| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com |
| */ |
| #include <linux/bpf.h> |
| #include <linux/btf.h> |
| #include <linux/bpf-cgroup.h> |
| #include <linux/rcupdate.h> |
| #include <linux/random.h> |
| #include <linux/smp.h> |
| #include <linux/topology.h> |
| #include <linux/ktime.h> |
| #include <linux/sched.h> |
| #include <linux/uidgid.h> |
| #include <linux/filter.h> |
| #include <linux/ctype.h> |
| #include <linux/jiffies.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/proc_ns.h> |
| #include <linux/security.h> |
| #include <linux/btf_ids.h> |
| |
| #include "../../lib/kstrtox.h" |
| |
| /* If kernel subsystem is allowing eBPF programs to call this function, |
| * inside its own verifier_ops->get_func_proto() callback it should return |
| * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments |
| * |
| * Different map implementations will rely on rcu in map methods |
| * lookup/update/delete, therefore eBPF programs must run under rcu lock |
| * if program is allowed to access maps, so check rcu_read_lock_held in |
| * all three functions. |
| */ |
| BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) |
| { |
| WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
| return (unsigned long) map->ops->map_lookup_elem(map, key); |
| } |
| |
| const struct bpf_func_proto bpf_map_lookup_elem_proto = { |
| .func = bpf_map_lookup_elem, |
| .gpl_only = false, |
| .pkt_access = true, |
| .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_MAP_KEY, |
| }; |
| |
| BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, |
| void *, value, u64, flags) |
| { |
| WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
| return map->ops->map_update_elem(map, key, value, flags); |
| } |
| |
| const struct bpf_func_proto bpf_map_update_elem_proto = { |
| .func = bpf_map_update_elem, |
| .gpl_only = false, |
| .pkt_access = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_MAP_KEY, |
| .arg3_type = ARG_PTR_TO_MAP_VALUE, |
| .arg4_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) |
| { |
| WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
| return map->ops->map_delete_elem(map, key); |
| } |
| |
| const struct bpf_func_proto bpf_map_delete_elem_proto = { |
| .func = bpf_map_delete_elem, |
| .gpl_only = false, |
| .pkt_access = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_MAP_KEY, |
| }; |
| |
| BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) |
| { |
| return map->ops->map_push_elem(map, value, flags); |
| } |
| |
| const struct bpf_func_proto bpf_map_push_elem_proto = { |
| .func = bpf_map_push_elem, |
| .gpl_only = false, |
| .pkt_access = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_MAP_VALUE, |
| .arg3_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) |
| { |
| return map->ops->map_pop_elem(map, value); |
| } |
| |
| const struct bpf_func_proto bpf_map_pop_elem_proto = { |
| .func = bpf_map_pop_elem, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, |
| }; |
| |
| BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) |
| { |
| return map->ops->map_peek_elem(map, value); |
| } |
| |
| const struct bpf_func_proto bpf_map_peek_elem_proto = { |
| .func = bpf_map_peek_elem, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, |
| }; |
| |
| const struct bpf_func_proto bpf_get_prandom_u32_proto = { |
| .func = bpf_user_rnd_u32, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_0(bpf_get_smp_processor_id) |
| { |
| return smp_processor_id(); |
| } |
| |
| const struct bpf_func_proto bpf_get_smp_processor_id_proto = { |
| .func = bpf_get_smp_processor_id, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_0(bpf_get_numa_node_id) |
| { |
| return numa_node_id(); |
| } |
| |
| const struct bpf_func_proto bpf_get_numa_node_id_proto = { |
| .func = bpf_get_numa_node_id, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_0(bpf_ktime_get_ns) |
| { |
| /* NMI safe access to clock monotonic */ |
| return ktime_get_mono_fast_ns(); |
| } |
| |
| const struct bpf_func_proto bpf_ktime_get_ns_proto = { |
| .func = bpf_ktime_get_ns, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_0(bpf_ktime_get_boot_ns) |
| { |
| /* NMI safe access to clock boottime */ |
| return ktime_get_boot_fast_ns(); |
| } |
| |
| const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { |
| .func = bpf_ktime_get_boot_ns, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_0(bpf_ktime_get_coarse_ns) |
| { |
| return ktime_get_coarse_ns(); |
| } |
| |
| const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { |
| .func = bpf_ktime_get_coarse_ns, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_0(bpf_get_current_pid_tgid) |
| { |
| struct task_struct *task = current; |
| |
| if (unlikely(!task)) |
| return -EINVAL; |
| |
| return (u64) task->tgid << 32 | task->pid; |
| } |
| |
| const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { |
| .func = bpf_get_current_pid_tgid, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_0(bpf_get_current_uid_gid) |
| { |
| struct task_struct *task = current; |
| kuid_t uid; |
| kgid_t gid; |
| |
| if (unlikely(!task)) |
| return -EINVAL; |
| |
| current_uid_gid(&uid, &gid); |
| return (u64) from_kgid(&init_user_ns, gid) << 32 | |
| from_kuid(&init_user_ns, uid); |
| } |
| |
| const struct bpf_func_proto bpf_get_current_uid_gid_proto = { |
| .func = bpf_get_current_uid_gid, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) |
| { |
| struct task_struct *task = current; |
| |
| if (unlikely(!task)) |
| goto err_clear; |
| |
| /* Verifier guarantees that size > 0 */ |
| strscpy(buf, task->comm, size); |
| return 0; |
| err_clear: |
| memset(buf, 0, size); |
| return -EINVAL; |
| } |
| |
| const struct bpf_func_proto bpf_get_current_comm_proto = { |
| .func = bpf_get_current_comm, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_UNINIT_MEM, |
| .arg2_type = ARG_CONST_SIZE, |
| }; |
| |
| #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) |
| |
| static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) |
| { |
| arch_spinlock_t *l = (void *)lock; |
| union { |
| __u32 val; |
| arch_spinlock_t lock; |
| } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; |
| |
| compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); |
| BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); |
| BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); |
| arch_spin_lock(l); |
| } |
| |
| static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) |
| { |
| arch_spinlock_t *l = (void *)lock; |
| |
| arch_spin_unlock(l); |
| } |
| |
| #else |
| |
| static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) |
| { |
| atomic_t *l = (void *)lock; |
| |
| BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); |
| do { |
| atomic_cond_read_relaxed(l, !VAL); |
| } while (atomic_xchg(l, 1)); |
| } |
| |
| static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) |
| { |
| atomic_t *l = (void *)lock; |
| |
| atomic_set_release(l, 0); |
| } |
| |
| #endif |
| |
| static DEFINE_PER_CPU(unsigned long, irqsave_flags); |
| |
| static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __bpf_spin_lock(lock); |
| __this_cpu_write(irqsave_flags, flags); |
| } |
| |
| notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) |
| { |
| __bpf_spin_lock_irqsave(lock); |
| return 0; |
| } |
| |
| const struct bpf_func_proto bpf_spin_lock_proto = { |
| .func = bpf_spin_lock, |
| .gpl_only = false, |
| .ret_type = RET_VOID, |
| .arg1_type = ARG_PTR_TO_SPIN_LOCK, |
| }; |
| |
| static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) |
| { |
| unsigned long flags; |
| |
| flags = __this_cpu_read(irqsave_flags); |
| __bpf_spin_unlock(lock); |
| local_irq_restore(flags); |
| } |
| |
| notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) |
| { |
| __bpf_spin_unlock_irqrestore(lock); |
| return 0; |
| } |
| |
| const struct bpf_func_proto bpf_spin_unlock_proto = { |
| .func = bpf_spin_unlock, |
| .gpl_only = false, |
| .ret_type = RET_VOID, |
| .arg1_type = ARG_PTR_TO_SPIN_LOCK, |
| }; |
| |
| void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, |
| bool lock_src) |
| { |
| struct bpf_spin_lock *lock; |
| |
| if (lock_src) |
| lock = src + map->spin_lock_off; |
| else |
| lock = dst + map->spin_lock_off; |
| preempt_disable(); |
| __bpf_spin_lock_irqsave(lock); |
| copy_map_value(map, dst, src); |
| __bpf_spin_unlock_irqrestore(lock); |
| preempt_enable(); |
| } |
| |
| BPF_CALL_0(bpf_jiffies64) |
| { |
| return get_jiffies_64(); |
| } |
| |
| const struct bpf_func_proto bpf_jiffies64_proto = { |
| .func = bpf_jiffies64, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| #ifdef CONFIG_CGROUPS |
| BPF_CALL_0(bpf_get_current_cgroup_id) |
| { |
| struct cgroup *cgrp; |
| u64 cgrp_id; |
| |
| rcu_read_lock(); |
| cgrp = task_dfl_cgroup(current); |
| cgrp_id = cgroup_id(cgrp); |
| rcu_read_unlock(); |
| |
| return cgrp_id; |
| } |
| |
| const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { |
| .func = bpf_get_current_cgroup_id, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) |
| { |
| struct cgroup *cgrp; |
| struct cgroup *ancestor; |
| u64 cgrp_id; |
| |
| rcu_read_lock(); |
| cgrp = task_dfl_cgroup(current); |
| ancestor = cgroup_ancestor(cgrp, ancestor_level); |
| cgrp_id = ancestor ? cgroup_id(ancestor) : 0; |
| rcu_read_unlock(); |
| |
| return cgrp_id; |
| } |
| |
| const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { |
| .func = bpf_get_current_ancestor_cgroup_id, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_ANYTHING, |
| }; |
| |
| #ifdef CONFIG_CGROUP_BPF |
| |
| BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) |
| { |
| /* flags argument is not used now, |
| * but provides an ability to extend the API. |
| * verifier checks that its value is correct. |
| */ |
| enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); |
