blob: 2553959592557d27b0cb837f08c6960c83fae6da [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
//
// em28xx-i2c.c - driver for Empia EM2800/EM2820/2840 USB video capture devices
//
// Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it>
// Markus Rechberger <mrechberger@gmail.com>
// Mauro Carvalho Chehab <mchehab@kernel.org>
// Sascha Sommer <saschasommer@freenet.de>
// Copyright (C) 2013 Frank Schäfer <fschaefer.oss@googlemail.com>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
#include "em28xx.h"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/usb.h>
#include <linux/i2c.h>
#include <linux/jiffies.h>
#include "tuner-xc2028.h"
#include <media/v4l2-common.h>
#include <media/tuner.h>
/* ----------------------------------------------------------- */
static unsigned int i2c_scan;
module_param(i2c_scan, int, 0444);
MODULE_PARM_DESC(i2c_scan, "scan i2c bus at insmod time");
static unsigned int i2c_debug;
module_param(i2c_debug, int, 0644);
MODULE_PARM_DESC(i2c_debug, "i2c debug message level (1: normal debug, 2: show I2C transfers)");
#define dprintk(level, fmt, arg...) do { \
if (i2c_debug > level) \
dev_printk(KERN_DEBUG, &dev->intf->dev, \
"i2c: %s: " fmt, __func__, ## arg); \
} while (0)
/*
* Time in msecs to wait for i2c xfers to finish.
* 35ms is the maximum time a SMBUS device could wait when
* clock stretching is used. As the transfer itself will take
* some time to happen, set it to 35 ms.
*
* Ok, I2C doesn't specify any limit. So, eventually, we may need
* to increase this timeout.
*/
#define EM28XX_I2C_XFER_TIMEOUT 35 /* ms */
static int em28xx_i2c_timeout(struct em28xx *dev)
{
int time = EM28XX_I2C_XFER_TIMEOUT;
switch (dev->i2c_speed & 0x03) {
case EM28XX_I2C_FREQ_25_KHZ:
time += 4; /* Assume 4 ms for transfers */
break;
case EM28XX_I2C_FREQ_100_KHZ:
case EM28XX_I2C_FREQ_400_KHZ:
time += 1; /* Assume 1 ms for transfers */
break;
default: /* EM28XX_I2C_FREQ_1_5_MHZ */
break;
}
return msecs_to_jiffies(time);
}
/*
* em2800_i2c_send_bytes()
* send up to 4 bytes to the em2800 i2c device
*/
static int em2800_i2c_send_bytes(struct em28xx *dev, u8 addr, u8 *buf, u16 len)
{
unsigned long timeout = jiffies + em28xx_i2c_timeout(dev);
int ret;
u8 b2[6];
if (len < 1 || len > 4)
return -EOPNOTSUPP;
b2[5] = 0x80 + len - 1;
b2[4] = addr;
b2[3] = buf[0];
if (len > 1)
b2[2] = buf[1];
if (len > 2)
b2[1] = buf[2];
if (len > 3)
b2[0] = buf[3];
/* trigger write */
ret = dev->em28xx_write_regs(dev, 4 - len, &b2[4 - len], 2 + len);
if (ret != 2 + len) {
dev_warn(&dev->intf->dev,
"failed to trigger write to i2c address 0x%x (error=%i)\n",
addr, ret);
return (ret < 0) ? ret : -EIO;
}
/* wait for completion */
while (time_is_after_jiffies(timeout)) {
ret = dev->em28xx_read_reg(dev, 0x05);
if (ret == 0x80 + len - 1)
return len;
if (ret == 0x94 + len - 1) {
dprintk(1, "R05 returned 0x%02x: I2C ACK error\n", ret);
return -ENXIO;
}
if (ret < 0) {
dev_warn(&dev->intf->dev,
"failed to get i2c transfer status from bridge register (error=%i)\n",
ret);
return ret;
}
usleep_range(5000, 6000);
