blob: a0e47720f60cdf4846c46ab10e700c828a5ffd4f [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __KVM_X86_VMX_H
#define __KVM_X86_VMX_H
#include <linux/kvm_host.h>
#include <asm/kvm.h>
#include <asm/intel_pt.h>
#include "capabilities.h"
#include "kvm_cache_regs.h"
#include "ops.h"
#include "vmcs.h"
#include "cpuid.h"
extern const u32 vmx_msr_index[];
#define MSR_TYPE_R 1
#define MSR_TYPE_W 2
#define MSR_TYPE_RW 3
#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
#ifdef CONFIG_X86_64
#define NR_SHARED_MSRS 7
#else
#define NR_SHARED_MSRS 4
#endif
#define NR_LOADSTORE_MSRS 8
struct vmx_msrs {
unsigned int nr;
struct vmx_msr_entry val[NR_LOADSTORE_MSRS];
};
struct shared_msr_entry {
unsigned index;
u64 data;
u64 mask;
};
enum segment_cache_field {
SEG_FIELD_SEL = 0,
SEG_FIELD_BASE = 1,
SEG_FIELD_LIMIT = 2,
SEG_FIELD_AR = 3,
SEG_FIELD_NR = 4
};
/* Posted-Interrupt Descriptor */
struct pi_desc {
u32 pir[8]; /* Posted interrupt requested */
union {
struct {
/* bit 256 - Outstanding Notification */
u16 on : 1,
/* bit 257 - Suppress Notification */
sn : 1,
/* bit 271:258 - Reserved */
rsvd_1 : 14;
/* bit 279:272 - Notification Vector */
u8 nv;
/* bit 287:280 - Reserved */
u8 rsvd_2;
/* bit 319:288 - Notification Destination */
u32 ndst;
};
u64 control;
};
u32 rsvd[6];
} __aligned(64);
#define RTIT_ADDR_RANGE 4
struct pt_ctx {
u64 ctl;
u64 status;
u64 output_base;
u64 output_mask;
u64 cr3_match;
u64 addr_a[RTIT_ADDR_RANGE];
u64 addr_b[RTIT_ADDR_RANGE];
};
struct pt_desc {
u64 ctl_bitmask;
u32 addr_range;
u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
struct pt_ctx host;
struct pt_ctx guest;
};
/*
* The nested_vmx structure is part of vcpu_vmx, and holds information we need
* for correct emulation of VMX (i.e., nested VMX) on this vcpu.
*/
struct nested_vmx {
/* Has the level1 guest done vmxon? */
bool vmxon;
gpa_t vmxon_ptr;
bool pml_full;
/* The guest-physical address of the current VMCS L1 keeps for L2 */
gpa_t current_vmptr;
/*
* Cache of the guest's VMCS, existing outside of guest memory.
* Loaded from guest memory during VMPTRLD. Flushed to guest
* memory during VMCLEAR and VMPTRLD.
*/
struct vmcs12 *cached_vmcs12;
/*
* Cache of the guest's shadow VMCS, existing outside of guest
* memory. Loaded from guest memory during VM entry. Flushed
* to guest memory during VM exit.
*/
struct vmcs12 *cached_shadow_vmcs12;
/*
* Indicates if the shadow vmcs or enlightened vmcs must be updated
* with the data held by struct vmcs12.
*/
bool need_vmcs12_to_shadow_sync;
bool dirty_vmcs12;
/*
* Indicates lazily loaded guest state has not yet been decached from
* vmcs02.
*/
bool need_sync_vmcs02_to_vmcs12_rare;
/*
* vmcs02 has been initialized, i.e. state that is constant for
* vmcs02 has been written to the backing VMCS. Initialization
* is delayed until L1 actually attempts to run a nested VM.
*/
bool vmcs02_initialized;
bool change_vmcs01_virtual_apic_mode;
bool reload_vmcs01_apic_access_page;
/*
* Enlightened VMCS has been enabled. It does not mean that L1 has to
* use it. However, VMX features available to L1 will be limited based
* on what the enlightened VMCS supports.
