| // SPDX-License-Identifier: GPL-2.0 |
| /* Marvell RVU Admin Function driver |
| * |
| * Copyright (C) 2020 Marvell. |
| */ |
| |
| #include <linux/bitfield.h> |
| |
| #include "rvu_struct.h" |
| #include "rvu_reg.h" |
| #include "rvu.h" |
| #include "npc.h" |
| #include "rvu_npc_fs.h" |
| #include "rvu_npc_hash.h" |
| |
| static const char * const npc_flow_names[] = { |
| [NPC_DMAC] = "dmac", |
| [NPC_SMAC] = "smac", |
| [NPC_ETYPE] = "ether type", |
| [NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag", |
| [NPC_VLAN_ETYPE_STAG] = "vlan ether type stag", |
| [NPC_OUTER_VID] = "outer vlan id", |
| [NPC_TOS] = "tos", |
| [NPC_IPFRAG_IPV4] = "fragmented IPv4 header ", |
| [NPC_SIP_IPV4] = "ipv4 source ip", |
| [NPC_DIP_IPV4] = "ipv4 destination ip", |
| [NPC_IPFRAG_IPV6] = "fragmented IPv6 header ", |
| [NPC_SIP_IPV6] = "ipv6 source ip", |
| [NPC_DIP_IPV6] = "ipv6 destination ip", |
| [NPC_IPPROTO_TCP] = "ip proto tcp", |
| [NPC_IPPROTO_UDP] = "ip proto udp", |
| [NPC_IPPROTO_SCTP] = "ip proto sctp", |
| [NPC_IPPROTO_ICMP] = "ip proto icmp", |
| [NPC_IPPROTO_ICMP6] = "ip proto icmp6", |
| [NPC_IPPROTO_AH] = "ip proto AH", |
| [NPC_IPPROTO_ESP] = "ip proto ESP", |
| [NPC_SPORT_TCP] = "tcp source port", |
| [NPC_DPORT_TCP] = "tcp destination port", |
| [NPC_SPORT_UDP] = "udp source port", |
| [NPC_DPORT_UDP] = "udp destination port", |
| [NPC_SPORT_SCTP] = "sctp source port", |
| [NPC_DPORT_SCTP] = "sctp destination port", |
| [NPC_LXMB] = "Mcast/Bcast header ", |
| [NPC_UNKNOWN] = "unknown", |
| }; |
| |
| bool npc_is_feature_supported(struct rvu *rvu, u64 features, u8 intf) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| u64 mcam_features; |
| u64 unsupported; |
| |
| mcam_features = is_npc_intf_tx(intf) ? mcam->tx_features : mcam->rx_features; |
| unsupported = (mcam_features ^ features) & ~mcam_features; |
| |
| /* Return false if at least one of the input flows is not extracted */ |
| return !unsupported; |
| } |
| |
| const char *npc_get_field_name(u8 hdr) |
| { |
| if (hdr >= ARRAY_SIZE(npc_flow_names)) |
| return npc_flow_names[NPC_UNKNOWN]; |
| |
| return npc_flow_names[hdr]; |
| } |
| |
| /* Compute keyword masks and figure out the number of keywords a field |
| * spans in the key. |
| */ |
| static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type, |
| u8 nr_bits, int start_kwi, int offset, u8 intf) |
| { |
| struct npc_key_field *field = &mcam->rx_key_fields[type]; |
| u8 bits_in_kw; |
| int max_kwi; |
| |
| if (mcam->banks_per_entry == 1) |
| max_kwi = 1; /* NPC_MCAM_KEY_X1 */ |
| else if (mcam->banks_per_entry == 2) |
| max_kwi = 3; /* NPC_MCAM_KEY_X2 */ |
| else |
| max_kwi = 6; /* NPC_MCAM_KEY_X4 */ |
| |
| if (is_npc_intf_tx(intf)) |
| field = &mcam->tx_key_fields[type]; |
| |
| if (offset + nr_bits <= 64) { |
| /* one KW only */ |
| if (start_kwi > max_kwi) |
| return; |
| field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0) |
| << offset; |
| field->nr_kws = 1; |
| } else if (offset + nr_bits > 64 && |
| offset + nr_bits <= 128) { |
| /* two KWs */ |
| if (start_kwi + 1 > max_kwi) |
| return; |
| /* first KW mask */ |
| bits_in_kw = 64 - offset; |
| field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0) |
| << offset; |
| /* second KW mask i.e. mask for rest of bits */ |
| bits_in_kw = nr_bits + offset - 64; |
| field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0); |
| field->nr_kws = 2; |
| } else { |
| /* three KWs */ |
| if (start_kwi + 2 > max_kwi) |
| return; |
| /* first KW mask */ |
| bits_in_kw = 64 - offset; |
| field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0) |
| << offset; |
| /* second KW mask */ |
| field->kw_mask[start_kwi + 1] = ~0ULL; |
| /* third KW mask i.e. mask for rest of bits */ |
| bits_in_kw = nr_bits + offset - 128; |
| field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0); |
| field->nr_kws = 3; |
| } |
| } |
| |
| /* Helper function to figure out whether field exists in the key */ |
| static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| struct npc_key_field *input; |
| |
| input = &mcam->rx_key_fields[type]; |
| if (is_npc_intf_tx(intf)) |
| input = &mcam->tx_key_fields[type]; |
| |
| return input->nr_kws > 0; |
| } |
| |
| static bool npc_is_same(struct npc_key_field *input, |
| struct npc_key_field *field) |
| { |
| return memcmp(&input->layer_mdata, &field->layer_mdata, |
| sizeof(struct npc_layer_mdata)) == 0; |
| } |
| |
| static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type, |
| u64 cfg, u8 lid, u8 lt, u8 intf) |
| { |
| struct npc_key_field *input = &mcam->rx_key_fields[type]; |
| |
| if (is_npc_intf_tx(intf)) |
| input = &mcam->tx_key_fields[type]; |
| |
| input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg); |
| input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg); |
| input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1; |
| input->layer_mdata.ltype = lt; |
| input->layer_mdata.lid = lid; |
| } |
| |
| static bool npc_check_overlap_fields(struct npc_key_field *input1, |
| struct npc_key_field *input2) |
| { |
| int kwi; |
| |
| /* Fields with same layer id and different ltypes are mutually |
| * exclusive hence they can be overlapped |
| */ |
| if (input1->layer_mdata.lid == input2->layer_mdata.lid && |
| input1->layer_mdata.ltype != input2->layer_mdata.ltype) |
| return false; |
| |
| for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) { |
| if (input1->kw_mask[kwi] & input2->kw_mask[kwi]) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Helper function to check whether given field overlaps with any other fields |
| * in the key. Due to limitations on key size and the key extraction profile in |
| * use higher layers can overwrite lower layer's header fields. Hence overlap |
| * needs to be checked. |
| */ |
| static bool npc_check_overlap(struct rvu *rvu, int blkaddr, |
| enum key_fields type, u8 start_lid, u8 intf) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| struct npc_key_field *dummy, *input; |
| int start_kwi, offset; |
| u8 nr_bits, lid, lt, ld; |
| u64 cfg; |
| |
| dummy = &mcam->rx_key_fields[NPC_UNKNOWN]; |
| input = &mcam->rx_key_fields[type]; |
| |
| if (is_npc_intf_tx(intf)) { |
| dummy = &mcam->tx_key_fields[NPC_UNKNOWN]; |
| input = &mcam->tx_key_fields[type]; |
| } |
| |
| for (lid = start_lid; lid < NPC_MAX_LID; lid++) { |
| for (lt = 0; lt < NPC_MAX_LT; lt++) { |
| for (ld = 0; ld < NPC_MAX_LD; ld++) { |
| cfg = rvu_read64(rvu, blkaddr, |
| NPC_AF_INTFX_LIDX_LTX_LDX_CFG |
| (intf, lid, lt, ld)); |
| if (!FIELD_GET(NPC_LDATA_EN, cfg)) |
| continue; |
| memset(dummy, 0, sizeof(struct npc_key_field)); |
| npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg, |
| lid, lt, intf); |
| /* exclude input */ |
| if (npc_is_same(input, dummy)) |