}
dprintk(0, "write to i2c device at 0x%x timed out\n", addr);
return -ETIMEDOUT;
}
/*
* em2800_i2c_recv_bytes()
* read up to 4 bytes from the em2800 i2c device
*/
static int em2800_i2c_recv_bytes(struct em28xx *dev, u8 addr, u8 *buf, u16 len)
{
unsigned long timeout = jiffies + em28xx_i2c_timeout(dev);
u8 buf2[4];
int ret;
int i;
if (len < 1 || len > 4)
return -EOPNOTSUPP;
/* trigger read */
buf2[1] = 0x84 + len - 1;
buf2[0] = addr;
ret = dev->em28xx_write_regs(dev, 0x04, buf2, 2);
if (ret != 2) {
dev_warn(&dev->intf->dev,
"failed to trigger read from i2c address 0x%x (error=%i)\n",
addr, ret);
return (ret < 0) ? ret : -EIO;
}
/* wait for completion */
while (time_is_after_jiffies(timeout)) {
ret = dev->em28xx_read_reg(dev, 0x05);
if (ret == 0x84 + len - 1)
break;
if (ret == 0x94 + len - 1) {
dprintk(1, "R05 returned 0x%02x: I2C ACK error\n",
ret);
return -ENXIO;
}
if (ret < 0) {
dev_warn(&dev->intf->dev,
"failed to get i2c transfer status from bridge register (error=%i)\n",
ret);
return ret;
}
usleep_range(5000, 6000);
}
if (ret != 0x84 + len - 1)
dprintk(0, "read from i2c device at 0x%x timed out\n", addr);
/* get the received message */
ret = dev->em28xx_read_reg_req_len(dev, 0x00, 4 - len, buf2, len);
if (ret != len) {
dev_warn(&dev->intf->dev,
"reading from i2c device at 0x%x failed: couldn't get the received message from the bridge (error=%i)\n",
addr, ret);
return (ret < 0) ? ret : -EIO;
}
for (i = 0; i < len; i++)
buf[i] = buf2[len - 1 - i];
return ret;
}
/*
* em2800_i2c_check_for_device()
* check if there is an i2c device at the supplied address
*/
static int em2800_i2c_check_for_device(struct em28xx *dev, u8 addr)
{
u8 buf;
int ret;
ret = em2800_i2c_recv_bytes(dev, addr, &buf, 1);
if (ret == 1)
return 0;
return (ret < 0) ? ret : -EIO;
}
/*
* em28xx_i2c_send_bytes()
*/
static int em28xx_i2c_send_bytes(struct em28xx *dev, u16 addr, u8 *buf,
u16 len, int stop)
{
unsigned long timeout = jiffies + em28xx_i2c_timeout(dev);
int ret;
if (len < 1 || len > 64)
return -EOPNOTSUPP;
/*
* NOTE: limited by the USB ctrl message constraints
* Zero length reads always succeed, even if no device is connected
*/
/* Write to i2c device */
ret = dev->em28xx_write_regs_req(dev, stop ? 2 : 3, addr, buf, len);
if (ret != len) {
if (ret < 0) {
dev_warn(&dev->intf->dev,
"writing to i2c device at 0x%x failed (error=%i)\n",
addr, ret);
return ret;
}
dev_warn(&dev->intf->dev,
"%i bytes write to i2c device at 0x%x requested, but %i bytes written\n",
len, addr, ret);
return -EIO;
}
/* wait for completion */
while (time_is_after_jiffies(timeout)) {
ret = dev->em28xx_read_reg(dev, 0x05);
if (ret == 0) /* success */
return len;
if (ret == 0x10) {
dprintk(1, "I2C ACK error on writing to addr 0x%02x\n",
addr);
return -ENXIO;
}
if (ret < 0) {
dev_warn(&dev->intf->dev,
"failed to get i2c transfer status from bridge register (error=%i)\n",
ret);
return ret;
}
usleep_range(5000, 6000);
/*
* NOTE: do we really have to wait for success ?
* Never seen anything else than 0x00 or 0x10
* (even with high payload) ...
