blob: f9c8385c72d3d924792f55def5a470f8f9751494 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* palmas-adc.c -- TI PALMAS GPADC.
*
* Copyright (c) 2013, NVIDIA Corporation. All rights reserved.
*
* Author: Pradeep Goudagunta <pgoudagunta@nvidia.com>
*/
#include <linux/module.h>
#include <linux/err.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/pm.h>
#include <linux/mfd/palmas.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/iio/iio.h>
#include <linux/iio/machine.h>
#include <linux/iio/driver.h>
#define MOD_NAME "palmas-gpadc"
#define PALMAS_ADC_CONVERSION_TIMEOUT (msecs_to_jiffies(5000))
#define PALMAS_TO_BE_CALCULATED 0
#define PALMAS_GPADC_TRIMINVALID -1
struct palmas_gpadc_info {
/* calibration codes and regs */
int x1; /* lower ideal code */
int x2; /* higher ideal code */
int v1; /* expected lower volt reading */
int v2; /* expected higher volt reading */
u8 trim1_reg; /* register number for lower trim */
u8 trim2_reg; /* register number for upper trim */
int gain; /* calculated from above (after reading trim regs) */
int offset; /* calculated from above (after reading trim regs) */
int gain_error; /* calculated from above (after reading trim regs) */
bool is_uncalibrated; /* if channel has calibration data */
};
#define PALMAS_ADC_INFO(_chan, _x1, _x2, _v1, _v2, _t1, _t2, _is_uncalibrated) \
[PALMAS_ADC_CH_##_chan] = { \
.x1 = _x1, \
.x2 = _x2, \
.v1 = _v1, \
.v2 = _v2, \
.gain = PALMAS_TO_BE_CALCULATED, \
.offset = PALMAS_TO_BE_CALCULATED, \
.gain_error = PALMAS_TO_BE_CALCULATED, \
.trim1_reg = PALMAS_GPADC_TRIM##_t1, \
.trim2_reg = PALMAS_GPADC_TRIM##_t2, \
.is_uncalibrated = _is_uncalibrated \
}
static struct palmas_gpadc_info palmas_gpadc_info[] = {
PALMAS_ADC_INFO(IN0, 2064, 3112, 630, 950, 1, 2, false),
PALMAS_ADC_INFO(IN1, 2064, 3112, 630, 950, 1, 2, false),
PALMAS_ADC_INFO(IN2, 2064, 3112, 1260, 1900, 3, 4, false),
PALMAS_ADC_INFO(IN3, 2064, 3112, 630, 950, 1, 2, false),
PALMAS_ADC_INFO(IN4, 2064, 3112, 630, 950, 1, 2, false),
PALMAS_ADC_INFO(IN5, 2064, 3112, 630, 950, 1, 2, false),
PALMAS_ADC_INFO(IN6, 2064, 3112, 2520, 3800, 5, 6, false),
PALMAS_ADC_INFO(IN7, 2064, 3112, 2520, 3800, 7, 8, false),
PALMAS_ADC_INFO(IN8, 2064, 3112, 3150, 4750, 9, 10, false),
PALMAS_ADC_INFO(IN9, 2064, 3112, 5670, 8550, 11, 12, false),
PALMAS_ADC_INFO(IN10, 2064, 3112, 3465, 5225, 13, 14, false),
PALMAS_ADC_INFO(IN11, 0, 0, 0, 0, INVALID, INVALID, true),
PALMAS_ADC_INFO(IN12, 0, 0, 0, 0, INVALID, INVALID, true),
PALMAS_ADC_INFO(IN13, 0, 0, 0, 0, INVALID, INVALID, true),
PALMAS_ADC_INFO(IN14, 2064, 3112, 3645, 5225, 15, 16, false),
PALMAS_ADC_INFO(IN15, 0, 0, 0, 0, INVALID, INVALID, true),
};
/*
* struct palmas_gpadc - the palmas_gpadc structure
* @ch0_current: channel 0 current source setting
* 0: 0 uA
* 1: 5 uA
* 2: 15 uA
* 3: 20 uA
* @ch3_current: channel 0 current source setting
* 0: 0 uA
* 1: 10 uA
* 2: 400 uA
* 3: 800 uA
* @extended_delay: enable the gpadc extended delay mode
* @auto_conversion_period: define the auto_conversion_period
* @lock: Lock to protect the device state during a potential concurrent
* read access from userspace. Reading a raw value requires a sequence
* of register writes, then a wait for a completion callback,
* and finally a register read, during which userspace could issue
* another read request. This lock protects a read access from
* ocurring before another one has finished.
