blob: d84ae6b008c1b024a55d4f1bf670e73ec20cd232 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Texas Instruments TSC2046 SPI ADC driver
*
* Copyright (c) 2021 Oleksij Rempel <kernel@pengutronix.de>, Pengutronix
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <asm/unaligned.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger.h>
/*
* The PENIRQ of TSC2046 controller is implemented as level shifter attached to
* the X+ line. If voltage of the X+ line reaches a specific level the IRQ will
* be activated or deactivated.
* To make this kind of IRQ reusable as trigger following additions were
* implemented:
* - rate limiting:
* For typical touchscreen use case, we need to trigger about each 10ms.
* - hrtimer:
* Continue triggering at least once after the IRQ was deactivated. Then
* deactivate this trigger to stop sampling in order to reduce power
* consumption.
*/
#define TI_TSC2046_NAME "tsc2046"
/* This driver doesn't aim at the peak continuous sample rate */
#define TI_TSC2046_MAX_SAMPLE_RATE 125000
#define TI_TSC2046_SAMPLE_BITS \
BITS_PER_TYPE(struct tsc2046_adc_atom)
#define TI_TSC2046_MAX_CLK_FREQ \
(TI_TSC2046_MAX_SAMPLE_RATE * TI_TSC2046_SAMPLE_BITS)
#define TI_TSC2046_SAMPLE_INTERVAL_US 10000
#define TI_TSC2046_START BIT(7)
#define TI_TSC2046_ADDR GENMASK(6, 4)
#define TI_TSC2046_ADDR_TEMP1 7
#define TI_TSC2046_ADDR_AUX 6
#define TI_TSC2046_ADDR_X 5
#define TI_TSC2046_ADDR_Z2 4
#define TI_TSC2046_ADDR_Z1 3
#define TI_TSC2046_ADDR_VBAT 2
#define TI_TSC2046_ADDR_Y 1
#define TI_TSC2046_ADDR_TEMP0 0
/*
* The mode bit sets the resolution of the ADC. With this bit low, the next
* conversion has 12-bit resolution, whereas with this bit high, the next
* conversion has 8-bit resolution. This driver is optimized for 12-bit mode.
* So, for this driver, this bit should stay zero.
*/
#define TI_TSC2046_8BIT_MODE BIT(3)
/*
* SER/DFR - The SER/DFR bit controls the reference mode, either single-ended
* (high) or differential (low).
*/
#define TI_TSC2046_SER BIT(2)
/*
* If VREF_ON and ADC_ON are both zero, then the chip operates in
* auto-wake/suspend mode. In most case this bits should stay zero.
*/
#define TI_TSC2046_PD1_VREF_ON BIT(1)
#define TI_TSC2046_PD0_ADC_ON BIT(0)
/*
* All supported devices can do 8 or 12bit resolution. This driver
* supports only 12bit mode, here we have a 16bit data transfer, where
* the MSB and the 3 LSB are 0.
*/
#define TI_TSC2046_DATA_12BIT GENMASK(14, 3)
#define TI_TSC2046_MAX_CHAN 8
/* Represents a HW sample */
struct tsc2046_adc_atom {
/*
* Command transmitted to the controller. This field is empty on the RX
* buffer.
*/
u8 cmd;
/*
* Data received from the controller. This field is empty for the TX
* buffer
*/
__be16 data;
} __packed;
/* Layout of atomic buffers within big buffer */
struct tsc2046_adc_group_layout {
/* Group offset within the SPI RX buffer */
unsigned int offset;
/*
* Amount of tsc2046_adc_atom structs within the same command gathered
* within same group.
*/
unsigned int count;
/*
* Settling samples (tsc2046_adc_atom structs) which should be skipped
* before good samples will start.
*/
unsigned int skip;
};
struct tsc2046_adc_dcfg {
const struct iio_chan_spec *channels;
unsigned int num_channels;
};
struct tsc2046_adc_ch_cfg {
unsigned int settling_time_us;
unsigned int oversampling_ratio;
};
struct tsc2046_adc_priv {
struct spi_device *spi;
const struct tsc2046_adc_dcfg *dcfg;
struct iio_trigger *trig;
struct hrtimer trig_timer;
spinlock_t trig_lock;
unsigned int trig_more_count;
struct spi_transfer xfer;
struct spi_message msg;
struct {
/* Scan data for each channel */
u16 data[TI_TSC2046_MAX_CHAN];
/* Timestamp */
s64 ts __aligned(8);
} scan_buf;
/*
* Lock to protect the layout and the SPI transfer buffer.
