| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * linux/arch/arm/mach-at91/at91rm9200_time.c |
| * |
| * Copyright (C) 2003 SAN People |
| * Copyright (C) 2003 ATMEL |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/clk.h> |
| #include <linux/clockchips.h> |
| #include <linux/export.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/mfd/syscon/atmel-st.h> |
| #include <linux/of_irq.h> |
| #include <linux/regmap.h> |
| |
| static unsigned long last_crtr; |
| static u32 irqmask; |
| static struct clock_event_device clkevt; |
| static struct regmap *regmap_st; |
| static int timer_latch; |
| |
| /* |
| * The ST_CRTR is updated asynchronously to the master clock ... but |
| * the updates as seen by the CPU don't seem to be strictly monotonic. |
| * Waiting until we read the same value twice avoids glitching. |
| */ |
| static inline unsigned long read_CRTR(void) |
| { |
| unsigned int x1, x2; |
| |
| regmap_read(regmap_st, AT91_ST_CRTR, &x1); |
| do { |
| regmap_read(regmap_st, AT91_ST_CRTR, &x2); |
| if (x1 == x2) |
| break; |
| x1 = x2; |
| } while (1); |
| return x1; |
| } |
| |
| /* |
| * IRQ handler for the timer. |
| */ |
| static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id) |
| { |
| u32 sr; |
| |
| regmap_read(regmap_st, AT91_ST_SR, &sr); |
| sr &= irqmask; |
| |
| /* |
| * irqs should be disabled here, but as the irq is shared they are only |
| * guaranteed to be off if the timer irq is registered first. |
| */ |
| WARN_ON_ONCE(!irqs_disabled()); |
| |
| /* simulate "oneshot" timer with alarm */ |
| if (sr & AT91_ST_ALMS) { |
| clkevt.event_handler(&clkevt); |
| return IRQ_HANDLED; |
| } |
| |
| /* periodic mode should handle delayed ticks */ |
| if (sr & AT91_ST_PITS) { |
| u32 crtr = read_CRTR(); |
| |
| while (((crtr - last_crtr) & AT91_ST_CRTV) >= timer_latch) { |
| last_crtr += timer_latch; |
| clkevt.event_handler(&clkevt); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* this irq is shared ... */ |
| return IRQ_NONE; |
| } |
| |
| static u64 read_clk32k(struct clocksource *cs) |
| { |
| return read_CRTR(); |
| } |
| |
| static struct clocksource clk32k = { |
| .name = "32k_counter", |
| .rating = 150, |
| .read = read_clk32k, |
| .mask = CLOCKSOURCE_MASK(20), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static void clkdev32k_disable_and_flush_irq(void) |
| { |
| unsigned int val; |
| |
| /* Disable and flush pending timer interrupts */ |
| regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS); |
| regmap_read(regmap_st, AT91_ST_SR, &val); |
| last_crtr = read_CRTR(); |
| } |
| |
| static int clkevt32k_shutdown(struct clock_event_device *evt) |
| { |
| clkdev32k_disable_and_flush_irq(); |
| irqmask = 0; |
| regmap_write(regmap_st, AT91_ST_IER, irqmask); |
| return 0; |
| } |
| |
| static int clkevt32k_set_oneshot(struct clock_event_device *dev) |
| { |
| clkdev32k_disable_and_flush_irq(); |
| |
| /* |
| * ALM for oneshot irqs, set by next_event() |
| * before 32 seconds have passed. |
| */ |
| irqmask = AT91_ST_ALMS; |
| regmap_write(regmap_st, AT91_ST_RTAR, last_crtr); |
| regmap_write(regmap_st, AT91_ST_IER, irqmask); |
| return 0; |
| } |
| |
| static int clkevt32k_set_periodic(struct clock_event_device *dev) |
| { |
| clkdev32k_disable_and_flush_irq(); |
| |
| /* PIT for periodic irqs; fixed rate of 1/HZ */ |
| irqmask = AT91_ST_PITS; |
| regmap_write(regmap_st, AT91_ST_PIMR, timer_latch); |
| regmap_write(regmap_st, AT91_ST_IER, irqmask); |
| return 0; |