*
* This is the palmas_gpadc structure to store run-time information
* and pointers for this driver instance.
*/
struct palmas_gpadc {
struct device *dev;
struct palmas *palmas;
u8 ch0_current;
u8 ch3_current;
bool extended_delay;
int irq;
int irq_auto_0;
int irq_auto_1;
struct palmas_gpadc_info *adc_info;
struct completion conv_completion;
struct palmas_adc_wakeup_property wakeup1_data;
struct palmas_adc_wakeup_property wakeup2_data;
bool wakeup1_enable;
bool wakeup2_enable;
int auto_conversion_period;
struct mutex lock;
};
/*
* GPADC lock issue in AUTO mode.
* Impact: In AUTO mode, GPADC conversion can be locked after disabling AUTO
* mode feature.
* Details:
* When the AUTO mode is the only conversion mode enabled, if the AUTO
* mode feature is disabled with bit GPADC_AUTO_CTRL. AUTO_CONV1_EN = 0
* or bit GPADC_AUTO_CTRL. AUTO_CONV0_EN = 0 during a conversion, the
* conversion mechanism can be seen as locked meaning that all following
* conversion will give 0 as a result. Bit GPADC_STATUS.GPADC_AVAILABLE
* will stay at 0 meaning that GPADC is busy. An RT conversion can unlock
* the GPADC.
*
* Workaround(s):
* To avoid the lock mechanism, the workaround to follow before any stop
* conversion request is:
* Force the GPADC state machine to be ON by using the GPADC_CTRL1.
* GPADC_FORCE bit = 1
* Shutdown the GPADC AUTO conversion using
* GPADC_AUTO_CTRL.SHUTDOWN_CONV[01] = 0.
* After 100us, force the GPADC state machine to be OFF by using the
* GPADC_CTRL1. GPADC_FORCE bit = 0
*/
static int palmas_disable_auto_conversion(struct palmas_gpadc *adc)
{
int ret;
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_CTRL1,
PALMAS_GPADC_CTRL1_GPADC_FORCE,
PALMAS_GPADC_CTRL1_GPADC_FORCE);
if (ret < 0) {
dev_err(adc->dev, "GPADC_CTRL1 update failed: %d\n", ret);
return ret;
}
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_AUTO_CTRL,
PALMAS_GPADC_AUTO_CTRL_SHUTDOWN_CONV1 |
PALMAS_GPADC_AUTO_CTRL_SHUTDOWN_CONV0,
0);
if (ret < 0) {
dev_err(adc->dev, "AUTO_CTRL update failed: %d\n", ret);
return ret;
}
udelay(100);
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_CTRL1,
PALMAS_GPADC_CTRL1_GPADC_FORCE, 0);
if (ret < 0)
dev_err(adc->dev, "GPADC_CTRL1 update failed: %d\n", ret);
return ret;
}
static irqreturn_t palmas_gpadc_irq(int irq, void *data)
{
struct palmas_gpadc *adc = data;
complete(&adc->conv_completion);
return IRQ_HANDLED;
}
static irqreturn_t palmas_gpadc_irq_auto(int irq, void *data)
{
struct palmas_gpadc *adc = data;
dev_dbg(adc->dev, "Threshold interrupt %d occurs\n", irq);
palmas_disable_auto_conversion(adc);
return IRQ_HANDLED;
}
static int palmas_gpadc_start_mask_interrupt(struct palmas_gpadc *adc,
bool mask)
{
int ret;
if (!mask)
ret = palmas_update_bits(adc->palmas, PALMAS_INTERRUPT_BASE,
PALMAS_INT3_MASK,
PALMAS_INT3_MASK_GPADC_EOC_SW, 0);
else
ret = palmas_update_bits(adc->palmas, PALMAS_INTERRUPT_BASE,
PALMAS_INT3_MASK,
PALMAS_INT3_MASK_GPADC_EOC_SW,
PALMAS_INT3_MASK_GPADC_EOC_SW);
if (ret < 0)
dev_err(adc->dev, "GPADC INT MASK update failed: %d\n", ret);
return ret;
}
static int palmas_gpadc_enable(struct palmas_gpadc *adc, int adc_chan,