* tsc2046_adc_group_layout can be changed within update_scan_mode(),
* in this case the l[] and tx/rx buffer will be out of sync to each
* other.
*/
struct mutex slock;
struct tsc2046_adc_group_layout l[TI_TSC2046_MAX_CHAN];
struct tsc2046_adc_atom *rx;
struct tsc2046_adc_atom *tx;
struct tsc2046_adc_atom *rx_one;
struct tsc2046_adc_atom *tx_one;
unsigned int count;
unsigned int groups;
u32 effective_speed_hz;
u32 scan_interval_us;
u32 time_per_scan_us;
u32 time_per_bit_ns;
struct tsc2046_adc_ch_cfg ch_cfg[TI_TSC2046_MAX_CHAN];
};
#define TI_TSC2046_V_CHAN(index, bits, name) \
{ \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = index, \
.datasheet_name = "#name", \
.scan_index = index, \
.scan_type = { \
.sign = 'u', \
.realbits = bits, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
}
#define DECLARE_TI_TSC2046_8_CHANNELS(name, bits) \
const struct iio_chan_spec name ## _channels[] = { \
TI_TSC2046_V_CHAN(0, bits, TEMP0), \
TI_TSC2046_V_CHAN(1, bits, Y), \
TI_TSC2046_V_CHAN(2, bits, VBAT), \
TI_TSC2046_V_CHAN(3, bits, Z1), \
TI_TSC2046_V_CHAN(4, bits, Z2), \
TI_TSC2046_V_CHAN(5, bits, X), \
TI_TSC2046_V_CHAN(6, bits, AUX), \
TI_TSC2046_V_CHAN(7, bits, TEMP1), \
IIO_CHAN_SOFT_TIMESTAMP(8), \
}
static DECLARE_TI_TSC2046_8_CHANNELS(tsc2046_adc, 12);
static const struct tsc2046_adc_dcfg tsc2046_adc_dcfg_tsc2046e = {
.channels = tsc2046_adc_channels,
.num_channels = ARRAY_SIZE(tsc2046_adc_channels),
};
/*
* Convert time to a number of samples which can be transferred within this
* time.
*/
static unsigned int tsc2046_adc_time_to_count(struct tsc2046_adc_priv *priv,
unsigned long time)
{
unsigned int bit_count, sample_count;
bit_count = DIV_ROUND_UP(time * NSEC_PER_USEC, priv->time_per_bit_ns);
sample_count = DIV_ROUND_UP(bit_count, TI_TSC2046_SAMPLE_BITS);
dev_dbg(&priv->spi->dev, "Effective speed %u, time per bit: %u, count bits: %u, count samples: %u\n",
priv->effective_speed_hz, priv->time_per_bit_ns,
bit_count, sample_count);
return sample_count;
}
static u8 tsc2046_adc_get_cmd(struct tsc2046_adc_priv *priv, int ch_idx,
bool keep_power)
{
u32 pd;
/*
* if PD bits are 0, controller will automatically disable ADC, VREF and
* enable IRQ.
*/
if (keep_power)
pd = TI_TSC2046_PD0_ADC_ON;
else
pd = 0;
return TI_TSC2046_START | FIELD_PREP(TI_TSC2046_ADDR, ch_idx) | pd;
}
static u16 tsc2046_adc_get_value(struct tsc2046_adc_atom *buf)
{
return FIELD_GET(TI_TSC2046_DATA_12BIT, get_unaligned_be16(&buf->data));
}
static int tsc2046_adc_read_one(struct tsc2046_adc_priv *priv, int ch_idx,
u32 *effective_speed_hz)
{
struct spi_transfer xfer;
struct spi_message msg;
int ret;
memset(&xfer, 0, sizeof(xfer));
priv->tx_one->cmd = tsc2046_adc_get_cmd(priv, ch_idx, false);
priv->tx_one->data = 0;
xfer.tx_buf = priv->tx_one;
xfer.rx_buf = priv->rx_one;
xfer.len = sizeof(*priv->tx_one);
spi_message_init_with_transfers(&msg, &xfer, 1);
/*
* We aren't using spi_write_then_read() because we need to be able
* to get hold of the effective_speed_hz from the xfer
*/
ret = spi_sync(priv->spi, &msg);
if (ret) {
dev_err_ratelimited(&priv->spi->dev, "SPI transfer failed %pe\n",
ERR_PTR(ret));
return ret;
}
if (effective_speed_hz)
*effective_speed_hz = xfer.effective_speed_hz;
return tsc2046_adc_get_value(priv->rx_one);
}
static size_t tsc2046_adc_group_set_layout(struct tsc2046_adc_priv *priv,
unsigned int group,
unsigned int ch_idx)
{
struct tsc2046_adc_ch_cfg *ch = &priv->ch_cfg[ch_idx];
struct tsc2046_adc_group_layout *cur;
unsigned int max_count, count_skip;
unsigned int offset = 0;
if (group)
offset = priv->l[group - 1].offset + priv->l[group - 1].count;
count_skip = tsc2046_adc_time_to_count(priv, ch->settling_time_us);
max_count = count_skip + ch->oversampling_ratio;
cur = &priv->l[group];
cur->offset = offset;
cur->count = max_count;
cur->skip = count_skip;
return sizeof(*priv->tx) * max_count;
}
static void tsc2046_adc_group_set_cmd(struct tsc2046_adc_priv *priv,
unsigned int group, int ch_idx)
{
struct tsc2046_adc_group_layout *l = &priv->l[group];
unsigned int i;
u8 cmd;
/*
* Do not enable automatic power down on working samples. Otherwise the
* plates will never be completely charged.