| } |
| |
| static int |
| clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev) |
| { |
| u32 alm; |
| unsigned int val; |
| |
| BUG_ON(delta < 2); |
| |
| /* The alarm IRQ uses absolute time (now+delta), not the relative |
| * time (delta) in our calling convention. Like all clockevents |
| * using such "match" hardware, we have a race to defend against. |
| * |
| * Our defense here is to have set up the clockevent device so the |
| * delta is at least two. That way we never end up writing RTAR |
| * with the value then held in CRTR ... which would mean the match |
| * wouldn't trigger until 32 seconds later, after CRTR wraps. |
| */ |
| alm = read_CRTR(); |
| |
| /* Cancel any pending alarm; flush any pending IRQ */ |
| regmap_write(regmap_st, AT91_ST_RTAR, alm); |
| regmap_read(regmap_st, AT91_ST_SR, &val); |
| |
| /* Schedule alarm by writing RTAR. */ |
| alm += delta; |
| regmap_write(regmap_st, AT91_ST_RTAR, alm); |
| |
| return 0; |
| } |
| |
| static struct clock_event_device clkevt = { |
| .name = "at91_tick", |
| .features = CLOCK_EVT_FEAT_PERIODIC | |
| CLOCK_EVT_FEAT_ONESHOT, |
| .rating = 150, |
| .set_next_event = clkevt32k_next_event, |
| .set_state_shutdown = clkevt32k_shutdown, |
| .set_state_periodic = clkevt32k_set_periodic, |
| .set_state_oneshot = clkevt32k_set_oneshot, |
| .tick_resume = clkevt32k_shutdown, |
| }; |
| |
| /* |
| * ST (system timer) module supports both clockevents and clocksource. |
| */ |
| static int __init atmel_st_timer_init(struct device_node *node) |
| { |
| struct clk *sclk; |
| unsigned int sclk_rate, val; |
| int irq, ret; |
| |
| regmap_st = syscon_node_to_regmap(node); |
| if (IS_ERR(regmap_st)) { |
| pr_err("Unable to get regmap\n"); |
| return PTR_ERR(regmap_st); |
| } |
| |
| /* Disable all timer interrupts, and clear any pending ones */ |
| regmap_write(regmap_st, AT91_ST_IDR, |
| AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS); |
| regmap_read(regmap_st, AT91_ST_SR, &val); |
| |
| /* Get the interrupts property */ |
| irq = irq_of_parse_and_map(node, 0); |
| if (!irq) { |
| pr_err("Unable to get IRQ from DT\n"); |
| return -EINVAL; |
| } |
| |
| /* Make IRQs happen for the system timer */ |
| ret = request_irq(irq, at91rm9200_timer_interrupt, |
| IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL, |
| "at91_tick", regmap_st); |
| if (ret) { |
| pr_err("Unable to setup IRQ\n"); |
| return ret; |
| } |
| |
| sclk = of_clk_get(node, 0); |
| if (IS_ERR(sclk)) { |
| pr_err("Unable to get slow clock\n"); |
| return PTR_ERR(sclk); |
| } |
| |
| ret = clk_prepare_enable(sclk); |
| if (ret) { |
| pr_err("Could not enable slow clock\n"); |
| return ret; |
| } |
| |
| sclk_rate = clk_get_rate(sclk); |
| if (!sclk_rate) { |
| pr_err("Invalid slow clock rate\n"); |
| return -EINVAL; |
| } |
| timer_latch = (sclk_rate + HZ / 2) / HZ; |
| |
| /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used |
| * directly for the clocksource and all clockevents, after adjusting |
| * its prescaler from the 1 Hz default. |
| */ |
| regmap_write(regmap_st, AT91_ST_RTMR, 1); |
| |
| /* Setup timer clockevent, with minimum of two ticks (important!!) */ |
| clkevt.cpumask = cpumask_of(0); |
| clockevents_config_and_register(&clkevt, sclk_rate, |
| 2, AT91_ST_ALMV); |
| |
| /* register clocksource */ |
| return clocksource_register_hz(&clk32k, sclk_rate); |
| } |
| TIMER_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st", |
| atmel_st_timer_init); |