int enable)
{
unsigned int mask, val;
int ret;
if (enable) {
val = (adc->extended_delay
<< PALMAS_GPADC_RT_CTRL_EXTEND_DELAY_SHIFT);
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_RT_CTRL,
PALMAS_GPADC_RT_CTRL_EXTEND_DELAY, val);
if (ret < 0) {
dev_err(adc->dev, "RT_CTRL update failed: %d\n", ret);
return ret;
}
mask = (PALMAS_GPADC_CTRL1_CURRENT_SRC_CH0_MASK |
PALMAS_GPADC_CTRL1_CURRENT_SRC_CH3_MASK |
PALMAS_GPADC_CTRL1_GPADC_FORCE);
val = (adc->ch0_current
<< PALMAS_GPADC_CTRL1_CURRENT_SRC_CH0_SHIFT);
val |= (adc->ch3_current
<< PALMAS_GPADC_CTRL1_CURRENT_SRC_CH3_SHIFT);
val |= PALMAS_GPADC_CTRL1_GPADC_FORCE;
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_CTRL1, mask, val);
if (ret < 0) {
dev_err(adc->dev,
"Failed to update current setting: %d\n", ret);
return ret;
}
mask = (PALMAS_GPADC_SW_SELECT_SW_CONV0_SEL_MASK |
PALMAS_GPADC_SW_SELECT_SW_CONV_EN);
val = (adc_chan | PALMAS_GPADC_SW_SELECT_SW_CONV_EN);
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_SW_SELECT, mask, val);
if (ret < 0) {
dev_err(adc->dev, "SW_SELECT update failed: %d\n", ret);
return ret;
}
} else {
ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_SW_SELECT, 0);
if (ret < 0)
dev_err(adc->dev, "SW_SELECT write failed: %d\n", ret);
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_CTRL1,
PALMAS_GPADC_CTRL1_GPADC_FORCE, 0);
if (ret < 0) {
dev_err(adc->dev, "CTRL1 update failed: %d\n", ret);
return ret;
}
}
return ret;
}
static int palmas_gpadc_read_prepare(struct palmas_gpadc *adc, int adc_chan)
{
int ret;
ret = palmas_gpadc_enable(adc, adc_chan, true);
if (ret < 0)
return ret;
return palmas_gpadc_start_mask_interrupt(adc, 0);
}
static void palmas_gpadc_read_done(struct palmas_gpadc *adc, int adc_chan)
{
palmas_gpadc_start_mask_interrupt(adc, 1);
palmas_gpadc_enable(adc, adc_chan, false);
}
static int palmas_gpadc_calibrate(struct palmas_gpadc *adc, int adc_chan)
{
int k;
int d1;
int d2;
int ret;
int gain;
int x1 = adc->adc_info[adc_chan].x1;
int x2 = adc->adc_info[adc_chan].x2;
int v1 = adc->adc_info[adc_chan].v1;
int v2 = adc->adc_info[adc_chan].v2;
ret = palmas_read(adc->palmas, PALMAS_TRIM_GPADC_BASE,
adc->adc_info[adc_chan].trim1_reg, &d1);
if (ret < 0) {
dev_err(adc->dev, "TRIM read failed: %d\n", ret);
goto scrub;
}
ret = palmas_read(adc->palmas, PALMAS_TRIM_GPADC_BASE,
adc->adc_info[adc_chan].trim2_reg, &d2);
if (ret < 0) {
dev_err(adc->dev, "TRIM read failed: %d\n", ret);
goto scrub;
}
/* gain error calculation */
k = (1000 + (1000 * (d2 - d1)) / (x2 - x1));
/* gain calculation */
gain = ((v2 - v1) * 1000) / (x2 - x1);
adc->adc_info[adc_chan].gain_error = k;
adc->adc_info[adc_chan].gain = gain;
/* offset Calculation */
adc->adc_info[adc_chan].offset = (d1 * 1000) - ((k - 1000) * x1);
scrub:
return ret;
}
static int palmas_gpadc_start_conversion(struct palmas_gpadc *adc, int adc_chan)
{
unsigned int val;
int ret;
init_completion(&adc->conv_completion);
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_SW_SELECT,
PALMAS_GPADC_SW_SELECT_SW_START_CONV0,
PALMAS_GPADC_SW_SELECT_SW_START_CONV0);