*/
cmd = tsc2046_adc_get_cmd(priv, ch_idx, true);
for (i = 0; i < l->count - 1; i++)
priv->tx[l->offset + i].cmd = cmd;
/* automatically power down on last sample */
priv->tx[l->offset + i].cmd = tsc2046_adc_get_cmd(priv, ch_idx, false);
}
static u16 tsc2046_adc_get_val(struct tsc2046_adc_priv *priv, int group)
{
struct tsc2046_adc_group_layout *l;
unsigned int val, val_normalized = 0;
int valid_count, i;
l = &priv->l[group];
valid_count = l->count - l->skip;
for (i = 0; i < valid_count; i++) {
val = tsc2046_adc_get_value(&priv->rx[l->offset + l->skip + i]);
val_normalized += val;
}
return DIV_ROUND_UP(val_normalized, valid_count);
}
static int tsc2046_adc_scan(struct iio_dev *indio_dev)
{
struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
struct device *dev = &priv->spi->dev;
int group;
int ret;
ret = spi_sync(priv->spi, &priv->msg);
if (ret < 0) {
dev_err_ratelimited(dev, "SPI transfer failed: %pe\n", ERR_PTR(ret));
return ret;
}
for (group = 0; group < priv->groups; group++)
priv->scan_buf.data[group] = tsc2046_adc_get_val(priv, group);
ret = iio_push_to_buffers_with_timestamp(indio_dev, &priv->scan_buf,
iio_get_time_ns(indio_dev));
/* If the consumer is kfifo, we may get a EBUSY here - ignore it. */
if (ret < 0 && ret != -EBUSY) {
dev_err_ratelimited(dev, "Failed to push scan buffer %pe\n",
ERR_PTR(ret));
return ret;
}
return 0;
}
static irqreturn_t tsc2046_adc_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
mutex_lock(&priv->slock);
tsc2046_adc_scan(indio_dev);
mutex_unlock(&priv->slock);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int tsc2046_adc_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *active_scan_mask)
{
struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
unsigned int ch_idx, group = 0;
size_t size;
mutex_lock(&priv->slock);
size = 0;
for_each_set_bit(ch_idx, active_scan_mask, indio_dev->num_channels) {
size += tsc2046_adc_group_set_layout(priv, group, ch_idx);
tsc2046_adc_group_set_cmd(priv, group, ch_idx);
group++;
}
priv->groups = group;
priv->xfer.len = size;
priv->time_per_scan_us = size * 8 * priv->time_per_bit_ns / NSEC_PER_USEC;
if (priv->scan_interval_us < priv->time_per_scan_us)
dev_warn(&priv->spi->dev, "The scan interval (%d) is less then calculated scan time (%d)\n",
priv->scan_interval_us, priv->time_per_scan_us);
mutex_unlock(&priv->slock);
return 0;
}
static const struct iio_info tsc2046_adc_info = {
.update_scan_mode = tsc2046_adc_update_scan_mode,
};
static enum hrtimer_restart tsc2046_adc_trig_more(struct hrtimer *hrtimer)
{
struct tsc2046_adc_priv *priv = container_of(hrtimer,
struct tsc2046_adc_priv,
trig_timer);
unsigned long flags;
spin_lock_irqsave(&priv->trig_lock, flags);
disable_irq_nosync(priv->spi->irq);
priv->trig_more_count++;
iio_trigger_poll(priv->trig);
spin_unlock_irqrestore(&priv->trig_lock, flags);
return HRTIMER_NORESTART;
}
static irqreturn_t tsc2046_adc_irq(int irq, void *dev_id)
{
struct iio_dev *indio_dev = dev_id;
struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
spin_lock(&priv->trig_lock);
hrtimer_try_to_cancel(&priv->trig_timer);
priv->trig_more_count = 0;
disable_irq_nosync(priv->spi->irq);
iio_trigger_poll(priv->trig);
spin_unlock(&priv->trig_lock);
return IRQ_HANDLED;
}
static void tsc2046_adc_reenable_trigger(struct iio_trigger *trig)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
unsigned long flags;
int delta;
/*
* We can sample it as fast as we can, but usually we do not need so
* many samples. Reduce the sample rate for default (touchscreen) use
* case.