*/
bool enlightened_vmcs_enabled;
/* L2 must run next, and mustn't decide to exit to L1. */
bool nested_run_pending;
/* Pending MTF VM-exit into L1. */
bool mtf_pending;
struct loaded_vmcs vmcs02;
/*
* Guest pages referred to in the vmcs02 with host-physical
* pointers, so we must keep them pinned while L2 runs.
*/
struct page *apic_access_page;
struct kvm_host_map virtual_apic_map;
struct kvm_host_map pi_desc_map;
struct kvm_host_map msr_bitmap_map;
struct pi_desc *pi_desc;
bool pi_pending;
u16 posted_intr_nv;
struct hrtimer preemption_timer;
u64 preemption_timer_deadline;
bool has_preemption_timer_deadline;
bool preemption_timer_expired;
/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
u64 vmcs01_debugctl;
u64 vmcs01_guest_bndcfgs;
/* to migrate it to L1 if L2 writes to L1's CR8 directly */
int l1_tpr_threshold;
u16 vpid02;
u16 last_vpid;
struct nested_vmx_msrs msrs;
/* SMM related state */
struct {
/* in VMX operation on SMM entry? */
bool vmxon;
/* in guest mode on SMM entry? */
bool guest_mode;
} smm;
gpa_t hv_evmcs_vmptr;
struct kvm_host_map hv_evmcs_map;
struct hv_enlightened_vmcs *hv_evmcs;
};
struct vcpu_vmx {
struct kvm_vcpu vcpu;
u8 fail;
u8 msr_bitmap_mode;
/*
* If true, host state has been stored in vmx->loaded_vmcs for
* the CPU registers that only need to be switched when transitioning
* to/from the kernel, and the registers have been loaded with guest
* values. If false, host state is loaded in the CPU registers
* and vmx->loaded_vmcs->host_state is invalid.
*/
bool guest_state_loaded;
unsigned long exit_qualification;
u32 exit_intr_info;
u32 idt_vectoring_info;
ulong rflags;
struct shared_msr_entry guest_msrs[NR_SHARED_MSRS];
int nmsrs;
int save_nmsrs;
bool guest_msrs_ready;
#ifdef CONFIG_X86_64
u64 msr_host_kernel_gs_base;
u64 msr_guest_kernel_gs_base;
#endif
u64 spec_ctrl;
u32 msr_ia32_umwait_control;
u32 secondary_exec_control;
/*
* loaded_vmcs points to the VMCS currently used in this vcpu. For a
* non-nested (L1) guest, it always points to vmcs01. For a nested
* guest (L2), it points to a different VMCS.
*/
struct loaded_vmcs vmcs01;
struct loaded_vmcs *loaded_vmcs;
struct msr_autoload {
struct vmx_msrs guest;
struct vmx_msrs host;
} msr_autoload;
struct msr_autostore {
struct vmx_msrs guest;
} msr_autostore;
struct {
int vm86_active;
ulong save_rflags;
struct kvm_segment segs[8];
} rmode;
struct {
u32 bitmask; /* 4 bits per segment (1 bit per field) */
struct kvm_save_segment {
u16 selector;
unsigned long base;
u32 limit;
u32 ar;
} seg[8];
} segment_cache;
int vpid;
bool emulation_required;
u32 exit_reason;
/* Posted interrupt descriptor */
struct pi_desc pi_desc;
/* Support for a guest hypervisor (nested VMX) */
struct nested_vmx nested;
/* Dynamic PLE window. */
unsigned int ple_window;
bool ple_window_dirty;
bool req_immediate_exit;
/* Support for PML */
#define PML_ENTITY_NUM 512
struct page *pml_pg;
/* apic deadline value in host tsc */
u64 hv_deadline_tsc;
u64 current_tsc_ratio;
unsigned long host_debugctlmsr;
/*
* Only bits masked by msr_ia32_feature_control_valid_bits can be set in
* msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
* in msr_ia32_feature_control_valid_bits.