*/
}
if (ret == 0x02 || ret == 0x04) {
/* NOTE: these errors seem to be related to clock stretching */
dprintk(0,
"write to i2c device at 0x%x timed out (status=%i)\n",
addr, ret);
return -ETIMEDOUT;
}
dev_warn(&dev->intf->dev,
"write to i2c device at 0x%x failed with unknown error (status=%i)\n",
addr, ret);
return -EIO;
}
/*
* em28xx_i2c_recv_bytes()
* read a byte from the i2c device
*/
static int em28xx_i2c_recv_bytes(struct em28xx *dev, u16 addr, u8 *buf, u16 len)
{
int ret;
if (len < 1 || len > 64)
return -EOPNOTSUPP;
/*
* NOTE: limited by the USB ctrl message constraints
* Zero length reads always succeed, even if no device is connected
*/
/* Read data from i2c device */
ret = dev->em28xx_read_reg_req_len(dev, 2, addr, buf, len);
if (ret < 0) {
dev_warn(&dev->intf->dev,
"reading from i2c device at 0x%x failed (error=%i)\n",
addr, ret);
return ret;
} else if (ret != len) {
dev_dbg(&dev->intf->dev,
"%i bytes read from i2c device at 0x%x requested, but %i bytes written\n",
ret, addr, len);
}
/*
* NOTE: some devices with two i2c buses have the bad habit to return 0
* bytes if we are on bus B AND there was no write attempt to the
* specified slave address before AND no device is present at the
* requested slave address.
* Anyway, the next check will fail with -ENXIO in this case, so avoid
* spamming the system log on device probing and do nothing here.
*/
/* Check success of the i2c operation */
ret = dev->em28xx_read_reg(dev, 0x05);
if (ret == 0) /* success */
return len;
if (ret < 0) {
dev_warn(&dev->intf->dev,
"failed to get i2c transfer status from bridge register (error=%i)\n",
ret);
return ret;
}
if (ret == 0x10) {
dprintk(1, "I2C ACK error on writing to addr 0x%02x\n",
addr);
return -ENXIO;
}
if (ret == 0x02 || ret == 0x04) {
/* NOTE: these errors seem to be related to clock stretching */
dprintk(0,
"write to i2c device at 0x%x timed out (status=%i)\n",
addr, ret);
return -ETIMEDOUT;
}
dev_warn(&dev->intf->dev,
"read from i2c device at 0x%x failed with unknown error (status=%i)\n",
addr, ret);
return -EIO;
}
/*
* em28xx_i2c_check_for_device()
* check if there is a i2c_device at the supplied address
*/
static int em28xx_i2c_check_for_device(struct em28xx *dev, u16 addr)
{
int ret;
u8 buf;
ret = em28xx_i2c_recv_bytes(dev, addr, &buf, 1);
if (ret == 1)
return 0;
return (ret < 0) ? ret : -EIO;
}
/*
* em25xx_bus_B_send_bytes
* write bytes to the i2c device
*/
static int em25xx_bus_B_send_bytes(struct em28xx *dev, u16 addr, u8 *buf,
u16 len)
{
int ret;
if (len < 1 || len > 64)
return -EOPNOTSUPP;
/*
* NOTE: limited by the USB ctrl message constraints
* Zero length reads always succeed, even if no device is connected
*/
/* Set register and write value */
ret = dev->em28xx_write_regs_req(dev, 0x06, addr, buf, len);
if (ret != len) {
if (ret < 0) {
dev_warn(&dev->intf->dev,
"writing to i2c device at 0x%x failed (error=%i)\n",
addr, ret);
return ret;
}
dev_warn(&dev->intf->dev,
"%i bytes write to i2c device at 0x%x requested, but %i bytes written\n",
len, addr, ret);
return -EIO;
}
/* Check success */
ret = dev->em28xx_read_reg_req(dev, 0x08, 0x0000);
/*
* NOTE: the only error we've seen so far is
* 0x01 when the slave device is not present
*/
if (!ret)
return len;
if (ret > 0) {
dprintk(1, "Bus B R08 returned 0x%02x: I2C ACK error\n", ret);
return -ENXIO;
}
return ret;
/*
* NOTE: With chip types (other chip IDs) which actually don't support
* this operation, it seems to succeed ALWAYS ! (even if there is no
* slave device or even no second i2c bus provided)
*/
}
/*
* em25xx_bus_B_recv_bytes
* read bytes from the i2c device
*/
static int em25xx_bus_B_recv_bytes(struct em28xx *dev, u16 addr, u8 *buf,
u16 len)
{
int ret;
if (len < 1 || len > 64)
return -EOPNOTSUPP;
/*
* NOTE: limited by the USB ctrl message constraints
* Zero length reads always succeed, even if no device is connected
*/
/* Read value */
ret = dev->em28xx_read_reg_req_len(dev, 0x06, addr, buf, len);
if (ret < 0) {
dev_warn(&dev->intf->dev,
"reading from i2c device at 0x%x failed (error=%i)\n",
addr, ret);
return ret;
}
/*
* NOTE: some devices with two i2c buses have the bad habit to return 0
* bytes if we are on bus B AND there was no write attempt to the
* specified slave address before AND no device is present at the
* requested slave address.
