| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Miscellaneous Mac68K-specific stuff |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/time.h> |
| #include <linux/rtc.h> |
| #include <linux/mm.h> |
| |
| #include <linux/adb.h> |
| #include <linux/cuda.h> |
| #include <linux/pmu.h> |
| |
| #include <linux/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/setup.h> |
| #include <asm/macintosh.h> |
| #include <asm/mac_via.h> |
| #include <asm/mac_oss.h> |
| |
| #include <asm/machdep.h> |
| |
| /* |
| * Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU |
| * times wrap in 2040. If we need to handle later times, the read_time functions |
| * need to be changed to interpret wrapped times as post-2040. |
| */ |
| |
| #define RTC_OFFSET 2082844800 |
| |
| static void (*rom_reset)(void); |
| |
| #if IS_ENABLED(CONFIG_NVRAM) |
| #ifdef CONFIG_ADB_CUDA |
| static unsigned char cuda_pram_read_byte(int offset) |
| { |
| struct adb_request req; |
| |
| if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM, |
| (offset >> 8) & 0xFF, offset & 0xFF) < 0) |
| return 0; |
| while (!req.complete) |
| cuda_poll(); |
| return req.reply[3]; |
| } |
| |
| static void cuda_pram_write_byte(unsigned char data, int offset) |
| { |
| struct adb_request req; |
| |
| if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM, |
| (offset >> 8) & 0xFF, offset & 0xFF, data) < 0) |
| return; |
| while (!req.complete) |
| cuda_poll(); |
| } |
| #endif /* CONFIG_ADB_CUDA */ |
| |
| #ifdef CONFIG_ADB_PMU |
| static unsigned char pmu_pram_read_byte(int offset) |
| { |
| struct adb_request req; |
| |
| if (pmu_request(&req, NULL, 3, PMU_READ_XPRAM, |
| offset & 0xFF, 1) < 0) |
| return 0; |
| pmu_wait_complete(&req); |
| |
| return req.reply[0]; |
| } |
| |
| static void pmu_pram_write_byte(unsigned char data, int offset) |
| { |
| struct adb_request req; |
| |
| if (pmu_request(&req, NULL, 4, PMU_WRITE_XPRAM, |
| offset & 0xFF, 1, data) < 0) |
| return; |
| pmu_wait_complete(&req); |
| } |
| #endif /* CONFIG_ADB_PMU */ |
| #endif /* CONFIG_NVRAM */ |
| |
| /* |
| * VIA PRAM/RTC access routines |
| * |
| * Must be called with interrupts disabled and |
| * the RTC should be enabled. |
| */ |
| |
| static __u8 via_rtc_recv(void) |
| { |
| int i, reg; |
| __u8 data; |
| |
| reg = via1[vBufB] & ~VIA1B_vRTCClk; |
| |
| /* Set the RTC data line to be an input. */ |
| |
| via1[vDirB] &= ~VIA1B_vRTCData; |
| |
| /* The bits of the byte come out in MSB order */ |
| |
| data = 0; |
| for (i = 0 ; i < 8 ; i++) { |
| via1[vBufB] = reg; |
| via1[vBufB] = reg | VIA1B_vRTCClk; |
| data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData); |
| } |
| |
| /* Return RTC data line to output state */ |
| |
| via1[vDirB] |= VIA1B_vRTCData; |
| |
| return data; |
| } |
| |
| static void via_rtc_send(__u8 data) |
| { |
| int i, reg, bit; |
| |
| reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData); |
| |
| /* The bits of the byte go in in MSB order */ |
| |
| for (i = 0 ; i < 8 ; i++) { |
| bit = data & 0x80? 1 : 0; |
| data <<= 1; |
| via1[vBufB] = reg | bit; |
| via1[vBufB] = reg | bit | VIA1B_vRTCClk; |
| } |
| } |
| |
| /* |
| * These values can be found in Inside Macintosh vol. III ch. 2 |
| * which has a description of the RTC chip in the original Mac. |
| */ |
| |
| #define RTC_FLG_READ BIT(7) |
| #define RTC_FLG_WRITE_PROTECT BIT(7) |
| #define RTC_CMD_READ(r) (RTC_FLG_READ | (r << 2)) |
| #define RTC_CMD_WRITE(r) (r << 2) |
| #define RTC_REG_SECONDS_0 0 |
| #define RTC_REG_SECONDS_1 1 |
| #define RTC_REG_SECONDS_2 2 |
