| // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) |
| /* Copyright 2017-2019 NXP */ |
| |
| #include "enetc.h" |
| #include <linux/bpf_trace.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ptp_classify.h> |
| #include <net/ip6_checksum.h> |
| #include <net/pkt_sched.h> |
| #include <net/tso.h> |
| |
| static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv) |
| { |
| int num_tx_rings = priv->num_tx_rings; |
| int i; |
| |
| for (i = 0; i < priv->num_rx_rings; i++) |
| if (priv->rx_ring[i]->xdp.prog) |
| return num_tx_rings - num_possible_cpus(); |
| |
| return num_tx_rings; |
| } |
| |
| static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv, |
| struct enetc_bdr *tx_ring) |
| { |
| int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring; |
| |
| return priv->rx_ring[index]; |
| } |
| |
| static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd) |
| { |
| if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect) |
| return NULL; |
| |
| return tx_swbd->skb; |
| } |
| |
| static struct xdp_frame * |
| enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd) |
| { |
| if (tx_swbd->is_xdp_redirect) |
| return tx_swbd->xdp_frame; |
| |
| return NULL; |
| } |
| |
| static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring, |
| struct enetc_tx_swbd *tx_swbd) |
| { |
| /* For XDP_TX, pages come from RX, whereas for the other contexts where |
| * we have is_dma_page_set, those come from skb_frag_dma_map. We need |
| * to match the DMA mapping length, so we need to differentiate those. |
| */ |
| if (tx_swbd->is_dma_page) |
| dma_unmap_page(tx_ring->dev, tx_swbd->dma, |
| tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len, |
| tx_swbd->dir); |
| else |
| dma_unmap_single(tx_ring->dev, tx_swbd->dma, |
| tx_swbd->len, tx_swbd->dir); |
| tx_swbd->dma = 0; |
| } |
| |
| static void enetc_free_tx_frame(struct enetc_bdr *tx_ring, |
| struct enetc_tx_swbd *tx_swbd) |
| { |
| struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd); |
| struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd); |
| |
| if (tx_swbd->dma) |
| enetc_unmap_tx_buff(tx_ring, tx_swbd); |
| |
| if (xdp_frame) { |
| xdp_return_frame(tx_swbd->xdp_frame); |
| tx_swbd->xdp_frame = NULL; |
| } else if (skb) { |
| dev_kfree_skb_any(skb); |
| tx_swbd->skb = NULL; |
| } |
| } |
| |
| /* Let H/W know BD ring has been updated */ |
| static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring) |
| { |
| /* includes wmb() */ |
| enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use); |
| } |
| |
| static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp, |
| u8 *msgtype, u8 *twostep, |
| u16 *correction_offset, u16 *body_offset) |
| { |
| unsigned int ptp_class; |
| struct ptp_header *hdr; |
| unsigned int type; |
| u8 *base; |
| |
| ptp_class = ptp_classify_raw(skb); |
| if (ptp_class == PTP_CLASS_NONE) |
| return -EINVAL; |
| |
| hdr = ptp_parse_header(skb, ptp_class); |
| if (!hdr) |
| return -EINVAL; |
| |
| type = ptp_class & PTP_CLASS_PMASK; |
| if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6) |
| *udp = 1; |
| else |
| *udp = 0; |
| |
| *msgtype = ptp_get_msgtype(hdr, ptp_class); |
| *twostep = hdr->flag_field[0] & 0x2; |
| |
| base = skb_mac_header(skb); |
| *correction_offset = (u8 *)&hdr->correction - base; |
| *body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base; |
| |
| return 0; |
| } |
| |
| static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb) |
| { |
| bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false; |
| struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev); |
| struct enetc_hw *hw = &priv->si->hw; |
| struct enetc_tx_swbd *tx_swbd; |
| int len = skb_headlen(skb); |
| union enetc_tx_bd temp_bd; |
| u8 msgtype, twostep, udp; |
| union enetc_tx_bd *txbd; |
| u16 offset1, offset2; |
| int i, count = 0; |
| skb_frag_t *frag; |
| unsigned int f; |
| dma_addr_t dma; |
| u8 flags = 0; |
| |
| i = tx_ring->next_to_use; |
| txbd = ENETC_TXBD(*tx_ring, i); |
| prefetchw(txbd); |
| |
| dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(tx_ring->dev, dma))) |
| goto dma_err; |
| |
| temp_bd.addr = cpu_to_le64(dma); |
| temp_bd.buf_len = cpu_to_le16(len); |
| temp_bd.lstatus = 0; |
| |
| tx_swbd = &tx_ring->tx_swbd[i]; |
| tx_swbd->dma = dma; |
| tx_swbd->len = len; |
| tx_swbd->is_dma_page = 0; |
| tx_swbd->dir = DMA_TO_DEVICE; |
| count++; |
| |
| do_vlan = skb_vlan_tag_present(skb); |
| if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) { |
| if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1, |
| &offset2) || |
| msgtype != PTP_MSGTYPE_SYNC || twostep) |
| WARN_ONCE(1, "Bad packet for one-step timestamping\n"); |
| else |
| do_onestep_tstamp = true; |
| } else if (skb->cb[0] & ENETC_F_TX_TSTAMP) { |
| do_twostep_tstamp = true; |
| } |
| |
| tx_swbd->do_twostep_tstamp = do_twostep_tstamp; |
| tx_swbd->check_wb = tx_swbd->do_twostep_tstamp; |
| |
| if (do_vlan || do_onestep_tstamp || do_twostep_tstamp) |
| flags |= ENETC_TXBD_FLAGS_EX; |
| |
| if (tx_ring->tsd_enable) |
| flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART; |
| |
| /* first BD needs frm_len and offload flags set */ |
| temp_bd.frm_len = cpu_to_le16(skb->len); |
| temp_bd.flags = flags; |
| |
| if (flags & ENETC_TXBD_FLAGS_TSE) |
| temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns, |
| flags); |
| |
| if (flags & ENETC_TXBD_FLAGS_EX) { |
| u8 e_flags = 0; |
| *txbd = temp_bd; |
| enetc_clear_tx_bd(&temp_bd); |
| |
| /* add extension BD for VLAN and/or timestamping */ |
| flags = 0; |
| tx_swbd++; |
| txbd++; |
| i++; |
| if (unlikely(i == tx_ring->bd_count)) { |
| i = 0; |
| tx_swbd = tx_ring->tx_swbd; |
| txbd = ENETC_TXBD(*tx_ring, 0); |
| } |
| prefetchw(txbd); |
| |
| if (do_vlan) { |
| temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb)); |
| temp_bd.ext.tpid = 0; /* < C-TAG */ |
| e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS; |
| } |
| |
| if (do_onestep_tstamp) { |
| u32 lo, hi, val; |
| u64 sec, nsec; |
| u8 *data; |
| |
| lo = enetc_rd_hot(hw, ENETC_SICTR0); |
| hi = enetc_rd_hot(hw, ENETC_SICTR1); |
| sec = (u64)hi << 32 | lo; |
| nsec = do_div(sec, 1000000000); |
| |
| /* Configure extension BD */ |
| temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff); |
| e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP; |
| |
| /* Update originTimestamp field of Sync packet |
| * - 48 bits seconds field |
| * - 32 bits nanseconds field |
| */ |
| data = skb_mac_header(skb); |
| *(__be16 *)(data + offset2) = |
| htons((sec >> 32) & 0xffff); |
