (x0 / xdiv) + 1; |
| } |
| |
| static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1) |
| { |
| char *p = map[yd] + (x0 / xdiv); |
| int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2; |
| if (w >= 0) { |
| p += w; |
| while (*nice) |
| *p++ = *nice++; |
| } |
| } |
| |
| static void map_1d_info(char **map, int xdiv, int ydiv, char *nice, |
| struct tcm_area *a) |
| { |
| sprintf(nice, "%dK", tcm_sizeof(*a) * 4); |
| if (a->p0.y + 1 < a->p1.y) { |
| text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0, |
| 256 - 1); |
| } else if (a->p0.y < a->p1.y) { |
| if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1)) |
| text_map(map, xdiv, nice, a->p0.y / ydiv, |
| a->p0.x + xdiv, 256 - 1); |
| else if (strlen(nice) < map_width(xdiv, 0, a->p1.x)) |
| text_map(map, xdiv, nice, a->p1.y / ydiv, |
| 0, a->p1.y - xdiv); |
| } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) { |
| text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x); |
| } |
| } |
| |
| static void map_2d_info(char **map, int xdiv, int ydiv, char *nice, |
| struct tcm_area *a) |
| { |
| sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a)); |
| if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) |
| text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, |
| a->p0.x, a->p1.x); |
| } |
| |
| int tiler_map_show(struct seq_file *s, void *arg) |
| { |
| int xdiv = 2, ydiv = 1; |
| char **map = NULL, *global_map; |
| struct tiler_block *block; |
| struct tcm_area a, p; |
| int i; |
| const char *m2d = alphabet; |
| const char *a2d = special; |
| const char *m2dp = m2d, *a2dp = a2d; |
| char nice[128]; |
| int h_adj; |
| int w_adj; |
| unsigned long flags; |
| int lut_idx; |
| |
| |
| if (!omap_dmm) { |
| /* early return if dmm/tiler device is not initialized */ |
| return 0; |
| } |
| |
| h_adj = omap_dmm->container_height / ydiv; |
| w_adj = omap_dmm->container_width / xdiv; |
| |
| map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL); |
| global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL); |
| |
| if (!map || !global_map) |
| goto error; |
| |
| for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) { |
| memset(map, 0, h_adj * sizeof(*map)); |
| memset(global_map, ' ', (w_adj + 1) * h_adj); |
| |
| for (i = 0; i < omap_dmm->container_height; i++) { |
| map[i] = global_map + i * (w_adj + 1); |
| map[i][w_adj] = 0; |
| } |
| |
| spin_lock_irqsave(&list_lock, flags); |
| |
| list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) { |
| if (block->area.tcm == omap_dmm->tcm[lut_idx]) { |
| if (block->fmt != TILFMT_PAGE) { |
| fill_map(map, xdiv, ydiv, &block->area, |
| *m2dp, true); |
| if (!*++a2dp) |
| a2dp = a2d; |
| if (!*++m2dp) |
| m2dp = m2d; |
| map_2d_info(map, xdiv, ydiv, nice, |
| &block->area); |
| } else { |
| bool start = read_map_pt(map, xdiv, |
| ydiv, &block->area.p0) == ' '; |
| bool end = read_map_pt(map, xdiv, ydiv, |
| &block->area.p1) == ' '; |
| |
| tcm_for_each_slice(a, block->area, p) |
| fill_map(map, xdiv, ydiv, &a, |
| '=', true); |
| fill_map_pt(map, xdiv, ydiv, |
| &block->area.p0, |
| start ? '<' : 'X'); |
| fill_map_pt(map, xdiv, ydiv, |
| &block->area.p1, |
| end ? '>' : 'X'); |
| map_1d_info(map, xdiv, ydiv, nice, |
| &block->area); |
| } |
| } |
| } |
| |
| spin_unlock_irqrestore(&list_lock, flags); |
| |
| if (s) { |
| seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx); |
| for (i = 0; i < 128; i++) |
| seq_printf(s, "%03d:%s\n", i, map[i]); |
| seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx); |
| } else { |
| dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n", |
| lut_idx); |
| for (i = 0; i < 128; i++) |
| dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]); |
| dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n", |
| lut_idx); |
| } |
| } |
| |
| error: |
| kfree(map); |
| kfree(global_map); |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int omap_dmm_resume(struct device *dev) |
| { |
| struct tcm_area area; |
| int i; |
| |
| if (!omap_dmm) |
| return -ENODEV; |
| |
| area = (struct tcm_area) { |
| .tcm = NULL, |
| .p1.x = omap_dmm->container_width - 1, |
| .p1.y = omap_dmm->container_height - 1, |
| }; |
| |
| /* initialize all LUTs to dummy page entries */ |
| for (i = 0; i < omap_dmm->num_lut; i++) { |
| area.tcm = omap_dmm->tcm[i]; |
| if (fill(&area, NULL, 0, 0, true)) |
| dev_err(dev, "refill failed"); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume); |
| |
| #if defined(CONFIG_OF) |
| static const struct dmm_platform_data dmm_omap4_platform_data = { |
| .cpu_cache_flags = OMAP_BO_WC, |
| }; |
| |
| static const struct dmm_platform_data dmm_omap5_platform_data = { |
| .cpu_cache_flags = OMAP_BO_UNCACHED, |
| }; |
| |
| static const struct of_device_id dmm_of_match[] = { |
| { |
| .compatible = "ti,omap4-dmm", |
| .data = &dmm_omap4_platform_data, |
| }, |
| { |
| .compatible = "ti,omap5-dmm", |
| .data = &dmm_omap5_platform_data, |
| }, |
| {}, |
| }; |
| #endif |
| |
| struct platform_driver omap_dmm_driver = { |
| .probe = omap_dmm_probe, |
| .remove_new = omap_dmm_remove, |
| .driver = { |
| .name = DMM_DRIVER_NAME, |
| .of_match_table = of_match_ptr(dmm_of_match), |
| .pm = &omap_dmm_pm_ops, |
| }, |
| }; |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>"); |
| MODULE_DESCRIPTION("OMAP DMM/Tiler Driver"); |