* Anyway, the next check will fail with -ENXIO in this case, so avoid
* spamming the system log on device probing and do nothing here.
*/
/* Check success */
ret = dev->em28xx_read_reg_req(dev, 0x08, 0x0000);
/*
* NOTE: the only error we've seen so far is
* 0x01 when the slave device is not present
*/
if (!ret)
return len;
if (ret > 0) {
dprintk(1, "Bus B R08 returned 0x%02x: I2C ACK error\n", ret);
return -ENXIO;
}
return ret;
/*
* NOTE: With chip types (other chip IDs) which actually don't support
* this operation, it seems to succeed ALWAYS ! (even if there is no
* slave device or even no second i2c bus provided)
*/
}
/*
* em25xx_bus_B_check_for_device()
* check if there is a i2c device at the supplied address
*/
static int em25xx_bus_B_check_for_device(struct em28xx *dev, u16 addr)
{
u8 buf;
int ret;
ret = em25xx_bus_B_recv_bytes(dev, addr, &buf, 1);
if (ret < 0)
return ret;
return 0;
/*
* NOTE: With chips which do not support this operation,
* it seems to succeed ALWAYS ! (even if no device connected)
*/
}
static inline int i2c_check_for_device(struct em28xx_i2c_bus *i2c_bus, u16 addr)
{
struct em28xx *dev = i2c_bus->dev;
int rc = -EOPNOTSUPP;
if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX)
rc = em28xx_i2c_check_for_device(dev, addr);
else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800)
rc = em2800_i2c_check_for_device(dev, addr);
else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B)
rc = em25xx_bus_B_check_for_device(dev, addr);
return rc;
}
static inline int i2c_recv_bytes(struct em28xx_i2c_bus *i2c_bus,
struct i2c_msg msg)
{
struct em28xx *dev = i2c_bus->dev;
u16 addr = msg.addr << 1;
int rc = -EOPNOTSUPP;
if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX)
rc = em28xx_i2c_recv_bytes(dev, addr, msg.buf, msg.len);
else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800)
rc = em2800_i2c_recv_bytes(dev, addr, msg.buf, msg.len);
else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B)
rc = em25xx_bus_B_recv_bytes(dev, addr, msg.buf, msg.len);
return rc;
}
static inline int i2c_send_bytes(struct em28xx_i2c_bus *i2c_bus,
struct i2c_msg msg, int stop)
{
struct em28xx *dev = i2c_bus->dev;
u16 addr = msg.addr << 1;
int rc = -EOPNOTSUPP;
if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX)
rc = em28xx_i2c_send_bytes(dev, addr, msg.buf, msg.len, stop);
else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800)
rc = em2800_i2c_send_bytes(dev, addr, msg.buf, msg.len);
else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B)
rc = em25xx_bus_B_send_bytes(dev, addr, msg.buf, msg.len);
return rc;
}
/*
* em28xx_i2c_xfer()
* the main i2c transfer function
*/
static int em28xx_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg msgs[], int num)
{
struct em28xx_i2c_bus *i2c_bus = i2c_adap->algo_data;
struct em28xx *dev = i2c_bus->dev;
unsigned int bus = i2c_bus->bus;
int addr, rc, i;
u8 reg;
/*
* prevent i2c xfer attempts after device is disconnected
* some fe's try to do i2c writes/reads from their release
* interfaces when called in disconnect path