| struct bpf_cgroup_storage *storage; |
| struct bpf_cg_run_ctx *ctx; |
| void *ptr; |
| |
| /* get current cgroup storage from BPF run context */ |
| ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); |
| storage = ctx->prog_item->cgroup_storage[stype]; |
| |
| if (stype == BPF_CGROUP_STORAGE_SHARED) |
| ptr = &READ_ONCE(storage->buf)->data[0]; |
| else |
| ptr = this_cpu_ptr(storage->percpu_buf); |
| |
| return (unsigned long)ptr; |
| } |
| |
| const struct bpf_func_proto bpf_get_local_storage_proto = { |
| .func = bpf_get_local_storage, |
| .gpl_only = false, |
| .ret_type = RET_PTR_TO_MAP_VALUE, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_ANYTHING, |
| }; |
| #endif |
| |
| #define BPF_STRTOX_BASE_MASK 0x1F |
| |
| static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, |
| unsigned long long *res, bool *is_negative) |
| { |
| unsigned int base = flags & BPF_STRTOX_BASE_MASK; |
| const char *cur_buf = buf; |
| size_t cur_len = buf_len; |
| unsigned int consumed; |
| size_t val_len; |
| char str[64]; |
| |
| if (!buf || !buf_len || !res || !is_negative) |
| return -EINVAL; |
| |
| if (base != 0 && base != 8 && base != 10 && base != 16) |
| return -EINVAL; |
| |
| if (flags & ~BPF_STRTOX_BASE_MASK) |
| return -EINVAL; |
| |
| while (cur_buf < buf + buf_len && isspace(*cur_buf)) |
| ++cur_buf; |
| |
| *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); |
| if (*is_negative) |
| ++cur_buf; |
| |
| consumed = cur_buf - buf; |
| cur_len -= consumed; |
| if (!cur_len) |
| return -EINVAL; |
| |
| cur_len = min(cur_len, sizeof(str) - 1); |
| memcpy(str, cur_buf, cur_len); |
| str[cur_len] = '\0'; |
| cur_buf = str; |
| |
| cur_buf = _parse_integer_fixup_radix(cur_buf, &base); |
| val_len = _parse_integer(cur_buf, base, res); |
| |
| if (val_len & KSTRTOX_OVERFLOW) |
| return -ERANGE; |
| |
| if (val_len == 0) |
| return -EINVAL; |
| |
| cur_buf += val_len; |
| consumed += cur_buf - str; |
| |
| return consumed; |
| } |
| |
| static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, |
| long long *res) |
| { |
| unsigned long long _res; |
| bool is_negative; |
| int err; |
| |
| err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); |
| if (err < 0) |
| return err; |
| if (is_negative) { |
| if ((long long)-_res > 0) |
| return -ERANGE; |
| *res = -_res; |
| } else { |
| if ((long long)_res < 0) |
| return -ERANGE; |
| *res = _res; |
| } |
| return err; |
| } |
| |
| BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, |
| long *, res) |
| { |
| long long _res; |
| int err; |
| |
| err = __bpf_strtoll(buf, buf_len, flags, &_res); |
| if (err < 0) |
| return err; |
| if (_res != (long)_res) |
| return -ERANGE; |
| *res = _res; |
| return err; |
| } |
| |
| const struct bpf_func_proto bpf_strtol_proto = { |
| .func = bpf_strtol, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, |
| .arg2_type = ARG_CONST_SIZE, |
| .arg3_type = ARG_ANYTHING, |
| .arg4_type = ARG_PTR_TO_LONG, |
| }; |
| |
| BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, |
| unsigned long *, res) |
| { |
| unsigned long long _res; |
| bool is_negative; |
| int err; |
| |
| err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); |
| if (err < 0) |
| return err; |
| if (is_negative) |
| return -EINVAL; |
| if (_res != (unsigned long)_res) |
| return -ERANGE; |
| *res = _res; |
| return err; |
| } |
| |
| const struct bpf_func_proto bpf_strtoul_proto = { |
| .func = bpf_strtoul, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, |
| .arg2_type = ARG_CONST_SIZE, |
| .arg3_type = ARG_ANYTHING, |
| .arg4_type = ARG_PTR_TO_LONG, |
| }; |
| #endif |
| |
| BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) |
| { |
| return strncmp(s1, s2, s1_sz); |
| } |
| |
| const struct bpf_func_proto bpf_strncmp_proto = { |
| .func = bpf_strncmp, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_MEM, |
| .arg2_type = ARG_CONST_SIZE, |
| .arg3_type = ARG_PTR_TO_CONST_STR, |
| }; |
| |
| BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, |
| struct bpf_pidns_info *, nsdata, u32, size) |
| { |
| struct task_struct *task = current; |
| struct pid_namespace *pidns; |
| int err = -EINVAL; |
| |
| if (unlikely(size != sizeof(struct bpf_pidns_info))) |
| goto clear; |
| |
| if (unlikely((u64)(dev_t)dev != dev)) |
| goto clear; |
| |
| if (unlikely(!task)) |
| goto clear; |
| |
| pidns = task_active_pid_ns(task); |
| if (unlikely(!pidns)) { |
| err = -ENOENT; |
| goto clear; |
| } |
| |
| if (!ns_match(&pidns->ns, (dev_t)dev, ino)) |
| goto clear; |
| |
| nsdata->pid = task_pid_nr_ns(task, pidns); |
| nsdata->tgid = task_tgid_nr_ns(task, pidns); |
| return 0; |
| clear: |
| memset((void *)nsdata, 0, (size_t) size); |
| return err; |
| } |
| |
| const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { |
| .func = bpf_get_ns_current_pid_tgid, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_ANYTHING, |
| .arg2_type = ARG_ANYTHING, |
