| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright(c) 2021 Intel Corporation. */ |
| |
| #include <asm/sgx.h> |
| |
| #include "cpuid.h" |
| #include "kvm_cache_regs.h" |
| #include "nested.h" |
| #include "sgx.h" |
| #include "vmx.h" |
| #include "x86.h" |
| |
| bool __read_mostly enable_sgx = 1; |
| module_param_named(sgx, enable_sgx, bool, 0444); |
| |
| /* Initial value of guest's virtual SGX_LEPUBKEYHASHn MSRs */ |
| static u64 sgx_pubkey_hash[4] __ro_after_init; |
| |
| /* |
| * ENCLS's memory operands use a fixed segment (DS) and a fixed |
| * address size based on the mode. Related prefixes are ignored. |
| */ |
| static int sgx_get_encls_gva(struct kvm_vcpu *vcpu, unsigned long offset, |
| int size, int alignment, gva_t *gva) |
| { |
| struct kvm_segment s; |
| bool fault; |
| |
| /* Skip vmcs.GUEST_DS retrieval for 64-bit mode to avoid VMREADs. */ |
| *gva = offset; |
| if (!is_long_mode(vcpu)) { |
| vmx_get_segment(vcpu, &s, VCPU_SREG_DS); |
| *gva += s.base; |
| } |
| |
| if (!IS_ALIGNED(*gva, alignment)) { |
| fault = true; |
| } else if (likely(is_long_mode(vcpu))) { |
| fault = is_noncanonical_address(*gva, vcpu); |
| } else { |
| *gva &= 0xffffffff; |
| fault = (s.unusable) || |
| (s.type != 2 && s.type != 3) || |
| (*gva > s.limit) || |
| ((s.base != 0 || s.limit != 0xffffffff) && |
| (((u64)*gva + size - 1) > s.limit + 1)); |
| } |
| if (fault) |
| kvm_inject_gp(vcpu, 0); |
| return fault ? -EINVAL : 0; |
| } |
| |
| static void sgx_handle_emulation_failure(struct kvm_vcpu *vcpu, u64 addr, |
| unsigned int size) |
| { |
| uint64_t data[2] = { addr, size }; |
| |
| __kvm_prepare_emulation_failure_exit(vcpu, data, ARRAY_SIZE(data)); |
| } |
| |
| static int sgx_read_hva(struct kvm_vcpu *vcpu, unsigned long hva, void *data, |
| unsigned int size) |
| { |
| if (__copy_from_user(data, (void __user *)hva, size)) { |
| sgx_handle_emulation_failure(vcpu, hva, size); |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static int sgx_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t gva, bool write, |
| gpa_t *gpa) |
| { |
| struct x86_exception ex; |
| |
| if (write) |
| *gpa = kvm_mmu_gva_to_gpa_write(vcpu, gva, &ex); |
| else |
| *gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, &ex); |
| |
| if (*gpa == UNMAPPED_GVA) { |
| kvm_inject_emulated_page_fault(vcpu, &ex); |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static int sgx_gpa_to_hva(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned long *hva) |
| { |
| *hva = kvm_vcpu_gfn_to_hva(vcpu, PFN_DOWN(gpa)); |
| if (kvm_is_error_hva(*hva)) { |
| sgx_handle_emulation_failure(vcpu, gpa, 1); |
| return -EFAULT; |
| } |
| |
| *hva |= gpa & ~PAGE_MASK; |
| |
| return 0; |
| } |
| |
| static int sgx_inject_fault(struct kvm_vcpu *vcpu, gva_t gva, int trapnr) |
| { |
| struct x86_exception ex; |
| |
| /* |
| * A non-EPCM #PF indicates a bad userspace HVA. This *should* check |
| * for PFEC.SGX and not assume any #PF on SGX2 originated in the EPC, |
| * but the error code isn't (yet) plumbed through the ENCLS helpers. |
| */ |
| if (trapnr == PF_VECTOR && !boot_cpu_has(X86_FEATURE_SGX2)) { |
| kvm_prepare_emulation_failure_exit(vcpu); |
| return 0; |
| } |
| |