*/
if (dev->disconnected)
return -ENODEV;
if (!rt_mutex_trylock(&dev->i2c_bus_lock))
return -EAGAIN;
/* Switch I2C bus if needed */
if (bus != dev->cur_i2c_bus &&
i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) {
if (bus == 1)
reg = EM2874_I2C_SECONDARY_BUS_SELECT;
else
reg = 0;
em28xx_write_reg_bits(dev, EM28XX_R06_I2C_CLK, reg,
EM2874_I2C_SECONDARY_BUS_SELECT);
dev->cur_i2c_bus = bus;
}
for (i = 0; i < num; i++) {
addr = msgs[i].addr << 1;
if (!msgs[i].len) {
/*
* no len: check only for device presence
* This code is only called during device probe.
*/
rc = i2c_check_for_device(i2c_bus, addr);
if (rc == -ENXIO)
rc = -ENODEV;
} else if (msgs[i].flags & I2C_M_RD) {
/* read bytes */
rc = i2c_recv_bytes(i2c_bus, msgs[i]);
} else {
/* write bytes */
rc = i2c_send_bytes(i2c_bus, msgs[i], i == num - 1);
}
if (rc < 0)
goto error;
dprintk(2, "%s %s addr=%02x len=%d: %*ph\n",
(msgs[i].flags & I2C_M_RD) ? "read" : "write",
i == num - 1 ? "stop" : "nonstop",
addr, msgs[i].len,
msgs[i].len, msgs[i].buf);
}
rt_mutex_unlock(&dev->i2c_bus_lock);
return num;
error:
dprintk(2, "%s %s addr=%02x len=%d: %sERROR: %i\n",
(msgs[i].flags & I2C_M_RD) ? "read" : "write",
i == num - 1 ? "stop" : "nonstop",
addr, msgs[i].len,
(rc == -ENODEV) ? "no device " : "",
rc);
rt_mutex_unlock(&dev->i2c_bus_lock);
return rc;
}
/*
* based on linux/sunrpc/svcauth.h and linux/hash.h
* The original hash function returns a different value, if arch is x86_64
* or i386.
*/
static inline unsigned long em28xx_hash_mem(char *buf, int length, int bits)
{
unsigned long hash = 0;
unsigned long l = 0;
int len = 0;
unsigned char c;
do {
if (len == length) {
c = (char)len;
len = -1;
} else {
c = *buf++;
}
l = (l << 8) | c;
len++;
if ((len & (32 / 8 - 1)) == 0)
hash = ((hash ^ l) * 0x9e370001UL);
} while (len);
return (hash >> (32 - bits)) & 0xffffffffUL;
}
/*
* Helper function to read data blocks from i2c clients with 8 or 16 bit
* address width, 8 bit register width and auto incrementation been activated
*/
static int em28xx_i2c_read_block(struct em28xx *dev, unsigned int bus, u16 addr,
bool addr_w16, u16 len, u8 *data)
{
int remain = len, rsize, rsize_max, ret;
u8 buf[2];
/* Sanity check */
if (addr + remain > (addr_w16 * 0xff00 + 0xff + 1))
return -EINVAL;
/* Select address */
buf[0] = addr >> 8;
buf[1] = addr & 0xff;
ret = i2c_master_send(&dev->i2c_client[bus],
buf + !addr_w16, 1 + addr_w16);
if (ret < 0)
return ret;
/* Read data */
if (dev->board.is_em2800)
rsize_max = 4;
else
rsize_max = 64;
while (remain > 0) {
if (remain > rsize_max)
rsize = rsize_max;
else
rsize = remain;
ret = i2c_master_recv(&dev->i2c_client[bus], data, rsize);
if (ret < 0)
return ret;
remain -= rsize;
data += rsize;
}
return len;
}
static int em28xx_i2c_eeprom(struct em28xx *dev, unsigned int bus,
u8 **eedata, u16 *eedata_len)
{
const u16 len = 256;
/*
* FIXME common length/size for bytes to read, to display, hash
* calculation and returned device dataset. Simplifies the code a lot,
* but we might have to deal with multiple sizes in the future !