| #define RTC_REG_SECONDS_3 3 |
| #define RTC_REG_WRITE_PROTECT 13 |
| |
| /* |
| * Inside Mac has no information about two-byte RTC commands but |
| * the MAME/MESS source code has the essentials. |
| */ |
| |
| #define RTC_REG_XPRAM 14 |
| #define RTC_CMD_XPRAM_READ (RTC_CMD_READ(RTC_REG_XPRAM) << 8) |
| #define RTC_CMD_XPRAM_WRITE (RTC_CMD_WRITE(RTC_REG_XPRAM) << 8) |
| #define RTC_CMD_XPRAM_ARG(a) (((a & 0xE0) << 3) | ((a & 0x1F) << 2)) |
| |
| /* |
| * Execute a VIA PRAM/RTC command. For read commands |
| * data should point to a one-byte buffer for the |
| * resulting data. For write commands it should point |
| * to the data byte to for the command. |
| * |
| * This function disables all interrupts while running. |
| */ |
| |
| static void via_rtc_command(int command, __u8 *data) |
| { |
| unsigned long flags; |
| int is_read; |
| |
| local_irq_save(flags); |
| |
| /* The least significant bits must be 0b01 according to Inside Mac */ |
| |
| command = (command & ~3) | 1; |
| |
| /* Enable the RTC and make sure the strobe line is high */ |
| |
| via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb; |
| |
| if (command & 0xFF00) { /* extended (two-byte) command */ |
| via_rtc_send((command & 0xFF00) >> 8); |
| via_rtc_send(command & 0xFF); |
| is_read = command & (RTC_FLG_READ << 8); |
| } else { /* one-byte command */ |
| via_rtc_send(command); |
| is_read = command & RTC_FLG_READ; |
| } |
| if (is_read) { |
| *data = via_rtc_recv(); |
| } else { |
| via_rtc_send(*data); |
| } |
| |
| /* All done, disable the RTC */ |
| |
| via1[vBufB] |= VIA1B_vRTCEnb; |
| |
| local_irq_restore(flags); |
| } |
| |
| #if IS_ENABLED(CONFIG_NVRAM) |
| static unsigned char via_pram_read_byte(int offset) |
| { |
| unsigned char temp; |
| |
| via_rtc_command(RTC_CMD_XPRAM_READ | RTC_CMD_XPRAM_ARG(offset), &temp); |
| |
| return temp; |
| } |
| |
| static void via_pram_write_byte(unsigned char data, int offset) |
| { |
| unsigned char temp; |
| |
| temp = 0x55; |
| via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp); |
| |
| temp = data; |
| via_rtc_command(RTC_CMD_XPRAM_WRITE | RTC_CMD_XPRAM_ARG(offset), &temp); |
| |
| temp = 0x55 | RTC_FLG_WRITE_PROTECT; |
| via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp); |
| } |
| #endif /* CONFIG_NVRAM */ |
| |
| /* |
| * Return the current time in seconds since January 1, 1904. |
| * |
| * This only works on machines with the VIA-based PRAM/RTC, which |
| * is basically any machine with Mac II-style ADB. |
| */ |
| |
| static time64_t via_read_time(void) |
| { |
| union { |
| __u8 cdata[4]; |
| __u32 idata; |
| } result, last_result; |
| int count = 1; |
| |
| via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), &last_result.cdata[3]); |
| via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), &last_result.cdata[2]); |
| via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), &last_result.cdata[1]); |
| via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), &last_result.cdata[0]); |
| |
| /* |
| * The NetBSD guys say to loop until you get the same reading |
| * twice in a row. |
| */ |
| |
| while (1) { |
| via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), |
| &result.cdata[3]); |
| via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), |
| &result.cdata[2]); |
| via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), |
| &result.cdata[1]); |
| via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), |
| &result.cdata[0]); |
| |
| if (result.idata == last_result.idata) |
| return (time64_t)result.idata - RTC_OFFSET; |
| |