| *(__be32 *)(data + offset2 + 2) = |
| htonl(sec & 0xffffffff); |
| *(__be32 *)(data + offset2 + 6) = htonl(nsec); |
| |
| /* Configure single-step register */ |
| val = ENETC_PM0_SINGLE_STEP_EN; |
| val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1); |
| if (udp) |
| val |= ENETC_PM0_SINGLE_STEP_CH; |
| |
| enetc_port_wr(hw, ENETC_PM0_SINGLE_STEP, val); |
| enetc_port_wr(hw, ENETC_PM1_SINGLE_STEP, val); |
| } else if (do_twostep_tstamp) { |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP; |
| } |
| |
| temp_bd.ext.e_flags = e_flags; |
| count++; |
| } |
| |
| frag = &skb_shinfo(skb)->frags[0]; |
| for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) { |
| len = skb_frag_size(frag); |
| dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(tx_ring->dev, dma)) |
| goto dma_err; |
| |
| *txbd = temp_bd; |
| enetc_clear_tx_bd(&temp_bd); |
| |
| flags = 0; |
| tx_swbd++; |
| txbd++; |
| i++; |
| if (unlikely(i == tx_ring->bd_count)) { |
| i = 0; |
| tx_swbd = tx_ring->tx_swbd; |
| txbd = ENETC_TXBD(*tx_ring, 0); |
| } |
| prefetchw(txbd); |
| |
| temp_bd.addr = cpu_to_le64(dma); |
| temp_bd.buf_len = cpu_to_le16(len); |
| |
| tx_swbd->dma = dma; |
| tx_swbd->len = len; |
| tx_swbd->is_dma_page = 1; |
| tx_swbd->dir = DMA_TO_DEVICE; |
| count++; |
| } |
| |
| /* last BD needs 'F' bit set */ |
| flags |= ENETC_TXBD_FLAGS_F; |
| temp_bd.flags = flags; |
| *txbd = temp_bd; |
| |
| tx_ring->tx_swbd[i].is_eof = true; |
| tx_ring->tx_swbd[i].skb = skb; |
| |
| enetc_bdr_idx_inc(tx_ring, &i); |
| tx_ring->next_to_use = i; |
| |
| skb_tx_timestamp(skb); |
| |
| enetc_update_tx_ring_tail(tx_ring); |
| |
| return count; |
| |
| dma_err: |
| dev_err(tx_ring->dev, "DMA map error"); |
| |
| do { |
| tx_swbd = &tx_ring->tx_swbd[i]; |
| enetc_free_tx_frame(tx_ring, tx_swbd); |
| if (i == 0) |
| i = tx_ring->bd_count; |
| i--; |
| } while (count--); |
| |
| return 0; |
| } |
| |
| static void enetc_map_tx_tso_hdr(struct enetc_bdr *tx_ring, struct sk_buff *skb, |
| struct enetc_tx_swbd *tx_swbd, |
| union enetc_tx_bd *txbd, int *i, int hdr_len, |
| int data_len) |
| { |
| union enetc_tx_bd txbd_tmp; |
| u8 flags = 0, e_flags = 0; |
| dma_addr_t addr; |
| |
| enetc_clear_tx_bd(&txbd_tmp); |
| addr = tx_ring->tso_headers_dma + *i * TSO_HEADER_SIZE; |
| |
| if (skb_vlan_tag_present(skb)) |
| flags |= ENETC_TXBD_FLAGS_EX; |
| |
| txbd_tmp.addr = cpu_to_le64(addr); |
| txbd_tmp.buf_len = cpu_to_le16(hdr_len); |
| |
| /* first BD needs frm_len and offload flags set */ |
| txbd_tmp.frm_len = cpu_to_le16(hdr_len + data_len); |
| txbd_tmp.flags = flags; |
| |
| /* For the TSO header we do not set the dma address since we do not |
| * want it unmapped when we do cleanup. We still set len so that we |
| * count the bytes sent. |
| */ |
| tx_swbd->len = hdr_len; |
| tx_swbd->do_twostep_tstamp = false; |
| tx_swbd->check_wb = false; |
| |
| /* Actually write the header in the BD */ |
| *txbd = txbd_tmp; |
| |
| /* Add extension BD for VLAN */ |
| if (flags & ENETC_TXBD_FLAGS_EX) { |
| /* Get the next BD */ |
| enetc_bdr_idx_inc(tx_ring, i); |
| txbd = ENETC_TXBD(*tx_ring, *i); |
| tx_swbd = &tx_ring->tx_swbd[*i]; |
| prefetchw(txbd); |
| |
| /* Setup the VLAN fields */ |
| enetc_clear_tx_bd(&txbd_tmp); |
| txbd_tmp.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb)); |
| txbd_tmp.ext.tpid = 0; /* < C-TAG */ |
| e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS; |
| |
| /* Write the BD */ |
| txbd_tmp.ext.e_flags = e_flags; |
| *txbd = txbd_tmp; |
| } |
| } |
| |
| static int enetc_map_tx_tso_data(struct enetc_bdr *tx_ring, struct sk_buff *skb, |
| struct enetc_tx_swbd *tx_swbd, |
| union enetc_tx_bd *txbd, char *data, |
| int size, bool last_bd) |
| { |
| union enetc_tx_bd txbd_tmp; |
| dma_addr_t addr; |
| u8 flags = 0; |
| |
| enetc_clear_tx_bd(&txbd_tmp); |
| |
| addr = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(tx_ring->dev, addr))) { |
| netdev_err(tx_ring->ndev, "DMA map error\n"); |
| return -ENOMEM; |
| } |
| |
| if (last_bd) { |
| flags |= ENETC_TXBD_FLAGS_F; |
| tx_swbd->is_eof = 1; |
| } |
| |
| txbd_tmp.addr = cpu_to_le64(addr); |
| txbd_tmp.buf_len = cpu_to_le16(size); |
| txbd_tmp.flags = flags; |
| |
| tx_swbd->dma = addr; |
| tx_swbd->len = size; |
| tx_swbd->dir = DMA_TO_DEVICE; |
| |
| *txbd = txbd_tmp; |
| |
| return 0; |
| } |
| |
| static __wsum enetc_tso_hdr_csum(struct tso_t *tso, struct sk_buff *skb, |
| char *hdr, int hdr_len, int *l4_hdr_len) |
| { |
| char *l4_hdr = hdr + skb_transport_offset(skb); |
| int mac_hdr_len = skb_network_offset(skb); |
| |
| if (tso->tlen != sizeof(struct udphdr)) { |
| struct tcphdr *tcph = (struct tcphdr *)(l4_hdr); |
| |
| tcph->check = 0; |
| } else { |
| struct udphdr *udph = (struct udphdr *)(l4_hdr); |
| |
| udph->check = 0; |
| } |
| |
| /* Compute the IP checksum. This is necessary since tso_build_hdr() |
| * already incremented the IP ID field. |
| */ |
| if (!tso->ipv6) { |
| struct iphdr *iph = (void *)(hdr + mac_hdr_len); |
| |
| iph->check = 0; |
| iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); |
| } |
| |
| /* Compute the checksum over the L4 header. */ |
| *l4_hdr_len = hdr_len - skb_transport_offset(skb); |
| return csum_partial(l4_hdr, *l4_hdr_len, 0); |
| } |
| |
| static void enetc_tso_complete_csum(struct enetc_bdr *tx_ring, struct tso_t *tso, |
| struct sk_buff *skb, char *hdr, int len, |
| __wsum sum) |
| { |
| char *l4_hdr = hdr + skb_transport_offset(skb); |
| __sum16 csum_final; |
| |
| /* Complete the L4 checksum by appending the pseudo-header to the |
| * already computed checksum. |
| */ |
| if (!tso->ipv6) |
| csum_final = csum_tcpudp_magic(ip_hdr(skb)->saddr, |
| ip_hdr(skb)->daddr, |
| len, ip_hdr(skb)->protocol, sum); |
| else |
| csum_final = csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| &ipv6_hdr(skb)->daddr, |
| len, ipv6_hdr(skb)->nexthdr, sum); |
| |
| if (tso->tlen != sizeof(struct udphdr)) { |
| struct tcphdr *tcph = (struct tcphdr *)(l4_hdr); |
| |
| tcph->check = csum_final; |
| } else { |
| struct udphdr *udph = (struct udphdr *)(l4_hdr); |
| |
| udph->check = csum_final; |
| } |
| } |
| |
| static int enetc_map_tx_tso_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb) |
| { |
| int hdr_len, total_len, data_len; |
| struct enetc_tx_swbd *tx_swbd; |
| union enetc_tx_bd *txbd; |
| struct tso_t tso; |
| __wsum csum, csum2; |
| int count = 0, pos; |
| int err, i, bd_data_num; |
| |
| /* Initialize the TSO handler, and prepare the first payload */ |
| hdr_len = tso_start(skb, &tso); |
| total_len = skb->len - hdr_len; |
| i = tx_ring->next_to_use; |