* Currently we do not need a highly precise sample rate. It is enough
* to have calculated numbers.
*/
delta = priv->scan_interval_us - priv->time_per_scan_us;
if (delta > 0)
fsleep(delta);
spin_lock_irqsave(&priv->trig_lock, flags);
/*
* We need to trigger at least one extra sample to detect state
* difference on ADC side.
*/
if (!priv->trig_more_count) {
int timeout_ms = DIV_ROUND_UP(priv->scan_interval_us,
USEC_PER_MSEC);
hrtimer_start(&priv->trig_timer, ms_to_ktime(timeout_ms),
HRTIMER_MODE_REL_SOFT);
}
enable_irq(priv->spi->irq);
spin_unlock_irqrestore(&priv->trig_lock, flags);
}
static int tsc2046_adc_set_trigger_state(struct iio_trigger *trig, bool enable)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct tsc2046_adc_priv *priv = iio_priv(indio_dev);
if (enable) {
enable_irq(priv->spi->irq);
} else {
disable_irq(priv->spi->irq);
hrtimer_try_to_cancel(&priv->trig_timer);
}
return 0;
}
static const struct iio_trigger_ops tsc2046_adc_trigger_ops = {
.set_trigger_state = tsc2046_adc_set_trigger_state,
.reenable = tsc2046_adc_reenable_trigger,
};
static int tsc2046_adc_setup_spi_msg(struct tsc2046_adc_priv *priv)
{
unsigned int ch_idx;
size_t size;
int ret;
priv->tx_one = devm_kzalloc(&priv->spi->dev, sizeof(*priv->tx_one),
GFP_KERNEL);
if (!priv->tx_one)
return -ENOMEM;
priv->rx_one = devm_kzalloc(&priv->spi->dev, sizeof(*priv->rx_one),
GFP_KERNEL);
if (!priv->rx_one)
return -ENOMEM;
/*
* Make dummy read to set initial power state and get real SPI clock
* freq. It seems to be not important which channel is used for this
* case.
*/
ret = tsc2046_adc_read_one(priv, TI_TSC2046_ADDR_TEMP0,
&priv->effective_speed_hz);
if (ret < 0)
return ret;
/*
* In case SPI controller do not report effective_speed_hz, use
* configure value and hope it will match.
*/
if (!priv->effective_speed_hz)
priv->effective_speed_hz = priv->spi->max_speed_hz;
priv->scan_interval_us = TI_TSC2046_SAMPLE_INTERVAL_US;
priv->time_per_bit_ns = DIV_ROUND_UP(NSEC_PER_SEC,
priv->effective_speed_hz);
/*
* Calculate and allocate maximal size buffer if all channels are
* enabled.