*/
int err;
struct em28xx_eeprom *dev_config;
u8 buf, *data;
*eedata = NULL;
*eedata_len = 0;
/* EEPROM is always on i2c bus 0 on all known devices. */
dev->i2c_client[bus].addr = 0xa0 >> 1;
/* Check if board has eeprom */
err = i2c_master_recv(&dev->i2c_client[bus], &buf, 0);
if (err < 0) {
dev_info(&dev->intf->dev, "board has no eeprom\n");
return -ENODEV;
}
data = kzalloc(len, GFP_KERNEL);
if (!data)
return -ENOMEM;
/* Read EEPROM content */
err = em28xx_i2c_read_block(dev, bus, 0x0000,
dev->eeprom_addrwidth_16bit,
len, data);
if (err != len) {
dev_err(&dev->intf->dev,
"failed to read eeprom (err=%d)\n", err);
goto error;
}
if (i2c_debug) {
/* Display eeprom content */
print_hex_dump(KERN_DEBUG, "em28xx eeprom ", DUMP_PREFIX_OFFSET,
16, 1, data, len, true);
if (dev->eeprom_addrwidth_16bit)
dev_info(&dev->intf->dev,
"eeprom %06x: ... (skipped)\n", 256);
}
if (dev->eeprom_addrwidth_16bit &&
data[0] == 0x26 && data[3] == 0x00) {
/* new eeprom format; size 4-64kb */
u16 mc_start;
u16 hwconf_offset;
dev->hash = em28xx_hash_mem(data, len, 32);
mc_start = (data[1] << 8) + 4; /* usually 0x0004 */
dev_info(&dev->intf->dev,
"EEPROM ID = %4ph, EEPROM hash = 0x%08lx\n",
data, dev->hash);
dev_info(&dev->intf->dev,
"EEPROM info:\n");
dev_info(&dev->intf->dev,
"\tmicrocode start address = 0x%04x, boot configuration = 0x%02x\n",
mc_start, data[2]);
/*
* boot configuration (address 0x0002):
* [0] microcode download speed: 1 = 400 kHz; 0 = 100 kHz
* [1] always selects 12 kb RAM
* [2] USB device speed: 1 = force Full Speed; 0 = auto detect
* [4] 1 = force fast mode and no suspend for device testing
* [5:7] USB PHY tuning registers; determined by device
* characterization
*/
/*
* Read hardware config dataset offset from address
* (microcode start + 46)
*/
err = em28xx_i2c_read_block(dev, bus, mc_start + 46, 1, 2,
data);
if (err != 2) {
dev_err(&dev->intf->dev,
"failed to read hardware configuration data from eeprom (err=%d)\n",
err);
goto error;
}
/* Calculate hardware config dataset start address */
hwconf_offset = mc_start + data[0] + (data[1] << 8);
/* Read hardware config dataset */
/*
* NOTE: the microcode copy can be multiple pages long, but
* we assume the hardware config dataset is the same as in
* the old eeprom and not longer than 256 bytes.
* tveeprom is currently also limited to 256 bytes.