| continue; |
| start_kwi = dummy->layer_mdata.key / 8; |
| offset = (dummy->layer_mdata.key * 8) % 64; |
| nr_bits = dummy->layer_mdata.len * 8; |
| /* form KW masks */ |
| npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits, |
| start_kwi, offset, intf); |
| /* check any input field bits falls in any |
| * other field bits. |
| */ |
| if (npc_check_overlap_fields(dummy, input)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type, |
| u8 intf) |
| { |
| if (!npc_is_field_present(rvu, type, intf) || |
| npc_check_overlap(rvu, blkaddr, type, 0, intf)) |
| return false; |
| return true; |
| } |
| |
| static void npc_scan_exact_result(struct npc_mcam *mcam, u8 bit_number, |
| u8 key_nibble, u8 intf) |
| { |
| u8 offset = (key_nibble * 4) % 64; /* offset within key word */ |
| u8 kwi = (key_nibble * 4) / 64; /* which word in key */ |
| u8 nr_bits = 4; /* bits in a nibble */ |
| u8 type; |
| |
| switch (bit_number) { |
| case 40 ... 43: |
| type = NPC_EXACT_RESULT; |
| break; |
| |
| default: |
| return; |
| } |
| npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf); |
| } |
| |
| static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number, |
| u8 key_nibble, u8 intf) |
| { |
| u8 offset = (key_nibble * 4) % 64; /* offset within key word */ |
| u8 kwi = (key_nibble * 4) / 64; /* which word in key */ |
| u8 nr_bits = 4; /* bits in a nibble */ |
| u8 type; |
| |
| switch (bit_number) { |
| case 0 ... 2: |
| type = NPC_CHAN; |
| break; |
| case 3: |
| type = NPC_ERRLEV; |
| break; |
| case 4 ... 5: |
| type = NPC_ERRCODE; |
| break; |
| case 6: |
| type = NPC_LXMB; |
| break; |
| /* check for LTYPE only as of now */ |
| case 9: |
| type = NPC_LA; |
| break; |
| case 12: |
| type = NPC_LB; |
| break; |
| case 15: |
| type = NPC_LC; |
| break; |
| case 18: |
| type = NPC_LD; |
| break; |
| case 21: |
| type = NPC_LE; |
| break; |
| case 24: |
| type = NPC_LF; |
| break; |
| case 27: |
| type = NPC_LG; |
| break; |
| case 30: |
| type = NPC_LH; |
| break; |
| default: |
| return; |
| } |
| |
| npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf); |
| } |
| |
| static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| struct npc_key_field *key_fields; |
| /* Ether type can come from three layers |
| * (ethernet, single tagged, double tagged) |
| */ |
| struct npc_key_field *etype_ether; |
| struct npc_key_field *etype_tag1; |
| struct npc_key_field *etype_tag2; |
| /* Outer VLAN TCI can come from two layers |
| * (single tagged, double tagged) |
| */ |
| struct npc_key_field *vlan_tag1; |
| struct npc_key_field *vlan_tag2; |
| u64 *features; |
| u8 start_lid; |
| int i; |
| |
| key_fields = mcam->rx_key_fields; |
| features = &mcam->rx_features; |
| |
| if (is_npc_intf_tx(intf)) { |
| key_fields = mcam->tx_key_fields; |
| features = &mcam->tx_features; |
| } |
| |
| /* Handle header fields which can come from multiple layers like |
| * etype, outer vlan tci. These fields should have same position in |
| * the key otherwise to install a mcam rule more than one entry is |
| * needed which complicates mcam space management. |
| */ |
| etype_ether = &key_fields[NPC_ETYPE_ETHER]; |
| etype_tag1 = &key_fields[NPC_ETYPE_TAG1]; |
| etype_tag2 = &key_fields[NPC_ETYPE_TAG2]; |
| vlan_tag1 = &key_fields[NPC_VLAN_TAG1]; |
| vlan_tag2 = &key_fields[NPC_VLAN_TAG2]; |
| |
| /* if key profile programmed does not extract Ethertype at all */ |
| if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) { |
| dev_err(rvu->dev, "mkex: Ethertype is not extracted.\n"); |
| goto vlan_tci; |
| } |
| |
| /* if key profile programmed extracts Ethertype from one layer */ |
| if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) |
| key_fields[NPC_ETYPE] = *etype_ether; |
| if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws) |
| key_fields[NPC_ETYPE] = *etype_tag1; |
| if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws) |
| key_fields[NPC_ETYPE] = *etype_tag2; |
| |
| /* if key profile programmed extracts Ethertype from multiple layers */ |
| if (etype_ether->nr_kws && etype_tag1->nr_kws) { |
| for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { |
| if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i]) { |
| dev_err(rvu->dev, "mkex: Etype pos is different for untagged and tagged pkts.\n"); |
| goto vlan_tci; |
| } |
| } |
| key_fields[NPC_ETYPE] = *etype_tag1; |
| } |
| if (etype_ether->nr_kws && etype_tag2->nr_kws) { |
| for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { |
| if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i]) { |
| dev_err(rvu->dev, "mkex: Etype pos is different for untagged and double tagged pkts.\n"); |
| goto vlan_tci; |
| } |
| } |
| key_fields[NPC_ETYPE] = *etype_tag2; |
| } |
| if (etype_tag1->nr_kws && etype_tag2->nr_kws) { |
| for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { |
| if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i]) { |
| dev_err(rvu->dev, "mkex: Etype pos is different for tagged and double tagged pkts.\n"); |
| goto vlan_tci; |
| } |
| } |
| key_fields[NPC_ETYPE] = *etype_tag2; |
| } |
| |
| /* check none of higher layers overwrite Ethertype */ |
| start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1; |
| if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf)) { |
| dev_err(rvu->dev, "mkex: Ethertype is overwritten by higher layers.\n"); |
| goto vlan_tci; |
| } |
| *features |= BIT_ULL(NPC_ETYPE); |
| vlan_tci: |
| /* if key profile does not extract outer vlan tci at all */ |
| if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws) { |
| dev_err(rvu->dev, "mkex: Outer vlan tci is not extracted.\n"); |
| goto done; |
| } |
| |
| /* if key profile extracts outer vlan tci from one layer */ |
| if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws) |
| key_fields[NPC_OUTER_VID] = *vlan_tag1; |
| if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws) |
| key_fields[NPC_OUTER_VID] = *vlan_tag2; |
| |
| /* if key profile extracts outer vlan tci from multiple layers */ |
| if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) { |
| for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { |
| if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i]) { |
| dev_err(rvu->dev, "mkex: Out vlan tci pos is different for tagged and double tagged pkts.\n"); |
| goto done; |
| } |
| } |
| key_fields[NPC_OUTER_VID] = *vlan_tag2; |
| } |
| /* check none of higher layers overwrite outer vlan tci */ |
| start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1; |
| if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf)) { |
| dev_err(rvu->dev, "mkex: Outer vlan tci is overwritten by higher layers.\n"); |
| goto done; |
| } |
| *features |= BIT_ULL(NPC_OUTER_VID); |
| done: |
| return; |
| } |
| |