| |
| while (total_len > 0) { |
| char *hdr; |
| |
| /* Get the BD */ |
| txbd = ENETC_TXBD(*tx_ring, i); |
| tx_swbd = &tx_ring->tx_swbd[i]; |
| prefetchw(txbd); |
| |
| /* Determine the length of this packet */ |
| data_len = min_t(int, skb_shinfo(skb)->gso_size, total_len); |
| total_len -= data_len; |
| |
| /* prepare packet headers: MAC + IP + TCP */ |
| hdr = tx_ring->tso_headers + i * TSO_HEADER_SIZE; |
| tso_build_hdr(skb, hdr, &tso, data_len, total_len == 0); |
| |
| /* compute the csum over the L4 header */ |
| csum = enetc_tso_hdr_csum(&tso, skb, hdr, hdr_len, &pos); |
| enetc_map_tx_tso_hdr(tx_ring, skb, tx_swbd, txbd, &i, hdr_len, data_len); |
| bd_data_num = 0; |
| count++; |
| |
| while (data_len > 0) { |
| int size; |
| |
| size = min_t(int, tso.size, data_len); |
| |
| /* Advance the index in the BDR */ |
| enetc_bdr_idx_inc(tx_ring, &i); |
| txbd = ENETC_TXBD(*tx_ring, i); |
| tx_swbd = &tx_ring->tx_swbd[i]; |
| prefetchw(txbd); |
| |
| /* Compute the checksum over this segment of data and |
| * add it to the csum already computed (over the L4 |
| * header and possible other data segments). |
| */ |
| csum2 = csum_partial(tso.data, size, 0); |
| csum = csum_block_add(csum, csum2, pos); |
| pos += size; |
| |
| err = enetc_map_tx_tso_data(tx_ring, skb, tx_swbd, txbd, |
| tso.data, size, |
| size == data_len); |
| if (err) |
| goto err_map_data; |
| |
| data_len -= size; |
| count++; |
| bd_data_num++; |
| tso_build_data(skb, &tso, size); |
| |
| if (unlikely(bd_data_num >= ENETC_MAX_SKB_FRAGS && data_len)) |
| goto err_chained_bd; |
| } |
| |
| enetc_tso_complete_csum(tx_ring, &tso, skb, hdr, pos, csum); |
| |
| if (total_len == 0) |
| tx_swbd->skb = skb; |
| |
| /* Go to the next BD */ |
| enetc_bdr_idx_inc(tx_ring, &i); |
| } |
| |
| tx_ring->next_to_use = i; |
| enetc_update_tx_ring_tail(tx_ring); |
| |
| return count; |
| |
| err_map_data: |
| dev_err(tx_ring->dev, "DMA map error"); |
| |
| err_chained_bd: |
| do { |
| tx_swbd = &tx_ring->tx_swbd[i]; |
| enetc_free_tx_frame(tx_ring, tx_swbd); |
| if (i == 0) |
| i = tx_ring->bd_count; |
| i--; |
| } while (count--); |
| |
| return 0; |
| } |
| |
| static netdev_tx_t enetc_start_xmit(struct sk_buff *skb, |
| struct net_device *ndev) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| struct enetc_bdr *tx_ring; |
| int count, err; |
| |
| /* Queue one-step Sync packet if already locked */ |
| if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) { |
| if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, |
| &priv->flags)) { |
| skb_queue_tail(&priv->tx_skbs, skb); |
| return NETDEV_TX_OK; |
| } |
| } |
| |
| tx_ring = priv->tx_ring[skb->queue_mapping]; |
| |
| if (skb_is_gso(skb)) { |
| if (enetc_bd_unused(tx_ring) < tso_count_descs(skb)) { |
| netif_stop_subqueue(ndev, tx_ring->index); |
| return NETDEV_TX_BUSY; |
| } |
| |
| enetc_lock_mdio(); |
| count = enetc_map_tx_tso_buffs(tx_ring, skb); |
| enetc_unlock_mdio(); |
| } else { |
| if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS)) |
| if (unlikely(skb_linearize(skb))) |
| goto drop_packet_err; |
| |
| count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */ |
| if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) { |
| netif_stop_subqueue(ndev, tx_ring->index); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| err = skb_checksum_help(skb); |
| if (err) |
| goto drop_packet_err; |
| } |
| enetc_lock_mdio(); |
| count = enetc_map_tx_buffs(tx_ring, skb); |
| enetc_unlock_mdio(); |
| } |
| |
| if (unlikely(!count)) |
| goto drop_packet_err; |
| |
| if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED) |
| netif_stop_subqueue(ndev, tx_ring->index); |
| |
| return NETDEV_TX_OK; |
| |
| drop_packet_err: |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| u8 udp, msgtype, twostep; |
| u16 offset1, offset2; |
| |
| /* Mark tx timestamp type on skb->cb[0] if requires */ |
| if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
| (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) { |
| skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK; |
| } else { |
| skb->cb[0] = 0; |
| } |
| |
| /* Fall back to two-step timestamp if not one-step Sync packet */ |
| if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) { |
| if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, |
| &offset1, &offset2) || |
| msgtype != PTP_MSGTYPE_SYNC || twostep != 0) |
| skb->cb[0] = ENETC_F_TX_TSTAMP; |
| } |
| |
| return enetc_start_xmit(skb, ndev); |
| } |
| |
| static irqreturn_t enetc_msix(int irq, void *data) |
| { |
| struct enetc_int_vector *v = data; |
| int i; |
| |
| enetc_lock_mdio(); |
| |
| /* disable interrupts */ |
| enetc_wr_reg_hot(v->rbier, 0); |
| enetc_wr_reg_hot(v->ricr1, v->rx_ictt); |
| |
| for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS) |
| enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0); |
| |
| enetc_unlock_mdio(); |
| |
| napi_schedule(&v->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void enetc_rx_dim_work(struct work_struct *w) |
| { |
| struct dim *dim = container_of(w, struct dim, work); |
| struct dim_cq_moder moder = |
| net_dim_get_rx_moderation(dim->mode, dim->profile_ix); |
| struct enetc_int_vector *v = |
| container_of(dim, struct enetc_int_vector, rx_dim); |
| |
| v->rx_ictt = enetc_usecs_to_cycles(moder.usec); |
| dim->state = DIM_START_MEASURE; |
| } |
| |
| static void enetc_rx_net_dim(struct enetc_int_vector *v) |
| { |
| struct dim_sample dim_sample = {}; |
| |
| v->comp_cnt++; |
| |
| if (!v->rx_napi_work) |
| return; |
| |
| dim_update_sample(v->comp_cnt, |
| v->rx_ring.stats.packets, |
| v->rx_ring.stats.bytes, |
| &dim_sample); |
| net_dim(&v->rx_dim, dim_sample); |
| } |
| |
| static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci) |
| { |
| int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK; |
| |
| return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi; |
| } |
| |
| static bool enetc_page_reusable(struct page *page) |
| { |
| return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1); |
| } |
| |
| static void enetc_reuse_page(struct enetc_bdr *rx_ring, |
| struct enetc_rx_swbd *old) |
| { |
| struct enetc_rx_swbd *new; |
| |
| new = &rx_ring->rx_swbd[rx_ring->next_to_alloc]; |
| |
| /* next buf that may reuse a page */ |
| enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc); |
| |
| /* copy page reference */ |
| *new = *old; |
| } |
| |
| static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd, |
| u64 *tstamp) |
| { |
| u32 lo, hi, tstamp_lo; |
| |
| lo = enetc_rd_hot(hw, ENETC_SICTR0); |