| .arg3_type = ARG_PTR_TO_UNINIT_MEM, |
| .arg4_type = ARG_CONST_SIZE, |
| }; |
| |
| static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { |
| .func = bpf_get_raw_cpu_id, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| }; |
| |
| BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, |
| u64, flags, void *, data, u64, size) |
| { |
| if (unlikely(flags & ~(BPF_F_INDEX_MASK))) |
| return -EINVAL; |
| |
| return bpf_event_output(map, flags, data, size, NULL, 0, NULL); |
| } |
| |
| const struct bpf_func_proto bpf_event_output_data_proto = { |
| .func = bpf_event_output_data, |
| .gpl_only = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_CTX, |
| .arg2_type = ARG_CONST_MAP_PTR, |
| .arg3_type = ARG_ANYTHING, |
| .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, |
| .arg5_type = ARG_CONST_SIZE_OR_ZERO, |
| }; |
| |
| BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, |
| const void __user *, user_ptr) |
| { |
| int ret = copy_from_user(dst, user_ptr, size); |
| |
| if (unlikely(ret)) { |
| memset(dst, 0, size); |
| ret = -EFAULT; |
| } |
| |
| return ret; |
| } |
| |
| const struct bpf_func_proto bpf_copy_from_user_proto = { |
| .func = bpf_copy_from_user, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_UNINIT_MEM, |
| .arg2_type = ARG_CONST_SIZE_OR_ZERO, |
| .arg3_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, |
| const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) |
| { |
| int ret; |
| |
| /* flags is not used yet */ |
| if (unlikely(flags)) |
| return -EINVAL; |
| |
| if (unlikely(!size)) |
| return 0; |
| |
| ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); |
| if (ret == size) |
| return 0; |
| |
| memset(dst, 0, size); |
| /* Return -EFAULT for partial read */ |
| return ret < 0 ? ret : -EFAULT; |
| } |
| |
| const struct bpf_func_proto bpf_copy_from_user_task_proto = { |
| .func = bpf_copy_from_user_task, |
| .gpl_only = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_UNINIT_MEM, |
| .arg2_type = ARG_CONST_SIZE_OR_ZERO, |
| .arg3_type = ARG_ANYTHING, |
| .arg4_type = ARG_PTR_TO_BTF_ID, |
| .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], |
| .arg5_type = ARG_ANYTHING |
| }; |
| |
| BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) |
| { |
| if (cpu >= nr_cpu_ids) |
| return (unsigned long)NULL; |
| |
| return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); |
| } |
| |
| const struct bpf_func_proto bpf_per_cpu_ptr_proto = { |
| .func = bpf_per_cpu_ptr, |
| .gpl_only = false, |
| .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, |
| .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, |
| .arg2_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) |
| { |
| return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); |
| } |
| |
| const struct bpf_func_proto bpf_this_cpu_ptr_proto = { |
| .func = bpf_this_cpu_ptr, |
| .gpl_only = false, |
| .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, |
| .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, |
| }; |
| |
| static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, |
| size_t bufsz) |
| { |
| void __user *user_ptr = (__force void __user *)unsafe_ptr; |
| |
| buf[0] = 0; |
| |
| switch (fmt_ptype) { |
| case 's': |
| #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE |
| if ((unsigned long)unsafe_ptr < TASK_SIZE) |
| return strncpy_from_user_nofault(buf, user_ptr, bufsz); |
| fallthrough; |
| #endif |
| case 'k': |
| return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); |
| case 'u': |
| return strncpy_from_user_nofault(buf, user_ptr, bufsz); |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary |
| * arguments representation. |
| */ |
| #define MAX_BPRINTF_BUF_LEN 512 |
| |
| /* Support executing three nested bprintf helper calls on a given CPU */ |
| #define MAX_BPRINTF_NEST_LEVEL 3 |
| struct bpf_bprintf_buffers { |
| char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; |
| }; |
| static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); |
| static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); |
| |
| static int try_get_fmt_tmp_buf(char **tmp_buf) |
| { |
| struct bpf_bprintf_buffers *bufs; |
| int nest_level; |
| |
| preempt_disable(); |
| nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); |
| if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { |
| this_cpu_dec(bpf_bprintf_nest_level); |
| preempt_enable(); |
| return -EBUSY; |
| } |
| bufs = this_cpu_ptr(&bpf_bprintf_bufs); |
| *tmp_buf = bufs->tmp_bufs[nest_level - 1]; |
| |
| return 0; |
| } |
| |
| void bpf_bprintf_cleanup(void) |
| { |
| if (this_cpu_read(bpf_bprintf_nest_level)) { |
| this_cpu_dec(bpf_bprintf_nest_level); |
| preempt_enable(); |
| } |
| } |
| |
| /* |
| * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers |
| * |
| * Returns a negative value if fmt is an invalid format string or 0 otherwise. |
| * |