| static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid, |
| u8 lt, u64 cfg, u8 intf) |
| { |
| struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash; |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| u8 hdr, key, nr_bytes, bit_offset; |
| u8 la_ltype, la_start; |
| /* starting KW index and starting bit position */ |
| int start_kwi, offset; |
| |
| nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1; |
| hdr = FIELD_GET(NPC_HDR_OFFSET, cfg); |
| key = FIELD_GET(NPC_KEY_OFFSET, cfg); |
| |
| /* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding |
| * ethernet header. |
| */ |
| if (is_npc_intf_tx(intf)) { |
| la_ltype = NPC_LT_LA_IH_NIX_ETHER; |
| la_start = 8; |
| } else { |
| la_ltype = NPC_LT_LA_ETHER; |
| la_start = 0; |
| } |
| |
| #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen) \ |
| do { \ |
| start_kwi = key / 8; \ |
| offset = (key * 8) % 64; \ |
| if (lid == (hlid) && lt == (hlt)) { \ |
| if ((hstart) >= hdr && \ |
| ((hstart) + (hlen)) <= (hdr + nr_bytes)) { \ |
| bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \ |
| npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \ |
| offset += bit_offset; \ |
| start_kwi += offset / 64; \ |
| offset %= 64; \ |
| npc_set_kw_masks(mcam, (name), (hlen) * 8, \ |
| start_kwi, offset, intf); \ |
| } \ |
| } \ |
| } while (0) |
| |
| /* List LID, LTYPE, start offset from layer and length(in bytes) of |
| * packet header fields below. |
| * Example: Source IP is 4 bytes and starts at 12th byte of IP header |
| */ |
| NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1); |
| NPC_SCAN_HDR(NPC_IPFRAG_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 6, 1); |
| NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4); |
| NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4); |
| NPC_SCAN_HDR(NPC_IPFRAG_IPV6, NPC_LID_LC, NPC_LT_LC_IP6_EXT, 6, 1); |
| if (rvu->hw->cap.npc_hash_extract) { |
| if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][0]) |
| NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 4); |
| else |
| NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16); |
| |
| if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][1]) |
| NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 4); |
| else |
| NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16); |
| } else { |
| NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16); |
| NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16); |
| } |
| |
| NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2); |
| NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2); |
| NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2); |
| NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2); |
| NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2); |
| NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2); |
| NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2); |
| NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2); |
| NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2); |
| NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2); |
| NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2); |
| NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6); |
| /* SMAC follows the DMAC(which is 6 bytes) */ |
| NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start + 6, 6); |
| /* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */ |
| NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2); |
| } |
| |
| static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| u64 *features = &mcam->rx_features; |
| u64 tcp_udp_sctp; |
| int hdr; |
| |
| if (is_npc_intf_tx(intf)) |
| features = &mcam->tx_features; |
| |
| for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) { |
| if (npc_check_field(rvu, blkaddr, hdr, intf)) |
| *features |= BIT_ULL(hdr); |
| } |
| |
| tcp_udp_sctp = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) | |
| BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) | |
| BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP); |
| |
| /* for tcp/udp/sctp corresponding layer type should be in the key */ |
| if (*features & tcp_udp_sctp) { |
| if (!npc_check_field(rvu, blkaddr, NPC_LD, intf)) |
| *features &= ~tcp_udp_sctp; |
| else |
| *features |= BIT_ULL(NPC_IPPROTO_TCP) | |
| BIT_ULL(NPC_IPPROTO_UDP) | |
| BIT_ULL(NPC_IPPROTO_SCTP); |
| } |
| |
| /* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */ |
| if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) { |
| *features |= BIT_ULL(NPC_IPPROTO_AH); |
| *features |= BIT_ULL(NPC_IPPROTO_ICMP); |
| *features |= BIT_ULL(NPC_IPPROTO_ICMP6); |
| } |
| |
| /* for ESP, check if corresponding layer type is present in the key */ |
| if (npc_check_field(rvu, blkaddr, NPC_LE, intf)) |
| *features |= BIT_ULL(NPC_IPPROTO_ESP); |
| |
| /* for vlan corresponding layer type should be in the key */ |
| if (*features & BIT_ULL(NPC_OUTER_VID)) |
| if (!npc_check_field(rvu, blkaddr, NPC_LB, intf)) |
| *features &= ~BIT_ULL(NPC_OUTER_VID); |
| |
| /* for vlan ethertypes corresponding layer type should be in the key */ |
| if (npc_check_field(rvu, blkaddr, NPC_LB, intf)) |
| *features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) | |
| BIT_ULL(NPC_VLAN_ETYPE_STAG); |
| |
| /* for L2M/L2B/L3M/L3B, check if the type is present in the key */ |
| if (npc_check_field(rvu, blkaddr, NPC_LXMB, intf)) |
| *features |= BIT_ULL(NPC_LXMB); |
| } |
| |
| /* Scan key extraction profile and record how fields of our interest |
| * fill the key structure. Also verify Channel and DMAC exists in |
| * key and not overwritten by other header fields. |
| */ |
| static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| u8 lid, lt, ld, bitnr; |
| u64 cfg, masked_cfg; |
| u8 key_nibble = 0; |
| |
| /* Scan and note how parse result is going to be in key. |
| * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from |
| * parse result in the key. The enabled nibbles from parse result |
| * will be concatenated in key. |
| */ |
| cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf)); |
| masked_cfg = cfg & NPC_PARSE_NIBBLE; |
| for_each_set_bit(bitnr, (unsigned long *)&masked_cfg, 31) { |
| npc_scan_parse_result(mcam, bitnr, key_nibble, intf); |
| key_nibble++; |
| } |
| |
| /* Ignore exact match bits for mcam entries except the first rule |
| * which is drop on hit. This first rule is configured explitcitly by |
| * exact match code. |
| */ |
| masked_cfg = cfg & NPC_EXACT_NIBBLE; |
| bitnr = NPC_EXACT_NIBBLE_START; |
| for_each_set_bit_from(bitnr, (unsigned long *)&masked_cfg, NPC_EXACT_NIBBLE_END + 1) { |
| npc_scan_exact_result(mcam, bitnr, key_nibble, intf); |
| key_nibble++; |
| } |
| |
| /* Scan and note how layer data is going to be in key */ |
| for (lid = 0; lid < NPC_MAX_LID; lid++) { |