if (ret < 0) {
dev_err(adc->dev, "SELECT_SW_START write failed: %d\n", ret);
return ret;
}
ret = wait_for_completion_timeout(&adc->conv_completion,
PALMAS_ADC_CONVERSION_TIMEOUT);
if (ret == 0) {
dev_err(adc->dev, "conversion not completed\n");
return -ETIMEDOUT;
}
ret = palmas_bulk_read(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_SW_CONV0_LSB, &val, 2);
if (ret < 0) {
dev_err(adc->dev, "SW_CONV0_LSB read failed: %d\n", ret);
return ret;
}
ret = val & 0xFFF;
return ret;
}
static int palmas_gpadc_get_calibrated_code(struct palmas_gpadc *adc,
int adc_chan, int val)
{
if (!adc->adc_info[adc_chan].is_uncalibrated)
val = (val*1000 - adc->adc_info[adc_chan].offset) /
adc->adc_info[adc_chan].gain_error;
if (val < 0) {
dev_err(adc->dev, "Mismatch with calibration\n");
return 0;
}
val = (val * adc->adc_info[adc_chan].gain) / 1000;
return val;
}
static int palmas_gpadc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2, long mask)
{
struct palmas_gpadc *adc = iio_priv(indio_dev);
int adc_chan = chan->channel;
int ret = 0;
if (adc_chan > PALMAS_ADC_CH_MAX)
return -EINVAL;
mutex_lock(&adc->lock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
ret = palmas_gpadc_read_prepare(adc, adc_chan);
if (ret < 0)
goto out;
ret = palmas_gpadc_start_conversion(adc, adc_chan);
if (ret < 0) {
dev_err(adc->dev,
"ADC start conversion failed\n");
goto out;
}
if (mask == IIO_CHAN_INFO_PROCESSED)
ret = palmas_gpadc_get_calibrated_code(
adc, adc_chan, ret);
*val = ret;
ret = IIO_VAL_INT;
goto out;
}
mutex_unlock(&adc->lock);
return ret;
out:
palmas_gpadc_read_done(adc, adc_chan);
mutex_unlock(&adc->lock);
return ret;
}
static const struct iio_info palmas_gpadc_iio_info = {
.read_raw = palmas_gpadc_read_raw,
};
#define PALMAS_ADC_CHAN_IIO(chan, _type, chan_info) \
{ \
.datasheet_name = PALMAS_DATASHEET_NAME(chan), \
.type = _type, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(chan_info), \
.indexed = 1, \
.channel = PALMAS_ADC_CH_##chan, \
}
static const struct iio_chan_spec palmas_gpadc_iio_channel[] = {
PALMAS_ADC_CHAN_IIO(IN0, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN1, IIO_TEMP, IIO_CHAN_INFO_RAW),
PALMAS_ADC_CHAN_IIO(IN2, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN3, IIO_TEMP, IIO_CHAN_INFO_RAW),
PALMAS_ADC_CHAN_IIO(IN4, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN5, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN6, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN7, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN8, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN9, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN10, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN11, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN12, IIO_TEMP, IIO_CHAN_INFO_RAW),
PALMAS_ADC_CHAN_IIO(IN13, IIO_TEMP, IIO_CHAN_INFO_RAW),
PALMAS_ADC_CHAN_IIO(IN14, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
PALMAS_ADC_CHAN_IIO(IN15, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
};
static int palmas_gpadc_get_adc_dt_data(struct platform_device *pdev,
struct palmas_gpadc_platform_data **gpadc_pdata)