| /* |
| * If the guest thinks it's running on SGX2 hardware, inject an SGX |
| * #PF if the fault matches an EPCM fault signature (#GP on SGX1, |
| * #PF on SGX2). The assumption is that EPCM faults are much more |
| * likely than a bad userspace address. |
| */ |
| if ((trapnr == PF_VECTOR || !boot_cpu_has(X86_FEATURE_SGX2)) && |
| guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) { |
| memset(&ex, 0, sizeof(ex)); |
| ex.vector = PF_VECTOR; |
| ex.error_code = PFERR_PRESENT_MASK | PFERR_WRITE_MASK | |
| PFERR_SGX_MASK; |
| ex.address = gva; |
| ex.error_code_valid = true; |
| ex.nested_page_fault = false; |
| kvm_inject_page_fault(vcpu, &ex); |
| } else { |
| kvm_inject_gp(vcpu, 0); |
| } |
| return 1; |
| } |
| |
| static int __handle_encls_ecreate(struct kvm_vcpu *vcpu, |
| struct sgx_pageinfo *pageinfo, |
| unsigned long secs_hva, |
| gva_t secs_gva) |
| { |
| struct sgx_secs *contents = (struct sgx_secs *)pageinfo->contents; |
| struct kvm_cpuid_entry2 *sgx_12_0, *sgx_12_1; |
| u64 attributes, xfrm, size; |
| u32 miscselect; |
| u8 max_size_log2; |
| int trapnr, ret; |
| |
| sgx_12_0 = kvm_find_cpuid_entry(vcpu, 0x12, 0); |
| sgx_12_1 = kvm_find_cpuid_entry(vcpu, 0x12, 1); |
| if (!sgx_12_0 || !sgx_12_1) { |
| kvm_prepare_emulation_failure_exit(vcpu); |
| return 0; |
| } |
| |
| miscselect = contents->miscselect; |
| attributes = contents->attributes; |
| xfrm = contents->xfrm; |
| size = contents->size; |
| |
| /* Enforce restriction of access to the PROVISIONKEY. */ |
| if (!vcpu->kvm->arch.sgx_provisioning_allowed && |
| (attributes & SGX_ATTR_PROVISIONKEY)) { |
| if (sgx_12_1->eax & SGX_ATTR_PROVISIONKEY) |
| pr_warn_once("KVM: SGX PROVISIONKEY advertised but not allowed\n"); |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| /* Enforce CPUID restrictions on MISCSELECT, ATTRIBUTES and XFRM. */ |
| if ((u32)miscselect & ~sgx_12_0->ebx || |
| (u32)attributes & ~sgx_12_1->eax || |
| (u32)(attributes >> 32) & ~sgx_12_1->ebx || |
| (u32)xfrm & ~sgx_12_1->ecx || |
| (u32)(xfrm >> 32) & ~sgx_12_1->edx) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| /* Enforce CPUID restriction on max enclave size. */ |
| max_size_log2 = (attributes & SGX_ATTR_MODE64BIT) ? sgx_12_0->edx >> 8 : |
| sgx_12_0->edx; |
| if (size >= BIT_ULL(max_size_log2)) |
| kvm_inject_gp(vcpu, 0); |
| |
| /* |
| * sgx_virt_ecreate() returns: |
| * 1) 0: ECREATE was successful |
| * 2) -EFAULT: ECREATE was run but faulted, and trapnr was set to the |
| * exception number. |
| * 3) -EINVAL: access_ok() on @secs_hva failed. This should never |
| * happen as KVM checks host addresses at memslot creation. |
| * sgx_virt_ecreate() has already warned in this case. |
| */ |
| ret = sgx_virt_ecreate(pageinfo, (void __user *)secs_hva, &trapnr); |
| if (!ret) |
| return kvm_skip_emulated_instruction(vcpu); |
| if (ret == -EFAULT) |
| return sgx_inject_fault(vcpu, secs_gva, trapnr); |
| |
| return ret; |
| } |
| |
| static int handle_encls_ecreate(struct kvm_vcpu *vcpu) |
| { |
| gva_t pageinfo_gva, secs_gva; |
| gva_t metadata_gva, contents_gva; |
| gpa_t metadata_gpa, contents_gpa, secs_gpa; |
| unsigned long metadata_hva, contents_hva, secs_hva; |
| struct sgx_pageinfo pageinfo; |