| for (lt = 0; lt < NPC_MAX_LT; lt++) { |
| for (ld = 0; ld < NPC_MAX_LD; ld++) { |
| cfg = rvu_read64(rvu, blkaddr, |
| NPC_AF_INTFX_LIDX_LTX_LDX_CFG |
| (intf, lid, lt, ld)); |
| if (!FIELD_GET(NPC_LDATA_EN, cfg)) |
| continue; |
| npc_scan_ldata(rvu, blkaddr, lid, lt, cfg, |
| intf); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr) |
| { |
| int err; |
| |
| err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX); |
| if (err) |
| return err; |
| |
| err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX); |
| if (err) |
| return err; |
| |
| /* Channel is mandatory */ |
| if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) { |
| dev_err(rvu->dev, "Channel not present in Key\n"); |
| return -EINVAL; |
| } |
| /* check that none of the fields overwrite channel */ |
| if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) { |
| dev_err(rvu->dev, "Channel cannot be overwritten\n"); |
| return -EINVAL; |
| } |
| |
| npc_set_features(rvu, blkaddr, NIX_INTF_TX); |
| npc_set_features(rvu, blkaddr, NIX_INTF_RX); |
| npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX); |
| npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX); |
| |
| return 0; |
| } |
| |
| int npc_flow_steering_init(struct rvu *rvu, int blkaddr) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| |
| INIT_LIST_HEAD(&mcam->mcam_rules); |
| |
| return npc_scan_verify_kex(rvu, blkaddr); |
| } |
| |
| static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| u64 *mcam_features = &mcam->rx_features; |
| u64 unsupported; |
| u8 bit; |
| |
| if (is_npc_intf_tx(intf)) |
| mcam_features = &mcam->tx_features; |
| |
| unsupported = (*mcam_features ^ features) & ~(*mcam_features); |
| if (unsupported) { |
| dev_warn(rvu->dev, "Unsupported flow(s):\n"); |
| for_each_set_bit(bit, (unsigned long *)&unsupported, 64) |
| dev_warn(rvu->dev, "%s ", npc_get_field_name(bit)); |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| /* npc_update_entry - Based on the masks generated during |
| * the key scanning, updates the given entry with value and |
| * masks for the field of interest. Maximum 16 bytes of a packet |
| * header can be extracted by HW hence lo and hi are sufficient. |
| * When field bytes are less than or equal to 8 then hi should be |
| * 0 for value and mask. |
| * |
| * If exact match of value is required then mask should be all 1's. |
| * If any bits in mask are 0 then corresponding bits in value are |
| * dont care. |
| */ |
| void npc_update_entry(struct rvu *rvu, enum key_fields type, |
| struct mcam_entry *entry, u64 val_lo, |
| u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| struct mcam_entry dummy = { {0} }; |
| struct npc_key_field *field; |
| u64 kw1, kw2, kw3; |
| u8 shift; |
| int i; |
| |
| field = &mcam->rx_key_fields[type]; |
| if (is_npc_intf_tx(intf)) |
| field = &mcam->tx_key_fields[type]; |
| |
| if (!field->nr_kws) |
| return; |
| |
| for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { |
| if (!field->kw_mask[i]) |
| continue; |
| /* place key value in kw[x] */ |
| shift = __ffs64(field->kw_mask[i]); |
| /* update entry value */ |
| kw1 = (val_lo << shift) & field->kw_mask[i]; |
| dummy.kw[i] = kw1; |
| /* update entry mask */ |
| kw1 = (mask_lo << shift) & field->kw_mask[i]; |
| dummy.kw_mask[i] = kw1; |
| |
| if (field->nr_kws == 1) |
| break; |
| /* place remaining bits of key value in kw[x + 1] */ |
| if (field->nr_kws == 2) { |
| /* update entry value */ |
| kw2 = shift ? val_lo >> (64 - shift) : 0; |
| kw2 |= (val_hi << shift); |
| kw2 &= field->kw_mask[i + 1]; |
| dummy.kw[i + 1] = kw2; |
| /* update entry mask */ |
| kw2 = shift ? mask_lo >> (64 - shift) : 0; |
| kw2 |= (mask_hi << shift); |
| kw2 &= field->kw_mask[i + 1]; |
| dummy.kw_mask[i + 1] = kw2; |
| break; |
| } |
| /* place remaining bits of key value in kw[x + 1], kw[x + 2] */ |
| if (field->nr_kws == 3) { |
| /* update entry value */ |
| kw2 = shift ? val_lo >> (64 - shift) : 0; |
| kw2 |= (val_hi << shift); |
| kw2 &= field->kw_mask[i + 1]; |
| kw3 = shift ? val_hi >> (64 - shift) : 0; |
| kw3 &= field->kw_mask[i + 2]; |
| dummy.kw[i + 1] = kw2; |
| dummy.kw[i + 2] = kw3; |
| /* update entry mask */ |
| kw2 = shift ? mask_lo >> (64 - shift) : 0; |
| kw2 |= (mask_hi << shift); |
| kw2 &= field->kw_mask[i + 1]; |
| kw3 = shift ? mask_hi >> (64 - shift) : 0; |
| kw3 &= field->kw_mask[i + 2]; |
| dummy.kw_mask[i + 1] = kw2; |
| dummy.kw_mask[i + 2] = kw3; |
| break; |
| } |
| } |
| /* dummy is ready with values and masks for given key |
| * field now clear and update input entry with those |
| */ |
| for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { |
| if (!field->kw_mask[i]) |
| continue; |
| entry->kw[i] &= ~field->kw_mask[i]; |
| entry->kw_mask[i] &= ~field->kw_mask[i]; |
| |
| entry->kw[i] |= dummy.kw[i]; |
| entry->kw_mask[i] |= dummy.kw_mask[i]; |
| } |
| } |
| |
| static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry, |
| u64 features, struct flow_msg *pkt, |
| struct flow_msg *mask, |
| struct rvu_npc_mcam_rule *output, u8 intf) |
| { |
| u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS]; |
| u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS]; |
| struct flow_msg *opkt = &output->packet; |
| struct flow_msg *omask = &output->mask; |
| u64 mask_lo, mask_hi; |
| u64 val_lo, val_hi; |
| |
| /* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet |
| * values to be programmed in MCAM should as below: |
| * val_high: 0xfe80000000000000 |
| * val_low: 0x2c6863fffe5e2d0a |
| */ |
| if (features & BIT_ULL(NPC_SIP_IPV6)) { |
| be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS); |
| be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS); |
| |
| mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1]; |
| mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3]; |
| val_hi = (u64)src_ip[0] << 32 | src_ip[1]; |
| val_lo = (u64)src_ip[2] << 32 | src_ip[3]; |
| |
| npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi, |
| mask_lo, mask_hi, intf); |
| memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src)); |
| memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src)); |
| } |
| if (features & BIT_ULL(NPC_DIP_IPV6)) { |
| be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS); |
| be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS); |
| |
| mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1]; |
| mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3]; |
| val_hi = (u64)dst_ip[0] << 32 | dst_ip[1]; |
| val_lo = (u64)dst_ip[2] << 32 | dst_ip[3]; |
| |
| npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi, |
| mask_lo, mask_hi, intf); |
| memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst)); |
| memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst)); |