| if (++count > 10) |
| break; |
| |
| last_result.idata = result.idata; |
| } |
| |
| pr_err("%s: failed to read a stable value; got 0x%08x then 0x%08x\n", |
| __func__, last_result.idata, result.idata); |
| |
| return 0; |
| } |
| |
| /* |
| * Set the current time to a number of seconds since January 1, 1904. |
| * |
| * This only works on machines with the VIA-based PRAM/RTC, which |
| * is basically any machine with Mac II-style ADB. |
| */ |
| |
| static void via_set_rtc_time(struct rtc_time *tm) |
| { |
| union { |
| __u8 cdata[4]; |
| __u32 idata; |
| } data; |
| __u8 temp; |
| time64_t time; |
| |
| time = mktime64(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, |
| tm->tm_hour, tm->tm_min, tm->tm_sec); |
| |
| /* Clear the write protect bit */ |
| |
| temp = 0x55; |
| via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp); |
| |
| data.idata = lower_32_bits(time + RTC_OFFSET); |
| via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_0), &data.cdata[3]); |
| via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_1), &data.cdata[2]); |
| via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_2), &data.cdata[1]); |
| via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_3), &data.cdata[0]); |
| |
| /* Set the write protect bit */ |
| |
| temp = 0x55 | RTC_FLG_WRITE_PROTECT; |
| via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp); |
| } |
| |
| static void via_shutdown(void) |
| { |
| if (rbv_present) { |
| via2[rBufB] &= ~0x04; |
| } else { |
| /* Direction of vDirB is output */ |
| via2[vDirB] |= 0x04; |
| /* Send a value of 0 on that line */ |
| via2[vBufB] &= ~0x04; |
| mdelay(1000); |
| } |
| } |
| |
| static void oss_shutdown(void) |
| { |
| oss->rom_ctrl = OSS_POWEROFF; |
| } |
| |
| #ifdef CONFIG_ADB_CUDA |
| static void cuda_restart(void) |
| { |
| struct adb_request req; |
| |
| if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0) |
| return; |
| while (!req.complete) |
| cuda_poll(); |
| } |
| |
| static void cuda_shutdown(void) |
| { |
| struct adb_request req; |
| |
| if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0) |
| return; |
| |
| /* Avoid infinite polling loop when PSU is not under Cuda control */ |
| switch (macintosh_config->ident) { |
| case MAC_MODEL_C660: |
| case MAC_MODEL_Q605: |
| case MAC_MODEL_Q605_ACC: |
| case MAC_MODEL_P475: |
| case MAC_MODEL_P475F: |
| return; |
| } |
| |
| while (!req.complete) |
| cuda_poll(); |
| } |
| #endif /* CONFIG_ADB_CUDA */ |
| |
| /* |
| *------------------------------------------------------------------- |
| * Below this point are the generic routines; they'll dispatch to the |
| * correct routine for the hardware on which we're running. |
| *------------------------------------------------------------------- |
| */ |
| |
| #if IS_ENABLED(CONFIG_NVRAM) |
| unsigned char mac_pram_read_byte(int addr) |
| { |
| switch (macintosh_config->adb_type) { |
| case MAC_ADB_IOP: |
| case MAC_ADB_II: |
| case MAC_ADB_PB1: |
| return via_pram_read_byte(addr); |
| #ifdef CONFIG_ADB_CUDA |
| case MAC_ADB_EGRET: |
| case MAC_ADB_CUDA: |
| return cuda_pram_read_byte(addr); |
| #endif |
| #ifdef CONFIG_ADB_PMU |
| case MAC_ADB_PB2: |
| return pmu_pram_read_byte(addr); |
| #endif |
| default: |
| return 0xFF; |
| } |
| } |
| |
| void mac_pram_write_byte(unsigned char val, int addr) |
| { |
| switch (macintosh_config->adb_type) { |
| case MAC_ADB_IOP: |
| case MAC_ADB_II: |
| case MAC_ADB_PB1: |
| via_pram_write_byte(val, addr); |
| break; |
| #ifdef CONFIG_ADB_CUDA |
| case MAC_ADB_EGRET: |
| case MAC_ADB_CUDA: |