| struct sgx_secs *contents; |
| struct x86_exception ex; |
| int r; |
| |
| if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 32, 32, &pageinfo_gva) || |
| sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva)) |
| return 1; |
| |
| /* |
| * Copy the PAGEINFO to local memory, its pointers need to be |
| * translated, i.e. we need to do a deep copy/translate. |
| */ |
| r = kvm_read_guest_virt(vcpu, pageinfo_gva, &pageinfo, |
| sizeof(pageinfo), &ex); |
| if (r == X86EMUL_PROPAGATE_FAULT) { |
| kvm_inject_emulated_page_fault(vcpu, &ex); |
| return 1; |
| } else if (r != X86EMUL_CONTINUE) { |
| sgx_handle_emulation_failure(vcpu, pageinfo_gva, |
| sizeof(pageinfo)); |
| return 0; |
| } |
| |
| if (sgx_get_encls_gva(vcpu, pageinfo.metadata, 64, 64, &metadata_gva) || |
| sgx_get_encls_gva(vcpu, pageinfo.contents, 4096, 4096, |
| &contents_gva)) |
| return 1; |
| |
| /* |
| * Translate the SECINFO, SOURCE and SECS pointers from GVA to GPA. |
| * Resume the guest on failure to inject a #PF. |
| */ |
| if (sgx_gva_to_gpa(vcpu, metadata_gva, false, &metadata_gpa) || |
| sgx_gva_to_gpa(vcpu, contents_gva, false, &contents_gpa) || |
| sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa)) |
| return 1; |
| |
| /* |
| * ...and then to HVA. The order of accesses isn't architectural, i.e. |
| * KVM doesn't have to fully process one address at a time. Exit to |
| * userspace if a GPA is invalid. |
| */ |
| if (sgx_gpa_to_hva(vcpu, metadata_gpa, &metadata_hva) || |
| sgx_gpa_to_hva(vcpu, contents_gpa, &contents_hva) || |
| sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva)) |
| return 0; |
| |
| /* |
| * Copy contents into kernel memory to prevent TOCTOU attack. E.g. the |
| * guest could do ECREATE w/ SECS.SGX_ATTR_PROVISIONKEY=0, and |
| * simultaneously set SGX_ATTR_PROVISIONKEY to bypass the check to |
| * enforce restriction of access to the PROVISIONKEY. |
| */ |
| contents = (struct sgx_secs *)__get_free_page(GFP_KERNEL_ACCOUNT); |
| if (!contents) |
| return -ENOMEM; |
| |
| /* Exit to userspace if copying from a host userspace address fails. */ |
| if (sgx_read_hva(vcpu, contents_hva, (void *)contents, PAGE_SIZE)) { |
| free_page((unsigned long)contents); |
| return 0; |
| } |
| |
| pageinfo.metadata = metadata_hva; |
| pageinfo.contents = (u64)contents; |
| |
| r = __handle_encls_ecreate(vcpu, &pageinfo, secs_hva, secs_gva); |
| |
| free_page((unsigned long)contents); |
| |
| return r; |
| } |
| |
| static int handle_encls_einit(struct kvm_vcpu *vcpu) |
| { |
| unsigned long sig_hva, secs_hva, token_hva, rflags; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| gva_t sig_gva, secs_gva, token_gva; |
| gpa_t sig_gpa, secs_gpa, token_gpa; |
| int ret, trapnr; |
| |
| if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 1808, 4096, &sig_gva) || |
| sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva) || |
| sgx_get_encls_gva(vcpu, kvm_rdx_read(vcpu), 304, 512, &token_gva)) |
| return 1; |
| |
| /* |
| * Translate the SIGSTRUCT, SECS and TOKEN pointers from GVA to GPA. |
| * Resume the guest on failure to inject a #PF. |
| */ |
| if (sgx_gva_to_gpa(vcpu, sig_gva, false, &sig_gpa) || |
| sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa) || |
| sgx_gva_to_gpa(vcpu, token_gva, false, &token_gpa)) |
| return 1; |
| |
| /* |
| * ...and then to HVA. The order of accesses isn't architectural, i.e. |
| * KVM doesn't have to fully process one address at a time. Exit to |
| * userspace if a GPA is invalid. Note, all structures are aligned and |
| * cannot split pages. |
| */ |
| if (sgx_gpa_to_hva(vcpu, sig_gpa, &sig_hva) || |
| sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva) || |
| sgx_gpa_to_hva(vcpu, token_gpa, &token_hva)) |
| return 0; |
| |
| ret = sgx_virt_einit((void __user *)sig_hva, (void __user *)token_hva, |
| (void __user *)secs_hva, |
| vmx->msr_ia32_sgxlepubkeyhash, &trapnr); |
| |
| if (ret == -EFAULT) |
| return sgx_inject_fault(vcpu, secs_gva, trapnr); |
| |
| /* |
| * sgx_virt_einit() returns -EINVAL when access_ok() fails on @sig_hva, |
| * @token_hva or @secs_hva. This should never happen as KVM checks host |
| * addresses at memslot creation. sgx_virt_einit() has already warned |
| * in this case, so just return. |
| */ |
| if (ret < 0) |
| return ret; |
| |
| rflags = vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | |
| X86_EFLAGS_AF | X86_EFLAGS_SF | |
| X86_EFLAGS_OF); |
| if (ret) |
| rflags |= X86_EFLAGS_ZF; |
| else |
| rflags &= ~X86_EFLAGS_ZF; |
| vmx_set_rflags(vcpu, rflags); |
| |
| kvm_rax_write(vcpu, ret); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static inline bool encls_leaf_enabled_in_guest(struct kvm_vcpu *vcpu, u32 leaf) |
| { |
| if (!enable_sgx || !guest_cpuid_has(vcpu, X86_FEATURE_SGX)) |
| return false; |
| |
| if (leaf >= ECREATE && leaf <= ETRACK) |
| return guest_cpuid_has(vcpu, X86_FEATURE_SGX1); |
| |
| if (leaf >= EAUG && leaf <= EMODT) |
| return guest_cpuid_has(vcpu, X86_FEATURE_SGX2); |
| |
| return false; |
| } |
| |
| static inline bool sgx_enabled_in_guest_bios(struct kvm_vcpu *vcpu) |
| { |
| const u64 bits = FEAT_CTL_SGX_ENABLED | FEAT_CTL_LOCKED; |
| |
| return (to_vmx(vcpu)->msr_ia32_feature_control & bits) == bits; |
| } |
| |
| int handle_encls(struct kvm_vcpu *vcpu) |
| { |
| u32 leaf = (u32)kvm_rax_read(vcpu); |
| |
| if (!encls_leaf_enabled_in_guest(vcpu, leaf)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| } else if (!sgx_enabled_in_guest_bios(vcpu)) { |
| kvm_inject_gp(vcpu, 0); |
| } else { |
| if (leaf == ECREATE) |
| return handle_encls_ecreate(vcpu); |
| if (leaf == EINIT) |
| return handle_encls_einit(vcpu); |
| WARN(1, "KVM: unexpected exit on ENCLS[%u]", leaf); |
| vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; |
| vcpu->run->hw.hardware_exit_reason = EXIT_REASON_ENCLS; |
| return 0; |
| } |
| return 1; |
| } |
| |
| void setup_default_sgx_lepubkeyhash(void) |
| { |
| /* |
| * Use Intel's default value for Skylake hardware if Launch Control is |
| * not supported, i.e. Intel's hash is hardcoded into silicon, or if |
| * Launch Control is supported and enabled, i.e. mimic the reset value |
| * and let the guest write the MSRs at will. If Launch Control is |
| * supported but disabled, then use the current MSR values as the hash |
| * MSRs exist but are read-only (locked and not writable). |
| */ |
| if (!enable_sgx || boot_cpu_has(X86_FEATURE_SGX_LC) || |