| } |
| } |
| |
| static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry, |
| u64 features, u8 intf) |
| { |
| bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG)); |
| bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG)); |
| bool vid = !!(features & BIT_ULL(NPC_OUTER_VID)); |
| |
| /* If only VLAN id is given then always match outer VLAN id */ |
| if (vid && !ctag && !stag) { |
| npc_update_entry(rvu, NPC_LB, entry, |
| NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0, |
| NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf); |
| return; |
| } |
| if (ctag) |
| npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0, |
| ~0ULL, 0, intf); |
| if (stag) |
| npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0, |
| ~0ULL, 0, intf); |
| } |
| |
| static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry, |
| u64 features, struct flow_msg *pkt, |
| struct flow_msg *mask, |
| struct rvu_npc_mcam_rule *output, u8 intf, |
| int blkaddr) |
| { |
| u64 dmac_mask = ether_addr_to_u64(mask->dmac); |
| u64 smac_mask = ether_addr_to_u64(mask->smac); |
| u64 dmac_val = ether_addr_to_u64(pkt->dmac); |
| u64 smac_val = ether_addr_to_u64(pkt->smac); |
| struct flow_msg *opkt = &output->packet; |
| struct flow_msg *omask = &output->mask; |
| |
| if (!features) |
| return; |
| |
| /* For tcp/udp/sctp LTYPE should be present in entry */ |
| if (features & BIT_ULL(NPC_IPPROTO_TCP)) |
| npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP, |
| 0, ~0ULL, 0, intf); |
| if (features & BIT_ULL(NPC_IPPROTO_UDP)) |
| npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP, |
| 0, ~0ULL, 0, intf); |
| if (features & BIT_ULL(NPC_IPPROTO_SCTP)) |
| npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP, |
| 0, ~0ULL, 0, intf); |
| if (features & BIT_ULL(NPC_IPPROTO_ICMP)) |
| npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP, |
| 0, ~0ULL, 0, intf); |
| if (features & BIT_ULL(NPC_IPPROTO_ICMP6)) |
| npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6, |
| 0, ~0ULL, 0, intf); |
| |
| /* For AH, LTYPE should be present in entry */ |
| if (features & BIT_ULL(NPC_IPPROTO_AH)) |
| npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH, |
| 0, ~0ULL, 0, intf); |
| /* For ESP, LTYPE should be present in entry */ |
| if (features & BIT_ULL(NPC_IPPROTO_ESP)) |
| npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP, |
| 0, ~0ULL, 0, intf); |
| |
| if (features & BIT_ULL(NPC_LXMB)) { |
| output->lxmb = is_broadcast_ether_addr(pkt->dmac) ? 2 : 1; |
| npc_update_entry(rvu, NPC_LXMB, entry, output->lxmb, 0, |
| output->lxmb, 0, intf); |
| } |
| #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi) \ |
| do { \ |
| if (features & BIT_ULL((field))) { \ |
| npc_update_entry(rvu, (field), entry, (val_lo), (val_hi), \ |
| (mask_lo), (mask_hi), intf); \ |
| memcpy(&opkt->member, &pkt->member, sizeof(pkt->member)); \ |
| memcpy(&omask->member, &mask->member, sizeof(mask->member)); \ |
| } \ |
| } while (0) |
| |
| NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0); |
| |
| NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0); |
| NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0, |
| ntohs(mask->etype), 0); |
| NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0); |
| NPC_WRITE_FLOW(NPC_IPFRAG_IPV4, ip_flag, pkt->ip_flag, 0, |
| mask->ip_flag, 0); |
| NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0, |
| ntohl(mask->ip4src), 0); |
| NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0, |
| ntohl(mask->ip4dst), 0); |
| NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0, |
| ntohs(mask->sport), 0); |
| NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0, |
| ntohs(mask->sport), 0); |
| NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0, |
| ntohs(mask->dport), 0); |
| NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0, |
| ntohs(mask->dport), 0); |
| NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0, |
| ntohs(mask->sport), 0); |
| NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0, |
| ntohs(mask->dport), 0); |
| |
| NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0, |
| ntohs(mask->vlan_tci), 0); |
| |
| NPC_WRITE_FLOW(NPC_IPFRAG_IPV6, next_header, pkt->next_header, 0, |
| mask->next_header, 0); |
| npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf); |
| npc_update_vlan_features(rvu, entry, features, intf); |
| |
| npc_update_field_hash(rvu, intf, entry, blkaddr, features, |
| pkt, mask, opkt, omask); |
| } |
| |
| static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam, u16 entry) |
| { |
| struct rvu_npc_mcam_rule *iter; |
| |
| mutex_lock(&mcam->lock); |
| list_for_each_entry(iter, &mcam->mcam_rules, list) { |
| if (iter->entry == entry) { |
| mutex_unlock(&mcam->lock); |
| return iter; |
| } |
| } |
| mutex_unlock(&mcam->lock); |
| |
| return NULL; |
| } |
| |
| static void rvu_mcam_add_rule(struct npc_mcam *mcam, |
| struct rvu_npc_mcam_rule *rule) |
| { |
| struct list_head *head = &mcam->mcam_rules; |
| struct rvu_npc_mcam_rule *iter; |
| |
| mutex_lock(&mcam->lock); |
| list_for_each_entry(iter, &mcam->mcam_rules, list) { |
| if (iter->entry > rule->entry) |
| break; |
| head = &iter->list; |
| } |
| |
| list_add(&rule->list, head); |
| mutex_unlock(&mcam->lock); |
| } |
| |
| static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc, |
| struct rvu_npc_mcam_rule *rule) |
| { |
| struct npc_mcam_oper_counter_req free_req = { 0 }; |
| struct msg_rsp free_rsp; |
| |
| if (!rule->has_cntr) |
| return; |
| |
| free_req.hdr.pcifunc = pcifunc; |
| free_req.cntr = rule->cntr; |
| |
| rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp); |
| rule->has_cntr = false; |
| } |
| |
| static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc, |
| struct rvu_npc_mcam_rule *rule, |
| struct npc_install_flow_rsp *rsp) |
| { |
| struct npc_mcam_alloc_counter_req cntr_req = { 0 }; |
| struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 }; |
| int err; |
| |
| cntr_req.hdr.pcifunc = pcifunc; |
| cntr_req.contig = true; |
| cntr_req.count = 1; |
| |
| /* we try to allocate a counter to track the stats of this |
| * rule. If counter could not be allocated then proceed |
| * without counter because counters are limited than entries. |
| */ |
| err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, |
| &cntr_rsp); |
| if (!err && cntr_rsp.count) { |
| rule->cntr = cntr_rsp.cntr; |
| rule->has_cntr = true; |
| rsp->counter = rule->cntr; |
| } else { |
| rsp->counter = err; |
| } |
| } |
| |
| static void npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf, |
| struct mcam_entry *entry, |
| struct npc_install_flow_req *req, |
| u16 target, bool pf_set_vfs_mac) |
| { |
| struct rvu_switch *rswitch = &rvu->rswitch; |