| cuda_pram_write_byte(val, addr); |
| break; |
| #endif |
| #ifdef CONFIG_ADB_PMU |
| case MAC_ADB_PB2: |
| pmu_pram_write_byte(val, addr); |
| break; |
| #endif |
| default: |
| break; |
| } |
| } |
| |
| ssize_t mac_pram_get_size(void) |
| { |
| return 256; |
| } |
| #endif /* CONFIG_NVRAM */ |
| |
| void mac_poweroff(void) |
| { |
| if (oss_present) { |
| oss_shutdown(); |
| } else if (macintosh_config->adb_type == MAC_ADB_II) { |
| via_shutdown(); |
| #ifdef CONFIG_ADB_CUDA |
| } else if (macintosh_config->adb_type == MAC_ADB_EGRET || |
| macintosh_config->adb_type == MAC_ADB_CUDA) { |
| cuda_shutdown(); |
| #endif |
| #ifdef CONFIG_ADB_PMU |
| } else if (macintosh_config->adb_type == MAC_ADB_PB2) { |
| pmu_shutdown(); |
| #endif |
| } |
| |
| pr_crit("It is now safe to turn off your Macintosh.\n"); |
| local_irq_disable(); |
| while(1); |
| } |
| |
| void mac_reset(void) |
| { |
| if (macintosh_config->adb_type == MAC_ADB_II && |
| macintosh_config->ident != MAC_MODEL_SE30) { |
| /* need ROMBASE in booter */ |
| /* indeed, plus need to MAP THE ROM !! */ |
| |
| if (mac_bi_data.rombase == 0) |
| mac_bi_data.rombase = 0x40800000; |
| |
| /* works on some */ |
| rom_reset = (void *) (mac_bi_data.rombase + 0xa); |
| |
| local_irq_disable(); |
| rom_reset(); |
| #ifdef CONFIG_ADB_CUDA |
| } else if (macintosh_config->adb_type == MAC_ADB_EGRET || |
| macintosh_config->adb_type == MAC_ADB_CUDA) { |
| cuda_restart(); |
| #endif |
| #ifdef CONFIG_ADB_PMU |
| } else if (macintosh_config->adb_type == MAC_ADB_PB2) { |
| pmu_restart(); |
| #endif |
| } else if (CPU_IS_030) { |
| |
| /* 030-specific reset routine. The idea is general, but the |
| * specific registers to reset are '030-specific. Until I |
| * have a non-030 machine, I can't test anything else. |
| * -- C. Scott Ananian <cananian@alumni.princeton.edu> |
| */ |
| |
| unsigned long rombase = 0x40000000; |
| |
| /* make a 1-to-1 mapping, using the transparent tran. reg. */ |
| unsigned long virt = (unsigned long) mac_reset; |
| unsigned long phys = virt_to_phys(mac_reset); |
| unsigned long addr = (phys&0xFF000000)|0x8777; |
| unsigned long offset = phys-virt; |
| |
| local_irq_disable(); /* lets not screw this up, ok? */ |
| __asm__ __volatile__(".chip 68030\n\t" |
| "pmove %0,%/tt0\n\t" |
| ".chip 68k" |
| : : "m" (addr)); |
| /* Now jump to physical address so we can disable MMU */ |
| __asm__ __volatile__( |
| ".chip 68030\n\t" |
| "lea %/pc@(1f),%/a0\n\t" |
| "addl %0,%/a0\n\t"/* fixup target address and stack ptr */ |
| "addl %0,%/sp\n\t" |
| "pflusha\n\t" |
| "jmp %/a0@\n\t" /* jump into physical memory */ |
| "0:.long 0\n\t" /* a constant zero. */ |
| /* OK. Now reset everything and jump to reset vector. */ |
| "1:\n\t" |
| "lea %/pc@(0b),%/a0\n\t" |
| "pmove %/a0@, %/tc\n\t" /* disable mmu */ |
| "pmove %/a0@, %/tt0\n\t" /* disable tt0 */ |
| "pmove %/a0@, %/tt1\n\t" /* disable tt1 */ |
| "movel #0, %/a0\n\t" |
| "movec %/a0, %/vbr\n\t" /* clear vector base register */ |
| "movec %/a0, %/cacr\n\t" /* disable caches */ |
| "movel #0x0808,%/a0\n\t" |
| "movec %/a0, %/cacr\n\t" /* flush i&d caches */ |
| "movew #0x2700,%/sr\n\t" /* set up status register */ |
| "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */ |
| "movec %/a0, %/isp\n\t" |
| "movel %1@(0x4),%/a0\n\t" /* load reset vector */ |
| "reset\n\t" /* reset external devices */ |
| "jmp %/a0@\n\t" /* jump to the reset vector */ |
| ".chip 68k" |
| : : "r" (offset), "a" (rombase) : "a0"); |
| } |
| |
| /* should never get here */ |
| pr_crit("Restart failed. Please restart manually.\n"); |