| hi = enetc_rd_hot(hw, ENETC_SICTR1); |
| tstamp_lo = le32_to_cpu(txbd->wb.tstamp); |
| if (lo <= tstamp_lo) |
| hi -= 1; |
| *tstamp = (u64)hi << 32 | tstamp_lo; |
| } |
| |
| static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp) |
| { |
| struct skb_shared_hwtstamps shhwtstamps; |
| |
| if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) { |
| memset(&shhwtstamps, 0, sizeof(shhwtstamps)); |
| shhwtstamps.hwtstamp = ns_to_ktime(tstamp); |
| skb_txtime_consumed(skb); |
| skb_tstamp_tx(skb, &shhwtstamps); |
| } |
| } |
| |
| static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring, |
| struct enetc_tx_swbd *tx_swbd) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev); |
| struct enetc_rx_swbd rx_swbd = { |
| .dma = tx_swbd->dma, |
| .page = tx_swbd->page, |
| .page_offset = tx_swbd->page_offset, |
| .dir = tx_swbd->dir, |
| .len = tx_swbd->len, |
| }; |
| struct enetc_bdr *rx_ring; |
| |
| rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring); |
| |
| if (likely(enetc_swbd_unused(rx_ring))) { |
| enetc_reuse_page(rx_ring, &rx_swbd); |
| |
| /* sync for use by the device */ |
| dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma, |
| rx_swbd.page_offset, |
| ENETC_RXB_DMA_SIZE_XDP, |
| rx_swbd.dir); |
| |
| rx_ring->stats.recycles++; |
| } else { |
| /* RX ring is already full, we need to unmap and free the |
| * page, since there's nothing useful we can do with it. |
| */ |
| rx_ring->stats.recycle_failures++; |
| |
| dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE, |
| rx_swbd.dir); |
| __free_page(rx_swbd.page); |
| } |
| |
| rx_ring->xdp.xdp_tx_in_flight--; |
| } |
| |
| static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget) |
| { |
| struct net_device *ndev = tx_ring->ndev; |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| int tx_frm_cnt = 0, tx_byte_cnt = 0; |
| struct enetc_tx_swbd *tx_swbd; |
| int i, bds_to_clean; |
| bool do_twostep_tstamp; |
| u64 tstamp = 0; |
| |
| i = tx_ring->next_to_clean; |
| tx_swbd = &tx_ring->tx_swbd[i]; |
| |
| bds_to_clean = enetc_bd_ready_count(tx_ring, i); |
| |
| do_twostep_tstamp = false; |
| |
| while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) { |
| struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd); |
| struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd); |
| bool is_eof = tx_swbd->is_eof; |
| |
| if (unlikely(tx_swbd->check_wb)) { |
| union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i); |
| |
| if (txbd->flags & ENETC_TXBD_FLAGS_W && |
| tx_swbd->do_twostep_tstamp) { |
| enetc_get_tx_tstamp(&priv->si->hw, txbd, |
| &tstamp); |
| do_twostep_tstamp = true; |
| } |
| } |
| |
| if (tx_swbd->is_xdp_tx) |
| enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd); |
| else if (likely(tx_swbd->dma)) |
| enetc_unmap_tx_buff(tx_ring, tx_swbd); |
| |
| if (xdp_frame) { |
| xdp_return_frame(xdp_frame); |
| } else if (skb) { |
| if (unlikely(skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) { |
| /* Start work to release lock for next one-step |
| * timestamping packet. And send one skb in |
| * tx_skbs queue if has. |
| */ |
| schedule_work(&priv->tx_onestep_tstamp); |
| } else if (unlikely(do_twostep_tstamp)) { |
| enetc_tstamp_tx(skb, tstamp); |
| do_twostep_tstamp = false; |
| } |
| napi_consume_skb(skb, napi_budget); |
| } |
| |
| tx_byte_cnt += tx_swbd->len; |
| /* Scrub the swbd here so we don't have to do that |
| * when we reuse it during xmit |
| */ |
| memset(tx_swbd, 0, sizeof(*tx_swbd)); |
| |
| bds_to_clean--; |
| tx_swbd++; |
| i++; |
| if (unlikely(i == tx_ring->bd_count)) { |
| i = 0; |
| tx_swbd = tx_ring->tx_swbd; |
| } |
| |
| /* BD iteration loop end */ |
| if (is_eof) { |
| tx_frm_cnt++; |
| /* re-arm interrupt source */ |
| enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) | |
| BIT(16 + tx_ring->index)); |
| } |
| |
| if (unlikely(!bds_to_clean)) |
| bds_to_clean = enetc_bd_ready_count(tx_ring, i); |
| } |
| |
| tx_ring->next_to_clean = i; |
| tx_ring->stats.packets += tx_frm_cnt; |
| tx_ring->stats.bytes += tx_byte_cnt; |
| |
| if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) && |
| __netif_subqueue_stopped(ndev, tx_ring->index) && |
| (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) { |
| netif_wake_subqueue(ndev, tx_ring->index); |
| } |
| |
| return tx_frm_cnt != ENETC_DEFAULT_TX_WORK; |
| } |
| |
| static bool enetc_new_page(struct enetc_bdr *rx_ring, |
| struct enetc_rx_swbd *rx_swbd) |
| { |
| bool xdp = !!(rx_ring->xdp.prog); |
| struct page *page; |
| dma_addr_t addr; |
| |
| page = dev_alloc_page(); |
| if (unlikely(!page)) |
| return false; |
| |
| /* For XDP_TX, we forgo dma_unmap -> dma_map */ |
| rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; |
| |
| addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir); |
| if (unlikely(dma_mapping_error(rx_ring->dev, addr))) { |
| __free_page(page); |
| |
| return false; |
| } |
| |
| rx_swbd->dma = addr; |
| rx_swbd->page = page; |
| rx_swbd->page_offset = rx_ring->buffer_offset; |
| |
| return true; |
| } |
| |
| static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt) |
| { |
| struct enetc_rx_swbd *rx_swbd; |
| union enetc_rx_bd *rxbd; |
| int i, j; |
| |
| i = rx_ring->next_to_use; |
| rx_swbd = &rx_ring->rx_swbd[i]; |
| rxbd = enetc_rxbd(rx_ring, i); |
| |
| for (j = 0; j < buff_cnt; j++) { |
| /* try reuse page */ |
| if (unlikely(!rx_swbd->page)) { |
| if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) { |
| rx_ring->stats.rx_alloc_errs++; |
| break; |
| } |
| } |
| |
| /* update RxBD */ |
| rxbd->w.addr = cpu_to_le64(rx_swbd->dma + |
| rx_swbd->page_offset); |
| /* clear 'R" as well */ |
| rxbd->r.lstatus = 0; |
| |
| enetc_rxbd_next(rx_ring, &rxbd, &i); |
| rx_swbd = &rx_ring->rx_swbd[i]; |
| } |
| |
| if (likely(j)) { |
| rx_ring->next_to_alloc = i; /* keep track from page reuse */ |
| rx_ring->next_to_use = i; |
| |
| /* update ENETC's consumer index */ |
| enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use); |
| } |
| |
| return j; |
| } |
| |
| #ifdef CONFIG_FSL_ENETC_PTP_CLOCK |
| static void enetc_get_rx_tstamp(struct net_device *ndev, |
| union enetc_rx_bd *rxbd, |
| struct sk_buff *skb) |
| { |
| struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| struct enetc_hw *hw = &priv->si->hw; |
| u32 lo, hi, tstamp_lo; |
| u64 tstamp; |
| |
| if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) { |
| lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0); |
| hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1); |
| rxbd = enetc_rxbd_ext(rxbd); |