| struct nix_rx_action action; |
| |
| if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac) |
| req->chan_mask = 0x0; /* Do not care channel */ |
| |
| npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask, |
| 0, NIX_INTF_RX); |
| |
| *(u64 *)&action = 0x00; |
| action.pf_func = target; |
| action.op = req->op; |
| action.index = req->index; |
| action.match_id = req->match_id; |
| action.flow_key_alg = req->flow_key_alg; |
| |
| if (req->op == NIX_RX_ACTION_DEFAULT) { |
| if (pfvf->def_ucast_rule) { |
| action = pfvf->def_ucast_rule->rx_action; |
| } else { |
| /* For profiles which do not extract DMAC, the default |
| * unicast entry is unused. Hence modify action for the |
| * requests which use same action as default unicast |
| * entry |
| */ |
| *(u64 *)&action = 0; |
| action.pf_func = target; |
| action.op = NIX_RX_ACTIONOP_UCAST; |
| } |
| } |
| |
| entry->action = *(u64 *)&action; |
| |
| /* VTAG0 starts at 0th byte of LID_B. |
| * VTAG1 starts at 4th byte of LID_B. |
| */ |
| entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) | |
| FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) | |
| FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) | |
| FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) | |
| FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) | |
| FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) | |
| FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) | |
| FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4); |
| } |
| |
| static void npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf, |
| struct mcam_entry *entry, |
| struct npc_install_flow_req *req, u16 target) |
| { |
| struct nix_tx_action action; |
| u64 mask = ~0ULL; |
| |
| /* If AF is installing then do not care about |
| * PF_FUNC in Send Descriptor |
| */ |
| if (is_pffunc_af(req->hdr.pcifunc)) |
| mask = 0; |
| |
| npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target), |
| 0, mask, 0, NIX_INTF_TX); |
| |
| *(u64 *)&action = 0x00; |
| action.op = req->op; |
| action.index = req->index; |
| action.match_id = req->match_id; |
| |
| entry->action = *(u64 *)&action; |
| |
| /* VTAG0 starts at 0th byte of LID_B. |
| * VTAG1 starts at 4th byte of LID_B. |
| */ |
| entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) | |
| FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) | |
| FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) | |
| FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) | |
| FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) | |
| FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) | |
| FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) | |
| FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24); |
| } |
| |
| static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target, |
| int nixlf, struct rvu_pfvf *pfvf, |
| struct npc_install_flow_req *req, |
| struct npc_install_flow_rsp *rsp, bool enable, |
| bool pf_set_vfs_mac) |
| { |
| struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule; |
| u64 features, installed_features, missing_features = 0; |
| struct npc_mcam_write_entry_req write_req = { 0 }; |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| struct rvu_npc_mcam_rule dummy = { 0 }; |
| struct rvu_npc_mcam_rule *rule; |
| u16 owner = req->hdr.pcifunc; |
| struct msg_rsp write_rsp; |
| struct mcam_entry *entry; |
| bool new = false; |
| u16 entry_index; |
| int err; |
| |
| installed_features = req->features; |
| features = req->features; |
| entry = &write_req.entry_data; |
| entry_index = req->entry; |
| |
| npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy, |
| req->intf, blkaddr); |
| |
| if (is_npc_intf_rx(req->intf)) |
| npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac); |
| else |
| npc_update_tx_entry(rvu, pfvf, entry, req, target); |
| |
| /* Default unicast rules do not exist for TX */ |
| if (is_npc_intf_tx(req->intf)) |
| goto find_rule; |
| |
| if (req->default_rule) { |
| entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf, |
| NIXLF_UCAST_ENTRY); |
| enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index); |
| } |
| |
| /* update mcam entry with default unicast rule attributes */ |
| if (def_ucast_rule && (req->default_rule && req->append)) { |
| missing_features = (def_ucast_rule->features ^ features) & |
| def_ucast_rule->features; |
| if (missing_features) |
| npc_update_flow(rvu, entry, missing_features, |
| &def_ucast_rule->packet, |
| &def_ucast_rule->mask, |
| &dummy, req->intf, |
| blkaddr); |
| installed_features = req->features | missing_features; |
| } |
| |
| find_rule: |
| rule = rvu_mcam_find_rule(mcam, entry_index); |
| if (!rule) { |
| rule = kzalloc(sizeof(*rule), GFP_KERNEL); |
| if (!rule) |
| return -ENOMEM; |
| new = true; |
| } |
| |
| /* allocate new counter if rule has no counter */ |
| if (!req->default_rule && req->set_cntr && !rule->has_cntr) |
| rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp); |
| |
| /* if user wants to delete an existing counter for a rule then |
| * free the counter |
| */ |
| if (!req->set_cntr && rule->has_cntr) |
| rvu_mcam_remove_counter_from_rule(rvu, owner, rule); |
| |
| write_req.hdr.pcifunc = owner; |
| |
| /* AF owns the default rules so change the owner just to relax |
| * the checks in rvu_mbox_handler_npc_mcam_write_entry |
| */ |
| if (req->default_rule) |
| write_req.hdr.pcifunc = 0; |
| |
| write_req.entry = entry_index; |
| write_req.intf = req->intf; |
| write_req.enable_entry = (u8)enable; |
| /* if counter is available then clear and use it */ |
| if (req->set_cntr && rule->has_cntr) { |
| rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), 0x00); |
| write_req.set_cntr = 1; |
| write_req.cntr = rule->cntr; |
| } |
| |
| /* update rule */ |
| memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet)); |
| memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask)); |
| rule->entry = entry_index; |
| memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action)); |
| if (is_npc_intf_tx(req->intf)) |
| memcpy(&rule->tx_action, &entry->action, |
| sizeof(struct nix_tx_action)); |
| rule->vtag_action = entry->vtag_action; |
| rule->features = installed_features; |
| rule->default_rule = req->default_rule; |
| rule->owner = owner; |
| rule->enable = enable; |
| rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK; |
| rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK; |
| rule->chan &= rule->chan_mask; |
| rule->lxmb = dummy.lxmb; |
| if (is_npc_intf_tx(req->intf)) |
| rule->intf = pfvf->nix_tx_intf; |
| else |
| rule->intf = pfvf->nix_rx_intf; |
| |
| if (new) |
| rvu_mcam_add_rule(mcam, rule); |
| if (req->default_rule) |
| pfvf->def_ucast_rule = rule; |
| |
| /* write to mcam entry registers */ |