*/
size = 0;
for (ch_idx = 0; ch_idx < priv->dcfg->num_channels; ch_idx++)
size += tsc2046_adc_group_set_layout(priv, ch_idx, ch_idx);
priv->tx = devm_kzalloc(&priv->spi->dev, size, GFP_KERNEL);
if (!priv->tx)
return -ENOMEM;
priv->rx = devm_kzalloc(&priv->spi->dev, size, GFP_KERNEL);
if (!priv->rx)
return -ENOMEM;
priv->xfer.tx_buf = priv->tx;
priv->xfer.rx_buf = priv->rx;
priv->xfer.len = size;
spi_message_init_with_transfers(&priv->msg, &priv->xfer, 1);
return 0;
}
static void tsc2046_adc_parse_fwnode(struct tsc2046_adc_priv *priv)
{
struct fwnode_handle *child;
struct device *dev = &priv->spi->dev;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(priv->ch_cfg); i++) {
priv->ch_cfg[i].settling_time_us = 1;
priv->ch_cfg[i].oversampling_ratio = 1;
}
device_for_each_child_node(dev, child) {
u32 stl, overs, reg;
int ret;
ret = fwnode_property_read_u32(child, "reg", &reg);
if (ret) {
dev_err(dev, "invalid reg on %pfw, err: %pe\n", child,
ERR_PTR(ret));
continue;
}
if (reg >= ARRAY_SIZE(priv->ch_cfg)) {
dev_err(dev, "%pfw: Unsupported reg value: %i, max supported is: %zu.\n",
child, reg, ARRAY_SIZE(priv->ch_cfg));
continue;
}
ret = fwnode_property_read_u32(child, "settling-time-us", &stl);
if (!ret)
priv->ch_cfg[reg].settling_time_us = stl;
ret = fwnode_property_read_u32(child, "oversampling-ratio",
&overs);
if (!ret)
priv->ch_cfg[reg].oversampling_ratio = overs;
}
}
static int tsc2046_adc_probe(struct spi_device *spi)
{
const struct tsc2046_adc_dcfg *dcfg;
struct device *dev = &spi->dev;
struct tsc2046_adc_priv *priv;
struct iio_dev *indio_dev;
struct iio_trigger *trig;
int ret;
if (spi->max_speed_hz > TI_TSC2046_MAX_CLK_FREQ) {
dev_err(dev, "SPI max_speed_hz is too high: %d Hz. Max supported freq is %zu Hz\n",
spi->max_speed_hz, TI_TSC2046_MAX_CLK_FREQ);
return -EINVAL;
}
dcfg = device_get_match_data(dev);
if (!dcfg)
return -EINVAL;
spi->bits_per_word = 8;
spi->mode &= ~SPI_MODE_X_MASK;
spi->mode |= SPI_MODE_0;
ret = spi_setup(spi);
if (ret < 0)
return dev_err_probe(dev, ret, "Error in SPI setup\n");
indio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
if (!indio_dev)
return -ENOMEM;
priv = iio_priv(indio_dev);
priv->dcfg = dcfg;
priv->spi = spi;
indio_dev->name = TI_TSC2046_NAME;
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED;
indio_dev->channels = dcfg->channels;
indio_dev->num_channels = dcfg->num_channels;
indio_dev->info = &tsc2046_adc_info;
tsc2046_adc_parse_fwnode(priv);
ret = tsc2046_adc_setup_spi_msg(priv);
if (ret)
return ret;
mutex_init(&priv->slock);
ret = devm_request_irq(dev, spi->irq, &tsc2046_adc_irq,
IRQF_NO_AUTOEN, indio_dev->name, indio_dev);
if (ret)
return ret;
trig = devm_iio_trigger_alloc(dev, "touchscreen-%s", indio_dev->name);
if (!trig)
return -ENOMEM;
priv->trig = trig;
iio_trigger_set_drvdata(trig, indio_dev);
trig->ops = &tsc2046_adc_trigger_ops;
spin_lock_init(&priv->trig_lock);
hrtimer_init(&priv->trig_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_SOFT);
priv->trig_timer.function = tsc2046_adc_trig_more;
ret = devm_iio_trigger_register(dev, trig);
if (ret) {
dev_err(dev, "failed to register trigger\n");
return ret;
}
ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
&tsc2046_adc_trigger_handler, NULL);
if (ret) {
dev_err(dev, "Failed to setup triggered buffer\n");
return ret;
}
/* set default trigger */
indio_dev->trig = iio_trigger_get(priv->trig);
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id ads7950_of_table[] = {
{ .compatible = "ti,tsc2046e-adc", .data = &tsc2046_adc_dcfg_tsc2046e },
{ }
};
MODULE_DEVICE_TABLE(of, ads7950_of_table);
static struct spi_driver tsc2046_adc_driver = {
.driver = {
.name = "tsc2046",
.of_match_table = ads7950_of_table,
},
.probe = tsc2046_adc_probe,
};
module_spi_driver(tsc2046_adc_driver);
MODULE_AUTHOR("Oleksij Rempel <kernel@pengutronix.de>");
MODULE_DESCRIPTION("TI TSC2046 ADC");
MODULE_LICENSE("GPL v2");