*/
err = em28xx_i2c_read_block(dev, bus, hwconf_offset, 1, len,
data);
if (err != len) {
dev_err(&dev->intf->dev,
"failed to read hardware configuration data from eeprom (err=%d)\n",
err);
goto error;
}
/* Verify hardware config dataset */
/* NOTE: not all devices provide this type of dataset */
if (data[0] != 0x1a || data[1] != 0xeb ||
data[2] != 0x67 || data[3] != 0x95) {
dev_info(&dev->intf->dev,
"\tno hardware configuration dataset found in eeprom\n");
kfree(data);
return 0;
}
/*
* TODO: decrypt eeprom data for camera bridges
* (em25xx, em276x+)
*/
} else if (!dev->eeprom_addrwidth_16bit &&
data[0] == 0x1a && data[1] == 0xeb &&
data[2] == 0x67 && data[3] == 0x95) {
dev->hash = em28xx_hash_mem(data, len, 32);
dev_info(&dev->intf->dev,
"EEPROM ID = %4ph, EEPROM hash = 0x%08lx\n",
data, dev->hash);
dev_info(&dev->intf->dev,
"EEPROM info:\n");
} else {
dev_info(&dev->intf->dev,
"unknown eeprom format or eeprom corrupted !\n");
err = -ENODEV;
goto error;
}
*eedata = data;
*eedata_len = len;
dev_config = (void *)*eedata;
switch (le16_to_cpu(dev_config->chip_conf) >> 4 & 0x3) {
case 0:
dev_info(&dev->intf->dev, "\tNo audio on board.\n");
break;
case 1:
dev_info(&dev->intf->dev, "\tAC97 audio (5 sample rates)\n");
break;
case 2:
if (dev->chip_id < CHIP_ID_EM2860)
dev_info(&dev->intf->dev,
"\tI2S audio, sample rate=32k\n");
else
dev_info(&dev->intf->dev,
"\tI2S audio, 3 sample rates\n");
break;
case 3:
if (dev->chip_id < CHIP_ID_EM2860)
dev_info(&dev->intf->dev,
"\tI2S audio, 3 sample rates\n");
else
dev_info(&dev->intf->dev,
"\tI2S audio, 5 sample rates\n");
break;
}
if (le16_to_cpu(dev_config->chip_conf) & 1 << 3)
dev_info(&dev->intf->dev, "\tUSB Remote wakeup capable\n");
if (le16_to_cpu(dev_config->chip_conf) & 1 << 2)
dev_info(&dev->intf->dev, "\tUSB Self power capable\n");
switch (le16_to_cpu(dev_config->chip_conf) & 0x3) {
case 0:
dev_info(&dev->intf->dev, "\t500mA max power\n");
break;
case 1:
dev_info(&dev->intf->dev, "\t400mA max power\n");
break;
case 2:
dev_info(&dev->intf->dev, "\t300mA max power\n");
break;
case 3:
dev_info(&dev->intf->dev, "\t200mA max power\n");
break;
}
dev_info(&dev->intf->dev,
"\tTable at offset 0x%02x, strings=0x%04x, 0x%04x, 0x%04x\n",
dev_config->string_idx_table,
le16_to_cpu(dev_config->string1),
le16_to_cpu(dev_config->string2),
le16_to_cpu(dev_config->string3));
return 0;
error:
kfree(data);
return err;
}
/* ----------------------------------------------------------- */
/*
* functionality()
*/
static u32 functionality(struct i2c_adapter *i2c_adap)
{
struct em28xx_i2c_bus *i2c_bus = i2c_adap->algo_data;
if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX ||
i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B) {
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
} else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800) {
return (I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL) &
~I2C_FUNC_SMBUS_WRITE_BLOCK_DATA;
}
WARN(1, "Unknown i2c bus algorithm.\n");
return 0;
}
static const struct i2c_algorithm em28xx_algo = {