*/
u64 msr_ia32_feature_control;
u64 msr_ia32_feature_control_valid_bits;
u64 ept_pointer;
struct pt_desc pt_desc;
};
enum ept_pointers_status {
EPT_POINTERS_CHECK = 0,
EPT_POINTERS_MATCH = 1,
EPT_POINTERS_MISMATCH = 2
};
struct kvm_vmx {
struct kvm kvm;
unsigned int tss_addr;
bool ept_identity_pagetable_done;
gpa_t ept_identity_map_addr;
enum ept_pointers_status ept_pointers_match;
spinlock_t ept_pointer_lock;
};
bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
struct loaded_vmcs *buddy);
int allocate_vpid(void);
void free_vpid(int vpid);
void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
unsigned long fs_base, unsigned long gs_base);
int vmx_get_cpl(struct kvm_vcpu *vcpu);
unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
void ept_save_pdptrs(struct kvm_vcpu *vcpu);
void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
int root_level);
void update_exception_bitmap(struct kvm_vcpu *vcpu);
void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr);
void pt_update_intercept_for_msr(struct vcpu_vmx *vmx);
void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
int vmx_find_msr_index(struct vmx_msrs *m, u32 msr);
int vmx_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
struct x86_exception *e);
void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
#define POSTED_INTR_ON 0
#define POSTED_INTR_SN 1
static inline bool pi_test_and_set_on(struct pi_desc *pi_desc)
{
return test_and_set_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc)
{
return test_and_clear_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
{
return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
}
static inline bool pi_is_pir_empty(struct pi_desc *pi_desc)
{
return bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS);
}
static inline void pi_set_sn(struct pi_desc *pi_desc)
{
set_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
static inline void pi_set_on(struct pi_desc *pi_desc)
{
set_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static inline void pi_clear_on(struct pi_desc *pi_desc)
{
clear_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static inline void pi_clear_sn(struct pi_desc *pi_desc)
{
clear_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
static inline int pi_test_on(struct pi_desc *pi_desc)
{
return test_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static inline int pi_test_sn(struct pi_desc *pi_desc)
{
return test_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
static inline u8 vmx_get_rvi(void)
{
return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
}
#define BUILD_CONTROLS_SHADOW(lname, uname) \
static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val) \
{ \
if (vmx->loaded_vmcs->controls_shadow.lname != val) { \
vmcs_write32(uname, val); \
vmx->loaded_vmcs->controls_shadow.lname = val; \
} \
} \
static inline u32 lname##_controls_get(struct vcpu_vmx *vmx) \
{ \
return vmx->loaded_vmcs->controls_shadow.lname; \
} \
static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val) \
{ \
lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \
} \
static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
{ \
lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \
}
BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
static inline void vmx_register_cache_reset(struct kvm_vcpu *vcpu)
{
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
| (1 << VCPU_EXREG_RFLAGS)
| (1 << VCPU_EXREG_PDPTR)
| (1 << VCPU_EXREG_SEGMENTS)
| (1 << VCPU_EXREG_CR0)
| (1 << VCPU_EXREG_CR3)
| (1 << VCPU_EXREG_CR4)
| (1 << VCPU_EXREG_EXIT_INFO_1)
| (1 << VCPU_EXREG_EXIT_INFO_2));
vcpu->arch.regs_dirty = 0;
}
static inline u32 vmx_vmentry_ctrl(void)
{
u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
if (vmx_pt_mode_is_system())
vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
VM_ENTRY_LOAD_IA32_RTIT_CTL);
/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
return vmentry_ctrl &
~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
}
static inline u32 vmx_vmexit_ctrl(void)
{
u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
if (vmx_pt_mode_is_system())
vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
VM_EXIT_CLEAR_IA32_RTIT_CTL);
/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
return vmexit_ctrl &
~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
}
u32 vmx_exec_control(struct vcpu_vmx *vmx);
u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx);
static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
{
return container_of(kvm, struct kvm_vmx, kvm);
}
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_vmx, vcpu);
}
static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
{
return &(to_vmx(vcpu)->pi_desc);
}
static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
}
return vmx->exit_qualification;
}
static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
}
return vmx->exit_intr_info;
}
struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
void free_vmcs(struct vmcs *vmcs);
int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
static inline struct vmcs *alloc_vmcs(bool shadow)
{
return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
GFP_KERNEL_ACCOUNT);
}
static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx)
{
vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
}
static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
{
return vmx->secondary_exec_control &
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
}
static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
{
if (!enable_ept)
return true;
return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
}
void dump_vmcs(void);
#endif /* __KVM_X86_VMX_H */