| * This can be used in two ways: |
| * - Format string verification only: when bin_args is NULL |
| * - Arguments preparation: in addition to the above verification, it writes in |
| * bin_args a binary representation of arguments usable by bstr_printf where |
| * pointers from BPF have been sanitized. |
| * |
| * In argument preparation mode, if 0 is returned, safe temporary buffers are |
| * allocated and bpf_bprintf_cleanup should be called to free them after use. |
| */ |
| int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, |
| u32 **bin_args, u32 num_args) |
| { |
| char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; |
| size_t sizeof_cur_arg, sizeof_cur_ip; |
| int err, i, num_spec = 0; |
| u64 cur_arg; |
| char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; |
| |
| fmt_end = strnchr(fmt, fmt_size, 0); |
| if (!fmt_end) |
| return -EINVAL; |
| fmt_size = fmt_end - fmt; |
| |
| if (bin_args) { |
| if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) |
| return -EBUSY; |
| |
| tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; |
| *bin_args = (u32 *)tmp_buf; |
| } |
| |
| for (i = 0; i < fmt_size; i++) { |
| if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (fmt[i] != '%') |
| continue; |
| |
| if (fmt[i + 1] == '%') { |
| i++; |
| continue; |
| } |
| |
| if (num_spec >= num_args) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* The string is zero-terminated so if fmt[i] != 0, we can |
| * always access fmt[i + 1], in the worst case it will be a 0 |
| */ |
| i++; |
| |
| /* skip optional "[0 +-][num]" width formatting field */ |
| while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || |
| fmt[i] == ' ') |
| i++; |
| if (fmt[i] >= '1' && fmt[i] <= '9') { |
| i++; |
| while (fmt[i] >= '0' && fmt[i] <= '9') |
| i++; |
| } |
| |
| if (fmt[i] == 'p') { |
| sizeof_cur_arg = sizeof(long); |
| |
| if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && |
| fmt[i + 2] == 's') { |
| fmt_ptype = fmt[i + 1]; |
| i += 2; |
| goto fmt_str; |
| } |
| |
| if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || |
| ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || |
| fmt[i + 1] == 'x' || fmt[i + 1] == 's' || |
| fmt[i + 1] == 'S') { |
| /* just kernel pointers */ |
| if (tmp_buf) |
| cur_arg = raw_args[num_spec]; |
| i++; |
| goto nocopy_fmt; |
| } |
| |
| if (fmt[i + 1] == 'B') { |
| if (tmp_buf) { |
| err = snprintf(tmp_buf, |
| (tmp_buf_end - tmp_buf), |
| "%pB", |
| (void *)(long)raw_args[num_spec]); |
| tmp_buf += (err + 1); |
| } |
| |
| i++; |
| num_spec++; |
| continue; |
| } |
| |
| /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ |
| if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || |
| (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| i += 2; |
| if (!tmp_buf) |
| goto nocopy_fmt; |
| |
| sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; |
| if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { |
| err = -ENOSPC; |
| goto out; |
| } |
| |
| unsafe_ptr = (char *)(long)raw_args[num_spec]; |
| err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, |
| sizeof_cur_ip); |
| if (err < 0) |
| memset(cur_ip, 0, sizeof_cur_ip); |
| |
| /* hack: bstr_printf expects IP addresses to be |
| * pre-formatted as strings, ironically, the easiest way |
| * to do that is to call snprintf. |
| */ |
| ip_spec[2] = fmt[i - 1]; |
| ip_spec[3] = fmt[i]; |
| err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, |
| ip_spec, &cur_ip); |
| |
| tmp_buf += err + 1; |
| num_spec++; |
| |
| continue; |
| } else if (fmt[i] == 's') { |
| fmt_ptype = fmt[i]; |
| fmt_str: |
| if (fmt[i + 1] != 0 && |
| !isspace(fmt[i + 1]) && |
| !ispunct(fmt[i + 1])) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (!tmp_buf) |
| goto nocopy_fmt; |
| |
| if (tmp_buf_end == tmp_buf) { |
| err = -ENOSPC; |
| goto out; |
| } |
| |
| unsafe_ptr = (char *)(long)raw_args[num_spec]; |
| err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, |
| fmt_ptype, |
| tmp_buf_end - tmp_buf); |
| if (err < 0) { |
| tmp_buf[0] = '\0'; |
| err = 1; |
| } |
| |
| tmp_buf += err; |
| num_spec++; |
| |
| continue; |
| } else if (fmt[i] == 'c') { |
| if (!tmp_buf) |
| goto nocopy_fmt; |
| |
| if (tmp_buf_end == tmp_buf) { |
| err = -ENOSPC; |
| goto out; |
| } |
| |
| *tmp_buf = raw_args[num_spec]; |
| tmp_buf++; |
| num_spec++; |
| |
| continue; |
| } |
| |
| sizeof_cur_arg = sizeof(int); |
| |
| if (fmt[i] == 'l') { |
| sizeof_cur_arg = sizeof(long); |
| i++; |
| } |
| if (fmt[i] == 'l') { |
| sizeof_cur_arg = sizeof(long long); |
| i++; |
| } |
| |
| if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && |
| fmt[i] != 'x' && fmt[i] != 'X') { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (tmp_buf) |
| cur_arg = raw_args[num_spec]; |
| nocopy_fmt: |
| if (tmp_buf) { |
| tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); |
| if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { |
| err = -ENOSPC; |