.master_xfer = em28xx_i2c_xfer,
.functionality = functionality,
};
static const struct i2c_adapter em28xx_adap_template = {
.owner = THIS_MODULE,
.name = "em28xx",
.algo = &em28xx_algo,
};
static const struct i2c_client em28xx_client_template = {
.name = "em28xx internal",
};
/* ----------------------------------------------------------- */
/*
* i2c_devs
* incomplete list of known devices
*/
static char *i2c_devs[128] = {
[0x1c >> 1] = "lgdt330x",
[0x3e >> 1] = "remote IR sensor",
[0x4a >> 1] = "saa7113h",
[0x52 >> 1] = "drxk",
[0x60 >> 1] = "remote IR sensor",
[0x8e >> 1] = "remote IR sensor",
[0x86 >> 1] = "tda9887",
[0x80 >> 1] = "msp34xx",
[0x88 >> 1] = "msp34xx",
[0xa0 >> 1] = "eeprom",
[0xb0 >> 1] = "tda9874",
[0xb8 >> 1] = "tvp5150a",
[0xba >> 1] = "webcam sensor or tvp5150a",
[0xc0 >> 1] = "tuner (analog)",
[0xc2 >> 1] = "tuner (analog)",
[0xc4 >> 1] = "tuner (analog)",
[0xc6 >> 1] = "tuner (analog)",
};
/*
* do_i2c_scan()
* check i2c address range for devices
*/
void em28xx_do_i2c_scan(struct em28xx *dev, unsigned int bus)
{
u8 i2c_devicelist[128];
unsigned char buf;
int i, rc;
memset(i2c_devicelist, 0, sizeof(i2c_devicelist));
for (i = 0; i < ARRAY_SIZE(i2c_devs); i++) {
dev->i2c_client[bus].addr = i;
rc = i2c_master_recv(&dev->i2c_client[bus], &buf, 0);
if (rc < 0)
continue;
i2c_devicelist[i] = i;
dev_info(&dev->intf->dev,
"found i2c device @ 0x%x on bus %d [%s]\n",
i << 1, bus, i2c_devs[i] ? i2c_devs[i] : "???");
}
if (bus == dev->def_i2c_bus)
dev->i2c_hash = em28xx_hash_mem(i2c_devicelist,
sizeof(i2c_devicelist), 32);
}
/*
* em28xx_i2c_register()
* register i2c bus
*/
int em28xx_i2c_register(struct em28xx *dev, unsigned int bus,
enum em28xx_i2c_algo_type algo_type)
{
int retval;
if (WARN_ON(!dev->em28xx_write_regs || !dev->em28xx_read_reg ||
!dev->em28xx_write_regs_req || !dev->em28xx_read_reg_req))
return -ENODEV;
if (bus >= NUM_I2C_BUSES)
return -ENODEV;
dev->i2c_adap[bus] = em28xx_adap_template;
dev->i2c_adap[bus].dev.parent = &dev->intf->dev;
strscpy(dev->i2c_adap[bus].name, dev_name(&dev->intf->dev),
sizeof(dev->i2c_adap[bus].name));
dev->i2c_bus[bus].bus = bus;
dev->i2c_bus[bus].algo_type = algo_type;
dev->i2c_bus[bus].dev = dev;
dev->i2c_adap[bus].algo_data = &dev->i2c_bus[bus];
retval = i2c_add_adapter(&dev->i2c_adap[bus]);
if (retval < 0) {
dev_err(&dev->intf->dev,
"%s: i2c_add_adapter failed! retval [%d]\n",
__func__, retval);
return retval;
}
dev->i2c_client[bus] = em28xx_client_template;
dev->i2c_client[bus].adapter = &dev->i2c_adap[bus];
/* Up to now, all eeproms are at bus 0 */
if (!bus) {
retval = em28xx_i2c_eeprom(dev, bus,
&dev->eedata, &dev->eedata_len);
if (retval < 0 && retval != -ENODEV) {
dev_err(&dev->intf->dev,
"%s: em28xx_i2_eeprom failed! retval [%d]\n",
__func__, retval);
}
}
if (i2c_scan)
em28xx_do_i2c_scan(dev, bus);
return 0;
}
/*
* em28xx_i2c_unregister()
* unregister i2c_bus
*/
int em28xx_i2c_unregister(struct em28xx *dev, unsigned int bus)
{
if (bus >= NUM_I2C_BUSES)
return -ENODEV;
i2c_del_adapter(&dev->i2c_adap[bus]);
return 0;
}