| err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, |
| &write_rsp); |
| if (err) { |
| rvu_mcam_remove_counter_from_rule(rvu, owner, rule); |
| if (new) { |
| list_del(&rule->list); |
| kfree(rule); |
| } |
| return err; |
| } |
| |
| /* VF's MAC address is being changed via PF */ |
| if (pf_set_vfs_mac) { |
| ether_addr_copy(pfvf->default_mac, req->packet.dmac); |
| ether_addr_copy(pfvf->mac_addr, req->packet.dmac); |
| set_bit(PF_SET_VF_MAC, &pfvf->flags); |
| } |
| |
| if (test_bit(PF_SET_VF_CFG, &pfvf->flags) && |
| req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7) |
| rule->vfvlan_cfg = true; |
| |
| if (is_npc_intf_rx(req->intf) && req->match_id && |
| (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS)) |
| return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc, |
| req->index, req->match_id); |
| |
| return 0; |
| } |
| |
| int rvu_mbox_handler_npc_install_flow(struct rvu *rvu, |
| struct npc_install_flow_req *req, |
| struct npc_install_flow_rsp *rsp) |
| { |
| bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK); |
| struct rvu_switch *rswitch = &rvu->rswitch; |
| int blkaddr, nixlf, err; |
| struct rvu_pfvf *pfvf; |
| bool pf_set_vfs_mac = false; |
| bool enable = true; |
| u16 target; |
| |
| blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); |
| if (blkaddr < 0) { |
| dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); |
| return NPC_MCAM_INVALID_REQ; |
| } |
| |
| if (!is_npc_interface_valid(rvu, req->intf)) |
| return NPC_FLOW_INTF_INVALID; |
| |
| /* If DMAC is not extracted in MKEX, rules installed by AF |
| * can rely on L2MB bit set by hardware protocol checker for |
| * broadcast and multicast addresses. |
| */ |
| if (npc_check_field(rvu, blkaddr, NPC_DMAC, req->intf)) |
| goto process_flow; |
| |
| if (is_pffunc_af(req->hdr.pcifunc) && |
| req->features & BIT_ULL(NPC_DMAC)) { |
| if (is_unicast_ether_addr(req->packet.dmac)) { |
| dev_warn(rvu->dev, |
| "%s: mkex profile does not support ucast flow\n", |
| __func__); |
| return NPC_FLOW_NOT_SUPPORTED; |
| } |
| |
| if (!npc_is_field_present(rvu, NPC_LXMB, req->intf)) { |
| dev_warn(rvu->dev, |
| "%s: mkex profile does not support bcast/mcast flow", |
| __func__); |
| return NPC_FLOW_NOT_SUPPORTED; |
| } |
| |
| /* Modify feature to use LXMB instead of DMAC */ |
| req->features &= ~BIT_ULL(NPC_DMAC); |
| req->features |= BIT_ULL(NPC_LXMB); |
| } |
| |
| process_flow: |
| if (from_vf && req->default_rule) |
| return NPC_FLOW_VF_PERM_DENIED; |
| |
| /* Each PF/VF info is maintained in struct rvu_pfvf. |
| * rvu_pfvf for the target PF/VF needs to be retrieved |
| * hence modify pcifunc accordingly. |
| */ |
| |
| /* AF installing for a PF/VF */ |
| if (!req->hdr.pcifunc) |
| target = req->vf; |
| /* PF installing for its VF */ |
| else if (!from_vf && req->vf) { |
| target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf; |
| pf_set_vfs_mac = req->default_rule && |
| (req->features & BIT_ULL(NPC_DMAC)); |
| } |
| /* msg received from PF/VF */ |
| else |
| target = req->hdr.pcifunc; |
| |
| /* ignore chan_mask in case pf func is not AF, revisit later */ |
| if (!is_pffunc_af(req->hdr.pcifunc)) |
| req->chan_mask = 0xFFF; |
| |
| err = npc_check_unsupported_flows(rvu, req->features, req->intf); |
| if (err) |
| return NPC_FLOW_NOT_SUPPORTED; |
| |
| pfvf = rvu_get_pfvf(rvu, target); |
| |
| /* PF installing for its VF */ |
| if (req->hdr.pcifunc && !from_vf && req->vf) |
| set_bit(PF_SET_VF_CFG, &pfvf->flags); |
| |
| /* update req destination mac addr */ |
| if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) && |
| is_zero_ether_addr(req->packet.dmac)) { |
| ether_addr_copy(req->packet.dmac, pfvf->mac_addr); |
| eth_broadcast_addr((u8 *)&req->mask.dmac); |
| } |
| |
| /* Proceed if NIXLF is attached or not for TX rules */ |
| err = nix_get_nixlf(rvu, target, &nixlf, NULL); |
| if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac) |
| return NPC_FLOW_NO_NIXLF; |
| |
| /* don't enable rule when nixlf not attached or initialized */ |
| if (!(is_nixlf_attached(rvu, target) && |
| test_bit(NIXLF_INITIALIZED, &pfvf->flags))) |
| enable = false; |
| |
| /* Packets reaching NPC in Tx path implies that a |
| * NIXLF is properly setup and transmitting. |
| * Hence rules can be enabled for Tx. |
| */ |
| if (is_npc_intf_tx(req->intf)) |
| enable = true; |
| |
| /* Do not allow requests from uninitialized VFs */ |
| if (from_vf && !enable) |
| return NPC_FLOW_VF_NOT_INIT; |
| |
| /* PF sets VF mac & VF NIXLF is not attached, update the mac addr */ |
| if (pf_set_vfs_mac && !enable) { |
| ether_addr_copy(pfvf->default_mac, req->packet.dmac); |
| ether_addr_copy(pfvf->mac_addr, req->packet.dmac); |
| set_bit(PF_SET_VF_MAC, &pfvf->flags); |
| return 0; |
| } |
| |
| mutex_lock(&rswitch->switch_lock); |
| err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf, |
| req, rsp, enable, pf_set_vfs_mac); |
| mutex_unlock(&rswitch->switch_lock); |
| |
| return err; |
| } |
| |
| static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule, |
| u16 pcifunc) |
| { |
| struct npc_mcam_ena_dis_entry_req dis_req = { 0 }; |
| struct msg_rsp dis_rsp; |
| |
| if (rule->default_rule) |
| return 0; |
| |
| if (rule->has_cntr) |
| rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule); |
| |
| dis_req.hdr.pcifunc = pcifunc; |
| dis_req.entry = rule->entry; |
| |
| list_del(&rule->list); |
| kfree(rule); |
| |
| return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp); |
| } |
| |
| int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu, |
| struct npc_delete_flow_req *req, |
| struct msg_rsp *rsp) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| struct rvu_npc_mcam_rule *iter, *tmp; |
| u16 pcifunc = req->hdr.pcifunc; |
| struct list_head del_list; |
| |
| INIT_LIST_HEAD(&del_list); |
| |
| mutex_lock(&mcam->lock); |
| list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) { |
| if (iter->owner == pcifunc) { |
| /* All rules */ |
| if (req->all) { |
| list_move_tail(&iter->list, &del_list); |
| /* Range of rules */ |
| } else if (req->end && iter->entry >= req->start && |
| iter->entry <= req->end) { |
| list_move_tail(&iter->list, &del_list); |
| /* single rule */ |
| } else if (req->entry == iter->entry) { |
| list_move_tail(&iter->list, &del_list); |
| break; |
| } |
| } |
| } |
| mutex_unlock(&mcam->lock); |
| |
| list_for_each_entry_safe(iter, tmp, &del_list, list) { |
| u16 entry = iter->entry; |
| |
| /* clear the mcam entry target pcifunc */ |
| mcam->entry2target_pffunc[entry] = 0x0; |
| if (npc_delete_flow(rvu, iter, pcifunc)) |
| dev_err(rvu->dev, "rule deletion failed for entry:%u", |
| entry); |
| } |
| |
| return 0; |
| } |
| |
| static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr, |