| tstamp_lo = le32_to_cpu(rxbd->ext.tstamp); |
| if (lo <= tstamp_lo) |
| hi -= 1; |
| |
| tstamp = (u64)hi << 32 | tstamp_lo; |
| memset(shhwtstamps, 0, sizeof(*shhwtstamps)); |
| shhwtstamps->hwtstamp = ns_to_ktime(tstamp); |
| } |
| } |
| #endif |
| |
| static void enetc_get_offloads(struct enetc_bdr *rx_ring, |
| union enetc_rx_bd *rxbd, struct sk_buff *skb) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev); |
| |
| /* TODO: hashing */ |
| if (rx_ring->ndev->features & NETIF_F_RXCSUM) { |
| u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum); |
| |
| skb->csum = csum_unfold((__force __sum16)~htons(inet_csum)); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } |
| |
| if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) { |
| __be16 tpid = 0; |
| |
| switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) { |
| case 0: |
| tpid = htons(ETH_P_8021Q); |
| break; |
| case 1: |
| tpid = htons(ETH_P_8021AD); |
| break; |
| case 2: |
| tpid = htons(enetc_port_rd(&priv->si->hw, |
| ENETC_PCVLANR1)); |
| break; |
| case 3: |
| tpid = htons(enetc_port_rd(&priv->si->hw, |
| ENETC_PCVLANR2)); |
| break; |
| default: |
| break; |
| } |
| |
| __vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt)); |
| } |
| |
| #ifdef CONFIG_FSL_ENETC_PTP_CLOCK |
| if (priv->active_offloads & ENETC_F_RX_TSTAMP) |
| enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb); |
| #endif |
| } |
| |
| /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS, |
| * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL |
| * mapped buffers. |
| */ |
| static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring, |
| int i, u16 size) |
| { |
| struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i]; |
| |
| dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma, |
| rx_swbd->page_offset, |
| size, rx_swbd->dir); |
| return rx_swbd; |
| } |
| |
| /* Reuse the current page without performing half-page buffer flipping */ |
| static void enetc_put_rx_buff(struct enetc_bdr *rx_ring, |
| struct enetc_rx_swbd *rx_swbd) |
| { |
| size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset; |
| |
| enetc_reuse_page(rx_ring, rx_swbd); |
| |
| dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma, |
| rx_swbd->page_offset, |
| buffer_size, rx_swbd->dir); |
| |
| rx_swbd->page = NULL; |
| } |
| |
| /* Reuse the current page by performing half-page buffer flipping */ |
| static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring, |
| struct enetc_rx_swbd *rx_swbd) |
| { |
| if (likely(enetc_page_reusable(rx_swbd->page))) { |
| rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE; |
| page_ref_inc(rx_swbd->page); |
| |
| enetc_put_rx_buff(rx_ring, rx_swbd); |
| } else { |
| dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, |
| rx_swbd->dir); |
| rx_swbd->page = NULL; |
| } |
| } |
| |
| static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring, |
| int i, u16 size) |
| { |
| struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); |
| struct sk_buff *skb; |
| void *ba; |
| |
| ba = page_address(rx_swbd->page) + rx_swbd->page_offset; |
| skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE); |
| if (unlikely(!skb)) { |
| rx_ring->stats.rx_alloc_errs++; |
| return NULL; |
| } |
| |
| skb_reserve(skb, rx_ring->buffer_offset); |
| __skb_put(skb, size); |
| |
| enetc_flip_rx_buff(rx_ring, rx_swbd); |
| |
| return skb; |
| } |
| |
| static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i, |
| u16 size, struct sk_buff *skb) |
| { |
| struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); |
| |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page, |
| rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE); |
| |
| enetc_flip_rx_buff(rx_ring, rx_swbd); |
| } |
| |
| static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring, |
| u32 bd_status, |
| union enetc_rx_bd **rxbd, int *i) |
| { |
| if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK)))) |
| return false; |
| |
| enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]); |
| enetc_rxbd_next(rx_ring, rxbd, i); |
| |
| while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { |
| dma_rmb(); |
| bd_status = le32_to_cpu((*rxbd)->r.lstatus); |
| |
| enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]); |
| enetc_rxbd_next(rx_ring, rxbd, i); |
| } |
| |
| rx_ring->ndev->stats.rx_dropped++; |
| rx_ring->ndev->stats.rx_errors++; |
| |
| return true; |
| } |
| |
| static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring, |
| u32 bd_status, union enetc_rx_bd **rxbd, |
| int *i, int *cleaned_cnt, int buffer_size) |
| { |
| struct sk_buff *skb; |
| u16 size; |
| |
| size = le16_to_cpu((*rxbd)->r.buf_len); |
| skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size); |
| if (!skb) |
| return NULL; |
| |
| enetc_get_offloads(rx_ring, *rxbd, skb); |
| |
| (*cleaned_cnt)++; |
| |
| enetc_rxbd_next(rx_ring, rxbd, i); |
| |
| /* not last BD in frame? */ |
| while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { |
| bd_status = le32_to_cpu((*rxbd)->r.lstatus); |
| size = buffer_size; |
| |
| if (bd_status & ENETC_RXBD_LSTATUS_F) { |
| dma_rmb(); |
| size = le16_to_cpu((*rxbd)->r.buf_len); |
| } |
| |
| enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb); |
| |
| (*cleaned_cnt)++; |
| |
| enetc_rxbd_next(rx_ring, rxbd, i); |
| } |
| |
| skb_record_rx_queue(skb, rx_ring->index); |
| skb->protocol = eth_type_trans(skb, rx_ring->ndev); |
| |
| return skb; |
| } |
| |
| #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */ |
| |
| static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring, |
| struct napi_struct *napi, int work_limit) |
| { |
| int rx_frm_cnt = 0, rx_byte_cnt = 0; |
| int cleaned_cnt, i; |
| |
| cleaned_cnt = enetc_bd_unused(rx_ring); |
| /* next descriptor to process */ |
| i = rx_ring->next_to_clean; |
| |
| while (likely(rx_frm_cnt < work_limit)) { |
| union enetc_rx_bd *rxbd; |
| struct sk_buff *skb; |
| u32 bd_status; |
| |
| if (cleaned_cnt >= ENETC_RXBD_BUNDLE) |
| cleaned_cnt -= enetc_refill_rx_ring(rx_ring, |
| cleaned_cnt); |
| |
| rxbd = enetc_rxbd(rx_ring, i); |
| bd_status = le32_to_cpu(rxbd->r.lstatus); |
| if (!bd_status) |
| break; |
| |
| enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index)); |
| dma_rmb(); /* for reading other rxbd fields */ |
| |
| if (enetc_check_bd_errors_and_consume(rx_ring, bd_status, |
| &rxbd, &i)) |
| break; |
| |
| skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i, |
| &cleaned_cnt, ENETC_RXB_DMA_SIZE); |
| if (!skb) |
| break; |
| |
| rx_byte_cnt += skb->len; |
| rx_frm_cnt++; |
| |