| rdmsrl_safe(MSR_IA32_SGXLEPUBKEYHASH0, &sgx_pubkey_hash[0])) { |
| sgx_pubkey_hash[0] = 0xa6053e051270b7acULL; |
| sgx_pubkey_hash[1] = 0x6cfbe8ba8b3b413dULL; |
| sgx_pubkey_hash[2] = 0xc4916d99f2b3735dULL; |
| sgx_pubkey_hash[3] = 0xd4f8c05909f9bb3bULL; |
| } else { |
| /* MSR_IA32_SGXLEPUBKEYHASH0 is read above */ |
| rdmsrl(MSR_IA32_SGXLEPUBKEYHASH1, sgx_pubkey_hash[1]); |
| rdmsrl(MSR_IA32_SGXLEPUBKEYHASH2, sgx_pubkey_hash[2]); |
| rdmsrl(MSR_IA32_SGXLEPUBKEYHASH3, sgx_pubkey_hash[3]); |
| } |
| } |
| |
| void vcpu_setup_sgx_lepubkeyhash(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| memcpy(vmx->msr_ia32_sgxlepubkeyhash, sgx_pubkey_hash, |
| sizeof(sgx_pubkey_hash)); |
| } |
| |
| /* |
| * ECREATE must be intercepted to enforce MISCSELECT, ATTRIBUTES and XFRM |
| * restrictions if the guest's allowed-1 settings diverge from hardware. |
| */ |
| static bool sgx_intercept_encls_ecreate(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *guest_cpuid; |
| u32 eax, ebx, ecx, edx; |
| |
| if (!vcpu->kvm->arch.sgx_provisioning_allowed) |
| return true; |
| |
| guest_cpuid = kvm_find_cpuid_entry(vcpu, 0x12, 0); |
| if (!guest_cpuid) |
| return true; |
| |
| cpuid_count(0x12, 0, &eax, &ebx, &ecx, &edx); |
| if (guest_cpuid->ebx != ebx || guest_cpuid->edx != edx) |
| return true; |
| |
| guest_cpuid = kvm_find_cpuid_entry(vcpu, 0x12, 1); |
| if (!guest_cpuid) |
| return true; |
| |
| cpuid_count(0x12, 1, &eax, &ebx, &ecx, &edx); |
| if (guest_cpuid->eax != eax || guest_cpuid->ebx != ebx || |
| guest_cpuid->ecx != ecx || guest_cpuid->edx != edx) |
| return true; |
| |
| return false; |
| } |
| |
| void vmx_write_encls_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| /* |
| * There is no software enable bit for SGX that is virtualized by |
| * hardware, e.g. there's no CR4.SGXE, so when SGX is disabled in the |
| * guest (either by the host or by the guest's BIOS) but enabled in the |
| * host, trap all ENCLS leafs and inject #UD/#GP as needed to emulate |
| * the expected system behavior for ENCLS. |
| */ |
| u64 bitmap = -1ull; |
| |
| /* Nothing to do if hardware doesn't support SGX */ |
| if (!cpu_has_vmx_encls_vmexit()) |
| return; |
| |
| if (guest_cpuid_has(vcpu, X86_FEATURE_SGX) && |
| sgx_enabled_in_guest_bios(vcpu)) { |
| if (guest_cpuid_has(vcpu, X86_FEATURE_SGX1)) { |
| bitmap &= ~GENMASK_ULL(ETRACK, ECREATE); |
| if (sgx_intercept_encls_ecreate(vcpu)) |
| bitmap |= (1 << ECREATE); |
| } |
| |
| if (guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) |
| bitmap &= ~GENMASK_ULL(EMODT, EAUG); |
| |
| /* |
| * Trap and execute EINIT if launch control is enabled in the |
| * host using the guest's values for launch control MSRs, even |
| * if the guest's values are fixed to hardware default values. |
| * The MSRs are not loaded/saved on VM-Enter/VM-Exit as writing |
| * the MSRs is extraordinarily expensive. |
| */ |
| if (boot_cpu_has(X86_FEATURE_SGX_LC)) |
| bitmap |= (1 << EINIT); |
| |
| if (!vmcs12 && is_guest_mode(vcpu)) |
| vmcs12 = get_vmcs12(vcpu); |
| if (vmcs12 && nested_cpu_has_encls_exit(vmcs12)) |
| bitmap |= vmcs12->encls_exiting_bitmap; |
| } |
| vmcs_write64(ENCLS_EXITING_BITMAP, bitmap); |
| } |