| goto out; |
| } |
| |
| if (sizeof_cur_arg == 8) { |
| *(u32 *)tmp_buf = *(u32 *)&cur_arg; |
| *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); |
| } else { |
| *(u32 *)tmp_buf = (u32)(long)cur_arg; |
| } |
| tmp_buf += sizeof_cur_arg; |
| } |
| num_spec++; |
| } |
| |
| err = 0; |
| out: |
| if (err) |
| bpf_bprintf_cleanup(); |
| return err; |
| } |
| |
| BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, |
| const void *, data, u32, data_len) |
| { |
| int err, num_args; |
| u32 *bin_args; |
| |
| if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || |
| (data_len && !data)) |
| return -EINVAL; |
| num_args = data_len / 8; |
| |
| /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we |
| * can safely give an unbounded size. |
| */ |
| err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); |
| if (err < 0) |
| return err; |
| |
| err = bstr_printf(str, str_size, fmt, bin_args); |
| |
| bpf_bprintf_cleanup(); |
| |
| return err + 1; |
| } |
| |
| const struct bpf_func_proto bpf_snprintf_proto = { |
| .func = bpf_snprintf, |
| .gpl_only = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_MEM_OR_NULL, |
| .arg2_type = ARG_CONST_SIZE_OR_ZERO, |
| .arg3_type = ARG_PTR_TO_CONST_STR, |
| .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, |
| .arg5_type = ARG_CONST_SIZE_OR_ZERO, |
| }; |
| |
| /* BPF map elements can contain 'struct bpf_timer'. |
| * Such map owns all of its BPF timers. |
| * 'struct bpf_timer' is allocated as part of map element allocation |
| * and it's zero initialized. |
| * That space is used to keep 'struct bpf_timer_kern'. |
| * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and |
| * remembers 'struct bpf_map *' pointer it's part of. |
| * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. |
| * bpf_timer_start() arms the timer. |
| * If user space reference to a map goes to zero at this point |
| * ops->map_release_uref callback is responsible for cancelling the timers, |
| * freeing their memory, and decrementing prog's refcnts. |
| * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. |
| * Inner maps can contain bpf timers as well. ops->map_release_uref is |
| * freeing the timers when inner map is replaced or deleted by user space. |
| */ |
| struct bpf_hrtimer { |
| struct hrtimer timer; |
| struct bpf_map *map; |
| struct bpf_prog *prog; |
| void __rcu *callback_fn; |
| void *value; |
| }; |
| |
| /* the actual struct hidden inside uapi struct bpf_timer */ |
| struct bpf_timer_kern { |
| struct bpf_hrtimer *timer; |
| /* bpf_spin_lock is used here instead of spinlock_t to make |
| * sure that it always fits into space reserved by struct bpf_timer |
| * regardless of LOCKDEP and spinlock debug flags. |
| */ |
| struct bpf_spin_lock lock; |
| } __attribute__((aligned(8))); |
| |
| static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); |
| |
| static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) |
| { |
| struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); |
| struct bpf_map *map = t->map; |
| void *value = t->value; |
| bpf_callback_t callback_fn; |
| void *key; |
| u32 idx; |
| |
| BTF_TYPE_EMIT(struct bpf_timer); |
| callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); |
| if (!callback_fn) |
| goto out; |
| |
| /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and |
| * cannot be preempted by another bpf_timer_cb() on the same cpu. |
| * Remember the timer this callback is servicing to prevent |
| * deadlock if callback_fn() calls bpf_timer_cancel() or |
| * bpf_map_delete_elem() on the same timer. |
| */ |
| this_cpu_write(hrtimer_running, t); |
| if (map->map_type == BPF_MAP_TYPE_ARRAY) { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| |
| /* compute the key */ |
| idx = ((char *)value - array->value) / array->elem_size; |
| key = &idx; |
| } else { /* hash or lru */ |
| key = value - round_up(map->key_size, 8); |
| } |
| |
| callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); |
| /* The verifier checked that return value is zero. */ |
| |
| this_cpu_write(hrtimer_running, NULL); |
| out: |
| return HRTIMER_NORESTART; |
| } |
| |
| BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, |
| u64, flags) |
| { |
| clockid_t clockid = flags & (MAX_CLOCKS - 1); |
| struct bpf_hrtimer *t; |
| int ret = 0; |
| |
| BUILD_BUG_ON(MAX_CLOCKS != 16); |
| BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); |
| BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); |
| |
| if (in_nmi()) |
| return -EOPNOTSUPP; |
| |
| if (flags >= MAX_CLOCKS || |
| /* similar to timerfd except _ALARM variants are not supported */ |
| (clockid != CLOCK_MONOTONIC && |
| clockid != CLOCK_REALTIME && |
| clockid != CLOCK_BOOTTIME)) |
| return -EINVAL; |
| __bpf_spin_lock_irqsave(&timer->lock); |
| t = timer->timer; |
| if (t) { |
| ret = -EBUSY; |
| goto out; |
| } |
| if (!atomic64_read(&map->usercnt)) { |