{
struct device_node *np = pdev->dev.of_node;
struct palmas_gpadc_platform_data *gp_data;
int ret;
u32 pval;
gp_data = devm_kzalloc(&pdev->dev, sizeof(*gp_data), GFP_KERNEL);
if (!gp_data)
return -ENOMEM;
ret = of_property_read_u32(np, "ti,channel0-current-microamp", &pval);
if (!ret)
gp_data->ch0_current = pval;
ret = of_property_read_u32(np, "ti,channel3-current-microamp", &pval);
if (!ret)
gp_data->ch3_current = pval;
gp_data->extended_delay = of_property_read_bool(np,
"ti,enable-extended-delay");
*gpadc_pdata = gp_data;
return 0;
}
static int palmas_gpadc_probe(struct platform_device *pdev)
{
struct palmas_gpadc *adc;
struct palmas_platform_data *pdata;
struct palmas_gpadc_platform_data *gpadc_pdata = NULL;
struct iio_dev *indio_dev;
int ret, i;
pdata = dev_get_platdata(pdev->dev.parent);
if (pdata && pdata->gpadc_pdata)
gpadc_pdata = pdata->gpadc_pdata;
if (!gpadc_pdata && pdev->dev.of_node) {
ret = palmas_gpadc_get_adc_dt_data(pdev, &gpadc_pdata);
if (ret < 0)
return ret;
}
if (!gpadc_pdata)
return -EINVAL;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
if (!indio_dev) {
dev_err(&pdev->dev, "iio_device_alloc failed\n");
return -ENOMEM;
}
adc = iio_priv(indio_dev);
adc->dev = &pdev->dev;
adc->palmas = dev_get_drvdata(pdev->dev.parent);
adc->adc_info = palmas_gpadc_info;
mutex_init(&adc->lock);
init_completion(&adc->conv_completion);
platform_set_drvdata(pdev, indio_dev);
adc->auto_conversion_period = gpadc_pdata->auto_conversion_period_ms;
adc->irq = palmas_irq_get_virq(adc->palmas, PALMAS_GPADC_EOC_SW_IRQ);
if (adc->irq < 0) {
dev_err(adc->dev,
"get virq failed: %d\n", adc->irq);
ret = adc->irq;
goto out;
}
ret = request_threaded_irq(adc->irq, NULL,
palmas_gpadc_irq,
IRQF_ONESHOT, dev_name(adc->dev),
adc);
if (ret < 0) {
dev_err(adc->dev,
"request irq %d failed: %d\n", adc->irq, ret);
goto out;
}
if (gpadc_pdata->adc_wakeup1_data) {
memcpy(&adc->wakeup1_data, gpadc_pdata->adc_wakeup1_data,
sizeof(adc->wakeup1_data));
adc->wakeup1_enable = true;
adc->irq_auto_0 = platform_get_irq(pdev, 1);
ret = request_threaded_irq(adc->irq_auto_0, NULL,
palmas_gpadc_irq_auto,
IRQF_ONESHOT,
"palmas-adc-auto-0", adc);
if (ret < 0) {
dev_err(adc->dev, "request auto0 irq %d failed: %d\n",
adc->irq_auto_0, ret);
goto out_irq_free;
}
}
if (gpadc_pdata->adc_wakeup2_data) {
memcpy(&adc->wakeup2_data, gpadc_pdata->adc_wakeup2_data,
sizeof(adc->wakeup2_data));
adc->wakeup2_enable = true;
adc->irq_auto_1 = platform_get_irq(pdev, 2);
ret = request_threaded_irq(adc->irq_auto_1, NULL,
palmas_gpadc_irq_auto,
IRQF_ONESHOT,
"palmas-adc-auto-1", adc);
if (ret < 0) {
dev_err(adc->dev, "request auto1 irq %d failed: %d\n",
adc->irq_auto_1, ret);
goto out_irq_auto0_free;
}
}
/* set the current source 0 (value 0/5/15/20 uA => 0..3) */
if (gpadc_pdata->ch0_current <= 1)
adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_0;
else if (gpadc_pdata->ch0_current <= 5)
adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_5;
else if (gpadc_pdata->ch0_current <= 15)
adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_15;
else
adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_20;
/* set the current source 3 (value 0/10/400/800 uA => 0..3) */
if (gpadc_pdata->ch3_current <= 1)
adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_0;
else if (gpadc_pdata->ch3_current <= 10)
adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_10;
else if (gpadc_pdata->ch3_current <= 400)
adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_400;
else
adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_800;
adc->extended_delay = gpadc_pdata->extended_delay;
indio_dev->name = MOD_NAME;
indio_dev->info = &palmas_gpadc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = palmas_gpadc_iio_channel;
indio_dev->num_channels = ARRAY_SIZE(palmas_gpadc_iio_channel);
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(adc->dev, "iio_device_register() failed: %d\n", ret);
goto out_irq_auto1_free;
}
device_set_wakeup_capable(&pdev->dev, 1);
for (i = 0; i < PALMAS_ADC_CH_MAX; i++) {
if (!(adc->adc_info[i].is_uncalibrated))
palmas_gpadc_calibrate(adc, i);
}
if (adc->wakeup1_enable || adc->wakeup2_enable)
device_wakeup_enable(&pdev->dev);
return 0;
out_irq_auto1_free:
if (gpadc_pdata->adc_wakeup2_data)
free_irq(adc->irq_auto_1, adc);
out_irq_auto0_free:
if (gpadc_pdata->adc_wakeup1_data)
free_irq(adc->irq_auto_0, adc);
out_irq_free:
free_irq(adc->irq, adc);
out:
return ret;
}
static int palmas_gpadc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = dev_to_iio_dev(&pdev->dev);
struct palmas_gpadc *adc = iio_priv(indio_dev);
if (adc->wakeup1_enable || adc->wakeup2_enable)
device_wakeup_disable(&pdev->dev);
iio_device_unregister(indio_dev);
free_irq(adc->irq, adc);
if (adc->wakeup1_enable)
free_irq(adc->irq_auto_0, adc);
if (adc->wakeup2_enable)
free_irq(adc->irq_auto_1, adc);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int palmas_adc_wakeup_configure(struct palmas_gpadc *adc)
{
int adc_period, conv;
int i;
int ch0 = 0, ch1 = 0;
int thres;
int ret;
adc_period = adc->auto_conversion_period;
for (i = 0; i < 16; ++i) {
if (((1000 * (1 << i)) / 32) >= adc_period)
break;
}
if (i > 0)
i--;
adc_period = i;
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_AUTO_CTRL,
PALMAS_GPADC_AUTO_CTRL_COUNTER_CONV_MASK,
adc_period);
if (ret < 0) {
dev_err(adc->dev, "AUTO_CTRL write failed: %d\n", ret);
return ret;
}
conv = 0;
if (adc->wakeup1_enable) {
int polarity;
ch0 = adc->wakeup1_data.adc_channel_number;
conv |= PALMAS_GPADC_AUTO_CTRL_AUTO_CONV0_EN;
if (adc->wakeup1_data.adc_high_threshold > 0) {
thres = adc->wakeup1_data.adc_high_threshold;
polarity = 0;
} else {
thres = adc->wakeup1_data.adc_low_threshold;
polarity = PALMAS_GPADC_THRES_CONV0_MSB_THRES_CONV0_POL;
}
ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_THRES_CONV0_LSB, thres & 0xFF);
if (ret < 0) {
dev_err(adc->dev,
"THRES_CONV0_LSB write failed: %d\n", ret);
return ret;
}
ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_THRES_CONV0_MSB,
((thres >> 8) & 0xF) | polarity);
if (ret < 0) {
dev_err(adc->dev,
"THRES_CONV0_MSB write failed: %d\n", ret);
return ret;
}
}
if (adc->wakeup2_enable) {
int polarity;