| napi_gro_receive(napi, skb); |
| } |
| |
| rx_ring->next_to_clean = i; |
| |
| rx_ring->stats.packets += rx_frm_cnt; |
| rx_ring->stats.bytes += rx_byte_cnt; |
| |
| return rx_frm_cnt; |
| } |
| |
| static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i, |
| struct enetc_tx_swbd *tx_swbd, |
| int frm_len) |
| { |
| union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i); |
| |
| prefetchw(txbd); |
| |
| enetc_clear_tx_bd(txbd); |
| txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset); |
| txbd->buf_len = cpu_to_le16(tx_swbd->len); |
| txbd->frm_len = cpu_to_le16(frm_len); |
| |
| memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd)); |
| } |
| |
| /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer |
| * descriptors. |
| */ |
| static bool enetc_xdp_tx(struct enetc_bdr *tx_ring, |
| struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd) |
| { |
| struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr; |
| int i, k, frm_len = tmp_tx_swbd->len; |
| |
| if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd))) |
| return false; |
| |
| while (unlikely(!tmp_tx_swbd->is_eof)) { |
| tmp_tx_swbd++; |
| frm_len += tmp_tx_swbd->len; |
| } |
| |
| i = tx_ring->next_to_use; |
| |
| for (k = 0; k < num_tx_swbd; k++) { |
| struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k]; |
| |
| enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len); |
| |
| /* last BD needs 'F' bit set */ |
| if (xdp_tx_swbd->is_eof) { |
| union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i); |
| |
| txbd->flags = ENETC_TXBD_FLAGS_F; |
| } |
| |
| enetc_bdr_idx_inc(tx_ring, &i); |
| } |
| |
| tx_ring->next_to_use = i; |
| |
| return true; |
| } |
| |
| static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring, |
| struct enetc_tx_swbd *xdp_tx_arr, |
| struct xdp_frame *xdp_frame) |
| { |
| struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0]; |
| struct skb_shared_info *shinfo; |
| void *data = xdp_frame->data; |
| int len = xdp_frame->len; |
| skb_frag_t *frag; |
| dma_addr_t dma; |
| unsigned int f; |
| int n = 0; |
| |
| dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(tx_ring->dev, dma))) { |
| netdev_err(tx_ring->ndev, "DMA map error\n"); |
| return -1; |
| } |
| |
| xdp_tx_swbd->dma = dma; |
| xdp_tx_swbd->dir = DMA_TO_DEVICE; |
| xdp_tx_swbd->len = len; |
| xdp_tx_swbd->is_xdp_redirect = true; |
| xdp_tx_swbd->is_eof = false; |
| xdp_tx_swbd->xdp_frame = NULL; |
| |
| n++; |
| xdp_tx_swbd = &xdp_tx_arr[n]; |
| |
| shinfo = xdp_get_shared_info_from_frame(xdp_frame); |
| |
| for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags; |
| f++, frag++) { |
| data = skb_frag_address(frag); |
| len = skb_frag_size(frag); |
| |
| dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(tx_ring->dev, dma))) { |
| /* Undo the DMA mapping for all fragments */ |
| while (--n >= 0) |
| enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]); |
| |
| netdev_err(tx_ring->ndev, "DMA map error\n"); |
| return -1; |
| } |
| |
| xdp_tx_swbd->dma = dma; |
| xdp_tx_swbd->dir = DMA_TO_DEVICE; |
| xdp_tx_swbd->len = len; |
| xdp_tx_swbd->is_xdp_redirect = true; |
| xdp_tx_swbd->is_eof = false; |
| xdp_tx_swbd->xdp_frame = NULL; |
| |
| n++; |
| xdp_tx_swbd = &xdp_tx_arr[n]; |
| } |
| |
| xdp_tx_arr[n - 1].is_eof = true; |
| xdp_tx_arr[n - 1].xdp_frame = xdp_frame; |
| |
| return n; |
| } |
| |
| int enetc_xdp_xmit(struct net_device *ndev, int num_frames, |
| struct xdp_frame **frames, u32 flags) |
| { |
| struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0}; |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| struct enetc_bdr *tx_ring; |
| int xdp_tx_bd_cnt, i, k; |
| int xdp_tx_frm_cnt = 0; |
| |
| enetc_lock_mdio(); |
| |
| tx_ring = priv->xdp_tx_ring[smp_processor_id()]; |
| |
| prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use)); |
| |
| for (k = 0; k < num_frames; k++) { |
| xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring, |
| xdp_redirect_arr, |
| frames[k]); |
| if (unlikely(xdp_tx_bd_cnt < 0)) |
| break; |
| |
| if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr, |
| xdp_tx_bd_cnt))) { |
| for (i = 0; i < xdp_tx_bd_cnt; i++) |
| enetc_unmap_tx_buff(tx_ring, |
| &xdp_redirect_arr[i]); |
| tx_ring->stats.xdp_tx_drops++; |
| break; |
| } |
| |
| xdp_tx_frm_cnt++; |
| } |
| |
| if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt)) |
| enetc_update_tx_ring_tail(tx_ring); |
| |
| tx_ring->stats.xdp_tx += xdp_tx_frm_cnt; |
| |
| enetc_unlock_mdio(); |
| |
| return xdp_tx_frm_cnt; |
| } |
| |
| static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i, |
| struct xdp_buff *xdp_buff, u16 size) |
| { |
| struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); |
| void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset; |
| struct skb_shared_info *shinfo; |
| |
| /* To be used for XDP_TX */ |
| rx_swbd->len = size; |
| |
| xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset, |
| rx_ring->buffer_offset, size, false); |
| |
| shinfo = xdp_get_shared_info_from_buff(xdp_buff); |
| shinfo->nr_frags = 0; |
| } |
| |
| static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i, |
| u16 size, struct xdp_buff *xdp_buff) |
| { |
| struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff); |
| struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); |
| skb_frag_t *frag = &shinfo->frags[shinfo->nr_frags]; |
| |
| /* To be used for XDP_TX */ |
| rx_swbd->len = size; |
| |
| skb_frag_off_set(frag, rx_swbd->page_offset); |
| skb_frag_size_set(frag, size); |
| __skb_frag_set_page(frag, rx_swbd->page); |
| |
| shinfo->nr_frags++; |
| } |
| |
| static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status, |
| union enetc_rx_bd **rxbd, int *i, |
| int *cleaned_cnt, struct xdp_buff *xdp_buff) |
| { |
| u16 size = le16_to_cpu((*rxbd)->r.buf_len); |
| |
| xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq); |
| |
| enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size); |
| (*cleaned_cnt)++; |
| enetc_rxbd_next(rx_ring, rxbd, i); |
| |
| /* not last BD in frame? */ |
| while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { |
| bd_status = le32_to_cpu((*rxbd)->r.lstatus); |
| size = ENETC_RXB_DMA_SIZE_XDP; |
| |
| if (bd_status & ENETC_RXBD_LSTATUS_F) { |
| dma_rmb(); |
| size = le16_to_cpu((*rxbd)->r.buf_len); |
| } |
| |
| enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff); |
| (*cleaned_cnt)++; |
| enetc_rxbd_next(rx_ring, rxbd, i); |
| } |
| } |
| |
| /* Convert RX buffer descriptors to TX buffer descriptors. These will be |