| /* maps with timers must be either held by user space |
| * or pinned in bpffs. |
| */ |
| ret = -EPERM; |
| goto out; |
| } |
| /* allocate hrtimer via map_kmalloc to use memcg accounting */ |
| t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); |
| if (!t) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| t->value = (void *)timer - map->timer_off; |
| t->map = map; |
| t->prog = NULL; |
| rcu_assign_pointer(t->callback_fn, NULL); |
| hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); |
| t->timer.function = bpf_timer_cb; |
| timer->timer = t; |
| out: |
| __bpf_spin_unlock_irqrestore(&timer->lock); |
| return ret; |
| } |
| |
| static const struct bpf_func_proto bpf_timer_init_proto = { |
| .func = bpf_timer_init, |
| .gpl_only = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_TIMER, |
| .arg2_type = ARG_CONST_MAP_PTR, |
| .arg3_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, |
| struct bpf_prog_aux *, aux) |
| { |
| struct bpf_prog *prev, *prog = aux->prog; |
| struct bpf_hrtimer *t; |
| int ret = 0; |
| |
| if (in_nmi()) |
| return -EOPNOTSUPP; |
| __bpf_spin_lock_irqsave(&timer->lock); |
| t = timer->timer; |
| if (!t) { |
| ret = -EINVAL; |
| goto out; |
| } |
| if (!atomic64_read(&t->map->usercnt)) { |
| /* maps with timers must be either held by user space |
| * or pinned in bpffs. Otherwise timer might still be |
| * running even when bpf prog is detached and user space |
| * is gone, since map_release_uref won't ever be called. |
| */ |
| ret = -EPERM; |
| goto out; |
| } |
| prev = t->prog; |
| if (prev != prog) { |
| /* Bump prog refcnt once. Every bpf_timer_set_callback() |
| * can pick different callback_fn-s within the same prog. |
| */ |
| prog = bpf_prog_inc_not_zero(prog); |
| if (IS_ERR(prog)) { |
| ret = PTR_ERR(prog); |
| goto out; |
| } |
| if (prev) |
| /* Drop prev prog refcnt when swapping with new prog */ |
| bpf_prog_put(prev); |
| t->prog = prog; |
| } |
| rcu_assign_pointer(t->callback_fn, callback_fn); |
| out: |
| __bpf_spin_unlock_irqrestore(&timer->lock); |
| return ret; |
| } |
| |
| static const struct bpf_func_proto bpf_timer_set_callback_proto = { |
| .func = bpf_timer_set_callback, |
| .gpl_only = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_TIMER, |
| .arg2_type = ARG_PTR_TO_FUNC, |
| }; |
| |
| BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) |
| { |
| struct bpf_hrtimer *t; |
| int ret = 0; |
| |
| if (in_nmi()) |
| return -EOPNOTSUPP; |
| if (flags) |
| return -EINVAL; |
| __bpf_spin_lock_irqsave(&timer->lock); |
| t = timer->timer; |
| if (!t || !t->prog) { |
| ret = -EINVAL; |
| goto out; |
| } |
| hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); |
| out: |
| __bpf_spin_unlock_irqrestore(&timer->lock); |
| return ret; |
| } |
| |
| static const struct bpf_func_proto bpf_timer_start_proto = { |
| .func = bpf_timer_start, |
| .gpl_only = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_TIMER, |
| .arg2_type = ARG_ANYTHING, |
| .arg3_type = ARG_ANYTHING, |
| }; |
| |
| static void drop_prog_refcnt(struct bpf_hrtimer *t) |
| { |
| struct bpf_prog *prog = t->prog; |
| |
| if (prog) { |
| bpf_prog_put(prog); |
| t->prog = NULL; |
| rcu_assign_pointer(t->callback_fn, NULL); |
| } |
| } |
| |
| BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) |
| { |
| struct bpf_hrtimer *t; |
| int ret = 0; |
| |
| if (in_nmi()) |
| return -EOPNOTSUPP; |
| __bpf_spin_lock_irqsave(&timer->lock); |
| t = timer->timer; |
| if (!t) { |
| ret = -EINVAL; |
| goto out; |
| } |
| if (this_cpu_read(hrtimer_running) == t) { |
| /* If bpf callback_fn is trying to bpf_timer_cancel() |
| * its own timer the hrtimer_cancel() will deadlock |
| * since it waits for callback_fn to finish |
| */ |
| ret = -EDEADLK; |
| goto out; |
| } |
| drop_prog_refcnt(t); |
| out: |
| __bpf_spin_unlock_irqrestore(&timer->lock); |
| /* Cancel the timer and wait for associated callback to finish |
| * if it was running. |
| */ |
| ret = ret ?: hrtimer_cancel(&t->timer); |
| return ret; |
| } |
| |
| static const struct bpf_func_proto bpf_timer_cancel_proto = { |
| .func = bpf_timer_cancel, |
| .gpl_only = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_TIMER, |
| }; |
| |
| /* This function is called by map_delete/update_elem for individual element and |
| * by ops->map_release_uref when the user space reference to a map reaches zero. |
| */ |
| void bpf_timer_cancel_and_free(void *val) |
| { |
| struct bpf_timer_kern *timer = val; |
| struct bpf_hrtimer *t; |
| |
| /* Performance optimization: read timer->timer without lock first. */ |
| if (!READ_ONCE(timer->timer)) |
| return; |
| |
| __bpf_spin_lock_irqsave(&timer->lock); |
| /* re-read it under lock */ |
| t = timer->timer; |
| if (!t) |
| goto out; |
| drop_prog_refcnt(t); |
| /* The subsequent bpf_timer_start/cancel() helpers won't be able to use |
| * this timer, since it won't be initialized. |
| */ |
| timer->timer = NULL; |