ch1 = adc->wakeup2_data.adc_channel_number;
conv |= PALMAS_GPADC_AUTO_CTRL_AUTO_CONV1_EN;
if (adc->wakeup2_data.adc_high_threshold > 0) {
thres = adc->wakeup2_data.adc_high_threshold;
polarity = 0;
} else {
thres = adc->wakeup2_data.adc_low_threshold;
polarity = PALMAS_GPADC_THRES_CONV1_MSB_THRES_CONV1_POL;
}
ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_THRES_CONV1_LSB, thres & 0xFF);
if (ret < 0) {
dev_err(adc->dev,
"THRES_CONV1_LSB write failed: %d\n", ret);
return ret;
}
ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_THRES_CONV1_MSB,
((thres >> 8) & 0xF) | polarity);
if (ret < 0) {
dev_err(adc->dev,
"THRES_CONV1_MSB write failed: %d\n", ret);
return ret;
}
}
ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_AUTO_SELECT, (ch1 << 4) | ch0);
if (ret < 0) {
dev_err(adc->dev, "AUTO_SELECT write failed: %d\n", ret);
return ret;
}
ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_AUTO_CTRL,
PALMAS_GPADC_AUTO_CTRL_AUTO_CONV1_EN |
PALMAS_GPADC_AUTO_CTRL_AUTO_CONV0_EN, conv);
if (ret < 0)
dev_err(adc->dev, "AUTO_CTRL write failed: %d\n", ret);
return ret;
}
static int palmas_adc_wakeup_reset(struct palmas_gpadc *adc)
{
int ret;
ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE,
PALMAS_GPADC_AUTO_SELECT, 0);
if (ret < 0) {
dev_err(adc->dev, "AUTO_SELECT write failed: %d\n", ret);
return ret;
}
ret = palmas_disable_auto_conversion(adc);
if (ret < 0)
dev_err(adc->dev, "Disable auto conversion failed: %d\n", ret);
return ret;
}
static int palmas_gpadc_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct palmas_gpadc *adc = iio_priv(indio_dev);
int wakeup = adc->wakeup1_enable || adc->wakeup2_enable;
int ret;
if (!device_may_wakeup(dev) || !wakeup)
return 0;
ret = palmas_adc_wakeup_configure(adc);
if (ret < 0)
return ret;
if (adc->wakeup1_enable)
enable_irq_wake(adc->irq_auto_0);
if (adc->wakeup2_enable)
enable_irq_wake(adc->irq_auto_1);
return 0;
}
static int palmas_gpadc_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct palmas_gpadc *adc = iio_priv(indio_dev);
int wakeup = adc->wakeup1_enable || adc->wakeup2_enable;
int ret;
if (!device_may_wakeup(dev) || !wakeup)
return 0;
ret = palmas_adc_wakeup_reset(adc);
if (ret < 0)
return ret;
if (adc->wakeup1_enable)
disable_irq_wake(adc->irq_auto_0);
if (adc->wakeup2_enable)
disable_irq_wake(adc->irq_auto_1);
return 0;
};
#endif
static const struct dev_pm_ops palmas_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(palmas_gpadc_suspend,
palmas_gpadc_resume)
};
static const struct of_device_id of_palmas_gpadc_match_tbl[] = {
{ .compatible = "ti,palmas-gpadc", },
{ /* end */ }
};
MODULE_DEVICE_TABLE(of, of_palmas_gpadc_match_tbl);
static struct platform_driver palmas_gpadc_driver = {
.probe = palmas_gpadc_probe,
.remove = palmas_gpadc_remove,
.driver = {
.name = MOD_NAME,
.pm = &palmas_pm_ops,
.of_match_table = of_palmas_gpadc_match_tbl,
},
};
module_platform_driver(palmas_gpadc_driver);
MODULE_DESCRIPTION("palmas GPADC driver");
MODULE_AUTHOR("Pradeep Goudagunta<pgoudagunta@nvidia.com>");
MODULE_ALIAS("platform:palmas-gpadc");
MODULE_LICENSE("GPL v2");