| * recycled back into the RX ring in enetc_clean_tx_ring. |
| */ |
| static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr, |
| struct enetc_bdr *rx_ring, |
| int rx_ring_first, int rx_ring_last) |
| { |
| int n = 0; |
| |
| for (; rx_ring_first != rx_ring_last; |
| n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) { |
| struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first]; |
| struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n]; |
| |
| /* No need to dma_map, we already have DMA_BIDIRECTIONAL */ |
| tx_swbd->dma = rx_swbd->dma; |
| tx_swbd->dir = rx_swbd->dir; |
| tx_swbd->page = rx_swbd->page; |
| tx_swbd->page_offset = rx_swbd->page_offset; |
| tx_swbd->len = rx_swbd->len; |
| tx_swbd->is_dma_page = true; |
| tx_swbd->is_xdp_tx = true; |
| tx_swbd->is_eof = false; |
| } |
| |
| /* We rely on caller providing an rx_ring_last > rx_ring_first */ |
| xdp_tx_arr[n - 1].is_eof = true; |
| |
| return n; |
| } |
| |
| static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first, |
| int rx_ring_last) |
| { |
| while (rx_ring_first != rx_ring_last) { |
| enetc_put_rx_buff(rx_ring, |
| &rx_ring->rx_swbd[rx_ring_first]); |
| enetc_bdr_idx_inc(rx_ring, &rx_ring_first); |
| } |
| rx_ring->stats.xdp_drops++; |
| } |
| |
| static void enetc_xdp_free(struct enetc_bdr *rx_ring, int rx_ring_first, |
| int rx_ring_last) |
| { |
| while (rx_ring_first != rx_ring_last) { |
| struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first]; |
| |
| if (rx_swbd->page) { |
| dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, |
| rx_swbd->dir); |
| __free_page(rx_swbd->page); |
| rx_swbd->page = NULL; |
| } |
| enetc_bdr_idx_inc(rx_ring, &rx_ring_first); |
| } |
| rx_ring->stats.xdp_redirect_failures++; |
| } |
| |
| static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring, |
| struct napi_struct *napi, int work_limit, |
| struct bpf_prog *prog) |
| { |
| int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0; |
| struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0}; |
| struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev); |
| int rx_frm_cnt = 0, rx_byte_cnt = 0; |
| struct enetc_bdr *tx_ring; |
| int cleaned_cnt, i; |
| u32 xdp_act; |
| |
| cleaned_cnt = enetc_bd_unused(rx_ring); |
| /* next descriptor to process */ |
| i = rx_ring->next_to_clean; |
| |
| while (likely(rx_frm_cnt < work_limit)) { |
| union enetc_rx_bd *rxbd, *orig_rxbd; |
| int orig_i, orig_cleaned_cnt; |
| struct xdp_buff xdp_buff; |
| struct sk_buff *skb; |
| int tmp_orig_i, err; |
| u32 bd_status; |
| |
| rxbd = enetc_rxbd(rx_ring, i); |
| bd_status = le32_to_cpu(rxbd->r.lstatus); |
| if (!bd_status) |
| break; |
| |
| enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index)); |
| dma_rmb(); /* for reading other rxbd fields */ |
| |
| if (enetc_check_bd_errors_and_consume(rx_ring, bd_status, |
| &rxbd, &i)) |
| break; |
| |
| orig_rxbd = rxbd; |
| orig_cleaned_cnt = cleaned_cnt; |
| orig_i = i; |
| |
| enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i, |
| &cleaned_cnt, &xdp_buff); |
| |
| xdp_act = bpf_prog_run_xdp(prog, &xdp_buff); |
| |
| switch (xdp_act) { |
| default: |
| bpf_warn_invalid_xdp_action(xdp_act); |
| fallthrough; |
| case XDP_ABORTED: |
| trace_xdp_exception(rx_ring->ndev, prog, xdp_act); |
| fallthrough; |
| case XDP_DROP: |
| enetc_xdp_drop(rx_ring, orig_i, i); |
| break; |
| case XDP_PASS: |
| rxbd = orig_rxbd; |
| cleaned_cnt = orig_cleaned_cnt; |
| i = orig_i; |
| |
| skb = enetc_build_skb(rx_ring, bd_status, &rxbd, |
| &i, &cleaned_cnt, |
| ENETC_RXB_DMA_SIZE_XDP); |
| if (unlikely(!skb)) |
| goto out; |
| |
| napi_gro_receive(napi, skb); |
| break; |
| case XDP_TX: |
| tx_ring = priv->xdp_tx_ring[rx_ring->index]; |
| xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr, |
| rx_ring, |
| orig_i, i); |
| |
| if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) { |
| enetc_xdp_drop(rx_ring, orig_i, i); |
| tx_ring->stats.xdp_tx_drops++; |
| } else { |
| tx_ring->stats.xdp_tx += xdp_tx_bd_cnt; |
| rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt; |
| xdp_tx_frm_cnt++; |
| /* The XDP_TX enqueue was successful, so we |
| * need to scrub the RX software BDs because |
| * the ownership of the buffers no longer |
| * belongs to the RX ring, and we must prevent |
| * enetc_refill_rx_ring() from reusing |
| * rx_swbd->page. |
| */ |
| while (orig_i != i) { |
| rx_ring->rx_swbd[orig_i].page = NULL; |
| enetc_bdr_idx_inc(rx_ring, &orig_i); |
| } |
| } |
| break; |
| case XDP_REDIRECT: |
| /* xdp_return_frame does not support S/G in the sense |
| * that it leaks the fragments (__xdp_return should not |
| * call page_frag_free only for the initial buffer). |
| * Until XDP_REDIRECT gains support for S/G let's keep |
| * the code structure in place, but dead. We drop the |
| * S/G frames ourselves to avoid memory leaks which |
| * would otherwise leave the kernel OOM. |
| */ |
| if (unlikely(cleaned_cnt - orig_cleaned_cnt != 1)) { |
| enetc_xdp_drop(rx_ring, orig_i, i); |
| rx_ring->stats.xdp_redirect_sg++; |
| break; |
| } |
| |
| tmp_orig_i = orig_i; |
| |
| while (orig_i != i) { |
| enetc_flip_rx_buff(rx_ring, |
| &rx_ring->rx_swbd[orig_i]); |
| enetc_bdr_idx_inc(rx_ring, &orig_i); |
| } |
| |
| err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog); |
| if (unlikely(err)) { |
| enetc_xdp_free(rx_ring, tmp_orig_i, i); |
| } else { |
| xdp_redirect_frm_cnt++; |
| rx_ring->stats.xdp_redirect++; |
| } |
| } |
| |
| rx_frm_cnt++; |
| } |
| |
| out: |
| rx_ring->next_to_clean = i; |
| |
| rx_ring->stats.packets += rx_frm_cnt; |
| rx_ring->stats.bytes += rx_byte_cnt; |
| |
| if (xdp_redirect_frm_cnt) |
| xdp_do_flush_map(); |
| |
| if (xdp_tx_frm_cnt) |
| enetc_update_tx_ring_tail(tx_ring); |
| |
| if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight) |
| enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) - |
| rx_ring->xdp.xdp_tx_in_flight); |
| |
| return rx_frm_cnt; |
| } |
| |
| static int enetc_poll(struct napi_struct *napi, int budget) |
| { |
| struct enetc_int_vector |
| *v = container_of(napi, struct enetc_int_vector, napi); |
| struct enetc_bdr *rx_ring = &v->rx_ring; |
| struct bpf_prog *prog; |
| bool complete = true; |
| int work_done; |
| int i; |
| |
| enetc_lock_mdio(); |
| |
| for (i = 0; i < v->count_tx_rings; i++) |
| if (!enetc_clean_tx_ring(&v->tx_ring[i], budget)) |
| complete = false; |
| |
| prog = rx_ring->xdp.prog; |
| if (prog) |
| work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog); |
| else |
| work_done = enetc_clean_rx_ring(rx_ring, napi, budget); |
| if (work_done == budget) |