| out: |
| __bpf_spin_unlock_irqrestore(&timer->lock); |
| if (!t) |
| return; |
| /* Cancel the timer and wait for callback to complete if it was running. |
| * If hrtimer_cancel() can be safely called it's safe to call kfree(t) |
| * right after for both preallocated and non-preallocated maps. |
| * The timer->timer = NULL was already done and no code path can |
| * see address 't' anymore. |
| * |
| * Check that bpf_map_delete/update_elem() wasn't called from timer |
| * callback_fn. In such case don't call hrtimer_cancel() (since it will |
| * deadlock) and don't call hrtimer_try_to_cancel() (since it will just |
| * return -1). Though callback_fn is still running on this cpu it's |
| * safe to do kfree(t) because bpf_timer_cb() read everything it needed |
| * from 't'. The bpf subprog callback_fn won't be able to access 't', |
| * since timer->timer = NULL was already done. The timer will be |
| * effectively cancelled because bpf_timer_cb() will return |
| * HRTIMER_NORESTART. |
| */ |
| if (this_cpu_read(hrtimer_running) != t) |
| hrtimer_cancel(&t->timer); |
| kfree(t); |
| } |
| |
| const struct bpf_func_proto bpf_get_current_task_proto __weak; |
| const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; |
| const struct bpf_func_proto bpf_probe_read_user_proto __weak; |
| const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; |
| const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; |
| const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; |
| const struct bpf_func_proto bpf_task_pt_regs_proto __weak; |
| |
| const struct bpf_func_proto * |
| bpf_base_func_proto(enum bpf_func_id func_id) |
| { |
| switch (func_id) { |
| case BPF_FUNC_map_lookup_elem: |
| return &bpf_map_lookup_elem_proto; |
| case BPF_FUNC_map_update_elem: |
| return &bpf_map_update_elem_proto; |
| case BPF_FUNC_map_delete_elem: |
| return &bpf_map_delete_elem_proto; |
| case BPF_FUNC_map_push_elem: |
| return &bpf_map_push_elem_proto; |
| case BPF_FUNC_map_pop_elem: |
| return &bpf_map_pop_elem_proto; |
| case BPF_FUNC_map_peek_elem: |
| return &bpf_map_peek_elem_proto; |
| case BPF_FUNC_get_prandom_u32: |
| return &bpf_get_prandom_u32_proto; |
| case BPF_FUNC_get_smp_processor_id: |
| return &bpf_get_raw_smp_processor_id_proto; |
| case BPF_FUNC_get_numa_node_id: |
| return &bpf_get_numa_node_id_proto; |
| case BPF_FUNC_tail_call: |
| return &bpf_tail_call_proto; |
| case BPF_FUNC_ktime_get_ns: |
| return &bpf_ktime_get_ns_proto; |
| case BPF_FUNC_ktime_get_boot_ns: |
| return &bpf_ktime_get_boot_ns_proto; |
| case BPF_FUNC_ringbuf_output: |
| return &bpf_ringbuf_output_proto; |
| case BPF_FUNC_ringbuf_reserve: |
| return &bpf_ringbuf_reserve_proto; |
| case BPF_FUNC_ringbuf_submit: |
| return &bpf_ringbuf_submit_proto; |
| case BPF_FUNC_ringbuf_discard: |
| return &bpf_ringbuf_discard_proto; |
| case BPF_FUNC_ringbuf_query: |
| return &bpf_ringbuf_query_proto; |
| case BPF_FUNC_for_each_map_elem: |
| return &bpf_for_each_map_elem_proto; |
| case BPF_FUNC_loop: |
| return &bpf_loop_proto; |
| case BPF_FUNC_strncmp: |
| return &bpf_strncmp_proto; |
| default: |
| break; |
| } |
| |
| if (!bpf_capable()) |
| return NULL; |
| |
| switch (func_id) { |
| case BPF_FUNC_spin_lock: |
| return &bpf_spin_lock_proto; |
| case BPF_FUNC_spin_unlock: |
| return &bpf_spin_unlock_proto; |
| case BPF_FUNC_jiffies64: |
| return &bpf_jiffies64_proto; |
| case BPF_FUNC_per_cpu_ptr: |
| return &bpf_per_cpu_ptr_proto; |
| case BPF_FUNC_this_cpu_ptr: |
| return &bpf_this_cpu_ptr_proto; |
| case BPF_FUNC_timer_init: |
| return &bpf_timer_init_proto; |
| case BPF_FUNC_timer_set_callback: |
| return &bpf_timer_set_callback_proto; |
| case BPF_FUNC_timer_start: |
| return &bpf_timer_start_proto; |
| case BPF_FUNC_timer_cancel: |
| return &bpf_timer_cancel_proto; |
| default: |
| break; |
| } |
| |
| if (!perfmon_capable()) |
| return NULL; |
| |
| switch (func_id) { |
| case BPF_FUNC_trace_printk: |
| return bpf_get_trace_printk_proto(); |
| case BPF_FUNC_get_current_task: |
| return &bpf_get_current_task_proto; |
| case BPF_FUNC_get_current_task_btf: |
| return &bpf_get_current_task_btf_proto; |
| case BPF_FUNC_probe_read_user: |
| return &bpf_probe_read_user_proto; |
| case BPF_FUNC_probe_read_kernel: |
| return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? |
| NULL : &bpf_probe_read_kernel_proto; |
| case BPF_FUNC_probe_read_user_str: |
| return &bpf_probe_read_user_str_proto; |
| case BPF_FUNC_probe_read_kernel_str: |
| return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? |
| NULL : &bpf_probe_read_kernel_str_proto; |
| case BPF_FUNC_snprintf_btf: |
| return &bpf_snprintf_btf_proto; |
| case BPF_FUNC_snprintf: |
| return &bpf_snprintf_proto; |
| case BPF_FUNC_task_pt_regs: |
| return &bpf_task_pt_regs_proto; |
| case BPF_FUNC_trace_vprintk: |
| return bpf_get_trace_vprintk_proto(); |
| default: |
| return NULL; |
| } |
| } |