| struct rvu_npc_mcam_rule *rule, |
| struct rvu_pfvf *pfvf) |
| { |
| struct npc_mcam_write_entry_req write_req = { 0 }; |
| struct mcam_entry *entry = &write_req.entry_data; |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| struct msg_rsp rsp; |
| u8 intf, enable; |
| int err; |
| |
| ether_addr_copy(rule->packet.dmac, pfvf->mac_addr); |
| |
| npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry, |
| entry, &intf, &enable); |
| |
| npc_update_entry(rvu, NPC_DMAC, entry, |
| ether_addr_to_u64(pfvf->mac_addr), 0, |
| 0xffffffffffffull, 0, intf); |
| |
| write_req.hdr.pcifunc = rule->owner; |
| write_req.entry = rule->entry; |
| write_req.intf = pfvf->nix_rx_intf; |
| |
| mutex_unlock(&mcam->lock); |
| err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp); |
| mutex_lock(&mcam->lock); |
| |
| return err; |
| } |
| |
| void npc_mcam_enable_flows(struct rvu *rvu, u16 target) |
| { |
| struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target); |
| struct rvu_npc_mcam_rule *def_ucast_rule; |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| struct rvu_npc_mcam_rule *rule; |
| int blkaddr, bank, index; |
| u64 def_action; |
| |
| blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); |
| if (blkaddr < 0) |
| return; |
| |
| def_ucast_rule = pfvf->def_ucast_rule; |
| |
| mutex_lock(&mcam->lock); |
| list_for_each_entry(rule, &mcam->mcam_rules, list) { |
| if (is_npc_intf_rx(rule->intf) && |
| rule->rx_action.pf_func == target && !rule->enable) { |
| if (rule->default_rule) { |
| npc_enable_mcam_entry(rvu, mcam, blkaddr, |
| rule->entry, true); |
| rule->enable = true; |
| continue; |
| } |
| |
| if (rule->vfvlan_cfg) |
| npc_update_dmac_value(rvu, blkaddr, rule, pfvf); |
| |
| if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) { |
| if (!def_ucast_rule) |
| continue; |
| /* Use default unicast entry action */ |
| rule->rx_action = def_ucast_rule->rx_action; |
| def_action = *(u64 *)&def_ucast_rule->rx_action; |
| bank = npc_get_bank(mcam, rule->entry); |
| rvu_write64(rvu, blkaddr, |
| NPC_AF_MCAMEX_BANKX_ACTION |
| (rule->entry, bank), def_action); |
| } |
| |
| npc_enable_mcam_entry(rvu, mcam, blkaddr, |
| rule->entry, true); |
| rule->enable = true; |
| } |
| } |
| |
| /* Enable MCAM entries installed by PF with target as VF pcifunc */ |
| for (index = 0; index < mcam->bmap_entries; index++) { |
| if (mcam->entry2target_pffunc[index] == target) |
| npc_enable_mcam_entry(rvu, mcam, blkaddr, |
| index, true); |
| } |
| mutex_unlock(&mcam->lock); |
| } |
| |
| void npc_mcam_disable_flows(struct rvu *rvu, u16 target) |
| { |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| int blkaddr, index; |
| |
| blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); |
| if (blkaddr < 0) |
| return; |
| |
| mutex_lock(&mcam->lock); |
| /* Disable MCAM entries installed by PF with target as VF pcifunc */ |
| for (index = 0; index < mcam->bmap_entries; index++) { |
| if (mcam->entry2target_pffunc[index] == target) |
| npc_enable_mcam_entry(rvu, mcam, blkaddr, |
| index, false); |
| } |
| mutex_unlock(&mcam->lock); |
| } |
| |
| /* single drop on non hit rule starting from 0th index. This an extension |
| * to RPM mac filter to support more rules. |
| */ |
| int npc_install_mcam_drop_rule(struct rvu *rvu, int mcam_idx, u16 *counter_idx, |
| u64 chan_val, u64 chan_mask, u64 exact_val, u64 exact_mask, |
| u64 bcast_mcast_val, u64 bcast_mcast_mask) |
| { |
| struct npc_mcam_alloc_counter_req cntr_req = { 0 }; |
| struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 }; |
| struct npc_mcam_write_entry_req req = { 0 }; |
| struct npc_mcam *mcam = &rvu->hw->mcam; |
| struct rvu_npc_mcam_rule *rule; |
| struct msg_rsp rsp; |
| bool enabled; |
| int blkaddr; |
| int err; |
| |
| blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); |
| if (blkaddr < 0) { |
| dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); |
| return -ENODEV; |
| } |
| |
| /* Bail out if no exact match support */ |
| if (!rvu_npc_exact_has_match_table(rvu)) { |
| dev_info(rvu->dev, "%s: No support for exact match feature\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* If 0th entry is already used, return err */ |
| enabled = is_mcam_entry_enabled(rvu, mcam, blkaddr, mcam_idx); |
| if (enabled) { |
| dev_err(rvu->dev, "%s: failed to add single drop on non hit rule at %d th index\n", |
| __func__, mcam_idx); |
| return -EINVAL; |
| } |
| |
| /* Add this entry to mcam rules list */ |
| rule = kzalloc(sizeof(*rule), GFP_KERNEL); |
| if (!rule) |
| return -ENOMEM; |
| |
| /* Disable rule by default. Enable rule when first dmac filter is |
| * installed |
| */ |
| rule->enable = false; |
| rule->chan = chan_val; |
| rule->chan_mask = chan_mask; |
| rule->entry = mcam_idx; |
| rvu_mcam_add_rule(mcam, rule); |
| |
| /* Reserve slot 0 */ |
| npc_mcam_rsrcs_reserve(rvu, blkaddr, mcam_idx); |
| |
| /* Allocate counter for this single drop on non hit rule */ |
| cntr_req.hdr.pcifunc = 0; /* AF request */ |
| cntr_req.contig = true; |
| cntr_req.count = 1; |
| err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, &cntr_rsp); |
| if (err) { |
| dev_err(rvu->dev, "%s: Err to allocate cntr for drop rule (err=%d)\n", |
| __func__, err); |
| return -EFAULT; |
| } |
| *counter_idx = cntr_rsp.cntr; |
| |
| /* Fill in fields for this mcam entry */ |
| npc_update_entry(rvu, NPC_EXACT_RESULT, &req.entry_data, exact_val, 0, |
| exact_mask, 0, NIX_INTF_RX); |
| npc_update_entry(rvu, NPC_CHAN, &req.entry_data, chan_val, 0, |
| chan_mask, 0, NIX_INTF_RX); |
| npc_update_entry(rvu, NPC_LXMB, &req.entry_data, bcast_mcast_val, 0, |
| bcast_mcast_mask, 0, NIX_INTF_RX); |
| |
| req.intf = NIX_INTF_RX; |
| req.set_cntr = true; |
| req.cntr = cntr_rsp.cntr; |
| req.entry = mcam_idx; |
| |
| err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &req, &rsp); |
| if (err) { |
| dev_err(rvu->dev, "%s: Installation of single drop on non hit rule at %d failed\n", |
| __func__, mcam_idx); |
| return err; |
| } |
| |
| dev_err(rvu->dev, "%s: Installed single drop on non hit rule at %d, cntr=%d\n", |
| __func__, mcam_idx, req.cntr); |
| |
| /* disable entry at Bank 0, index 0 */ |
| npc_enable_mcam_entry(rvu, mcam, blkaddr, mcam_idx, false); |
| |
| return 0; |
| } |
| |
| int rvu_mbox_handler_npc_get_field_status(struct rvu *rvu, |
| struct npc_get_field_status_req *req, |
| struct npc_get_field_status_rsp *rsp) |
| { |
| int blkaddr; |
| |
| blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); |
| if (blkaddr < 0) |
| return NPC_MCAM_INVALID_REQ; |
| |
| if (!is_npc_interface_valid(rvu, req->intf)) |
| return NPC_FLOW_INTF_INVALID; |
| |
| if (npc_check_field(rvu, blkaddr, req->field, req->intf)) |
| rsp->enable = 1; |
| |
| return 0; |
| } |