| local_irq_disable(); |
| while(1); |
| } |
| |
| /* |
| * This function translates seconds since 1970 into a proper date. |
| * |
| * Algorithm cribbed from glibc2.1, __offtime(). |
| * |
| * This is roughly same as rtc_time64_to_tm(), which we should probably |
| * use here, but it's only available when CONFIG_RTC_LIB is enabled. |
| */ |
| #define SECS_PER_MINUTE (60) |
| #define SECS_PER_HOUR (SECS_PER_MINUTE * 60) |
| #define SECS_PER_DAY (SECS_PER_HOUR * 24) |
| |
| static void unmktime(time64_t time, long offset, |
| int *yearp, int *monp, int *dayp, |
| int *hourp, int *minp, int *secp) |
| { |
| /* How many days come before each month (0-12). */ |
| static const unsigned short int __mon_yday[2][13] = |
| { |
| /* Normal years. */ |
| { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, |
| /* Leap years. */ |
| { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } |
| }; |
| int days, rem, y, wday, yday; |
| const unsigned short int *ip; |
| |
| days = div_u64_rem(time, SECS_PER_DAY, &rem); |
| rem += offset; |
| while (rem < 0) { |
| rem += SECS_PER_DAY; |
| --days; |
| } |
| while (rem >= SECS_PER_DAY) { |
| rem -= SECS_PER_DAY; |
| ++days; |
| } |
| *hourp = rem / SECS_PER_HOUR; |
| rem %= SECS_PER_HOUR; |
| *minp = rem / SECS_PER_MINUTE; |
| *secp = rem % SECS_PER_MINUTE; |
| /* January 1, 1970 was a Thursday. */ |
| wday = (4 + days) % 7; /* Day in the week. Not currently used */ |
| if (wday < 0) wday += 7; |
| y = 1970; |
| |
| #define DIV(a, b) ((a) / (b) - ((a) % (b) < 0)) |
| #define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400)) |
| #define __isleap(year) \ |
| ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0)) |
| |
| while (days < 0 || days >= (__isleap (y) ? 366 : 365)) |
| { |
| /* Guess a corrected year, assuming 365 days per year. */ |
| long int yg = y + days / 365 - (days % 365 < 0); |
| |
| /* Adjust DAYS and Y to match the guessed year. */ |
| days -= (yg - y) * 365 + |
| LEAPS_THRU_END_OF(yg - 1) - LEAPS_THRU_END_OF(y - 1); |
| y = yg; |
| } |
| *yearp = y - 1900; |
| yday = days; /* day in the year. Not currently used. */ |
| ip = __mon_yday[__isleap(y)]; |
| for (y = 11; days < (long int) ip[y]; --y) |
| continue; |
| days -= ip[y]; |
| *monp = y; |
| *dayp = days + 1; /* day in the month */ |
| return; |
| } |
| |
| /* |
| * Read/write the hardware clock. |
| */ |
| |
| int mac_hwclk(int op, struct rtc_time *t) |
| { |
| time64_t now; |
| |
| if (!op) { /* read */ |
| switch (macintosh_config->adb_type) { |
| case MAC_ADB_IOP: |
| case MAC_ADB_II: |
| case MAC_ADB_PB1: |
| now = via_read_time(); |
| break; |
| #ifdef CONFIG_ADB_CUDA |
| case MAC_ADB_EGRET: |
| case MAC_ADB_CUDA: |
| now = cuda_get_time(); |
| break; |
| #endif |
| #ifdef CONFIG_ADB_PMU |
| case MAC_ADB_PB2: |
| now = pmu_get_time(); |
| break; |
| #endif |
| default: |
| now = 0; |
| } |
| |
| t->tm_wday = 0; |
| unmktime(now, 0, |
| &t->tm_year, &t->tm_mon, &t->tm_mday, |
| &t->tm_hour, &t->tm_min, &t->tm_sec); |
| pr_debug("%s: read %ptR\n", __func__, t); |
| } else { /* write */ |
| pr_debug("%s: tried to write %ptR\n", __func__, t); |
| |
| switch (macintosh_config->adb_type) { |
| case MAC_ADB_IOP: |
| case MAC_ADB_II: |
| case MAC_ADB_PB1: |
| via_set_rtc_time(t); |
| break; |
| #ifdef CONFIG_ADB_CUDA |
| case MAC_ADB_EGRET: |
| case MAC_ADB_CUDA: |
| cuda_set_rtc_time(t); |
| break; |
| #endif |
| #ifdef CONFIG_ADB_PMU |
| case MAC_ADB_PB2: |
| pmu_set_rtc_time(t); |
| break; |
| #endif |
| default: |
| return -ENODEV; |
| } |
| } |
| return 0; |
| } |