| complete = false; |
| if (work_done) |
| v->rx_napi_work = true; |
| |
| if (!complete) { |
| enetc_unlock_mdio(); |
| return budget; |
| } |
| |
| napi_complete_done(napi, work_done); |
| |
| if (likely(v->rx_dim_en)) |
| enetc_rx_net_dim(v); |
| |
| v->rx_napi_work = false; |
| |
| /* enable interrupts */ |
| enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE); |
| |
| for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS) |
| enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), |
| ENETC_TBIER_TXTIE); |
| |
| enetc_unlock_mdio(); |
| |
| return work_done; |
| } |
| |
| /* Probing and Init */ |
| #define ENETC_MAX_RFS_SIZE 64 |
| void enetc_get_si_caps(struct enetc_si *si) |
| { |
| struct enetc_hw *hw = &si->hw; |
| u32 val; |
| |
| /* find out how many of various resources we have to work with */ |
| val = enetc_rd(hw, ENETC_SICAPR0); |
| si->num_rx_rings = (val >> 16) & 0xff; |
| si->num_tx_rings = val & 0xff; |
| |
| val = enetc_rd(hw, ENETC_SIRFSCAPR); |
| si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val); |
| si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE); |
| |
| si->num_rss = 0; |
| val = enetc_rd(hw, ENETC_SIPCAPR0); |
| if (val & ENETC_SIPCAPR0_RSS) { |
| u32 rss; |
| |
| rss = enetc_rd(hw, ENETC_SIRSSCAPR); |
| si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss); |
| } |
| |
| if (val & ENETC_SIPCAPR0_QBV) |
| si->hw_features |= ENETC_SI_F_QBV; |
| |
| if (val & ENETC_SIPCAPR0_PSFP) |
| si->hw_features |= ENETC_SI_F_PSFP; |
| } |
| |
| static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size) |
| { |
| r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size, |
| &r->bd_dma_base, GFP_KERNEL); |
| if (!r->bd_base) |
| return -ENOMEM; |
| |
| /* h/w requires 128B alignment */ |
| if (!IS_ALIGNED(r->bd_dma_base, 128)) { |
| dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base, |
| r->bd_dma_base); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int enetc_alloc_txbdr(struct enetc_bdr *txr) |
| { |
| int err; |
| |
| txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd)); |
| if (!txr->tx_swbd) |
| return -ENOMEM; |
| |
| err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd)); |
| if (err) |
| goto err_alloc_bdr; |
| |
| txr->tso_headers = dma_alloc_coherent(txr->dev, |
| txr->bd_count * TSO_HEADER_SIZE, |
| &txr->tso_headers_dma, |
| GFP_KERNEL); |
| if (!txr->tso_headers) { |
| err = -ENOMEM; |
| goto err_alloc_tso; |
| } |
| |
| txr->next_to_clean = 0; |
| txr->next_to_use = 0; |
| |
| return 0; |
| |
| err_alloc_tso: |
| dma_free_coherent(txr->dev, txr->bd_count * sizeof(union enetc_tx_bd), |
| txr->bd_base, txr->bd_dma_base); |
| txr->bd_base = NULL; |
| err_alloc_bdr: |
| vfree(txr->tx_swbd); |
| txr->tx_swbd = NULL; |
| |
| return err; |
| } |
| |
| static void enetc_free_txbdr(struct enetc_bdr *txr) |
| { |
| int size, i; |
| |
| for (i = 0; i < txr->bd_count; i++) |
| enetc_free_tx_frame(txr, &txr->tx_swbd[i]); |
| |
| size = txr->bd_count * sizeof(union enetc_tx_bd); |
| |
| dma_free_coherent(txr->dev, txr->bd_count * TSO_HEADER_SIZE, |
| txr->tso_headers, txr->tso_headers_dma); |
| txr->tso_headers = NULL; |
| |
| dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base); |
| txr->bd_base = NULL; |
| |
| vfree(txr->tx_swbd); |
| txr->tx_swbd = NULL; |
| } |
| |
| static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv) |
| { |
| int i, err; |
| |
| for (i = 0; i < priv->num_tx_rings; i++) { |
| err = enetc_alloc_txbdr(priv->tx_ring[i]); |
| |
| if (err) |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| while (i-- > 0) |
| enetc_free_txbdr(priv->tx_ring[i]); |
| |
| return err; |
| } |
| |
| static void enetc_free_tx_resources(struct enetc_ndev_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_tx_rings; i++) |
| enetc_free_txbdr(priv->tx_ring[i]); |
| } |
| |
| static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended) |
| { |
| size_t size = sizeof(union enetc_rx_bd); |
| int err; |
| |
| rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd)); |
| if (!rxr->rx_swbd) |
| return -ENOMEM; |
| |
| if (extended) |
| size *= 2; |
| |
| err = enetc_dma_alloc_bdr(rxr, size); |
| if (err) { |
| vfree(rxr->rx_swbd); |
| return err; |
| } |
| |
| rxr->next_to_clean = 0; |
| rxr->next_to_use = 0; |
| rxr->next_to_alloc = 0; |
| rxr->ext_en = extended; |
| |
| return 0; |
| } |
| |
| static void enetc_free_rxbdr(struct enetc_bdr *rxr) |
| { |
| int size; |
| |
| size = rxr->bd_count * sizeof(union enetc_rx_bd); |
| |
| dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base); |
| rxr->bd_base = NULL; |
| |
| vfree(rxr->rx_swbd); |
| rxr->rx_swbd = NULL; |
| } |
| |
| static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv) |
| { |
| bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP); |
| int i, err; |
| |
| for (i = 0; i < priv->num_rx_rings; i++) { |
| err = enetc_alloc_rxbdr(priv->rx_ring[i], extended); |
| |
| if (err) |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| while (i-- > 0) |
| enetc_free_rxbdr(priv->rx_ring[i]); |
| |
| return err; |
| } |
| |
| static void enetc_free_rx_resources(struct enetc_ndev_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_rx_rings; i++) |
| enetc_free_rxbdr(priv->rx_ring[i]); |
| } |
| |
| static void enetc_free_tx_ring(struct enetc_bdr *tx_ring) |
| { |
| int i; |
| |
| if (!tx_ring->tx_swbd) |
| return; |
| |
| for (i = 0; i < tx_ring->bd_count; i++) { |
| struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i]; |
| |
| enetc_free_tx_frame(tx_ring, tx_swbd); |
| } |
| |
| tx_ring->next_to_clean = 0; |
| tx_ring->next_to_use = 0; |
| } |
| |
| static void enetc_free_rx_ring(struct enetc_bdr *rx_ring) |
| { |
| int i; |
| |
| if (!rx_ring->rx_swbd) |
| return; |
| |
| for (i = 0; i < rx_ring->bd_count; i++) { |
| struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i]; |
| |
| if (!rx_swbd->page) |
| continue; |
| |
| dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, |
| rx_swbd->dir); |
| __free_page(rx_swbd->page); |
| rx_swbd->page = NULL; |
| } |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| rx_ring->next_to_alloc = 0; |
| } |
| |
| static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_rx_rings; i++) |
| enetc_free_rx_ring(priv->rx_ring[i]); |
| |
| for (i = 0; i < priv->num_tx_rings; i++) |
| enetc_free_tx_ring(priv->tx_ring[i]); |
| } |
| |
| static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups) |
| { |
| int *rss_table; |
| int i; |
| |
| rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL); |
| if (!rss_table) |
| return -ENOMEM; |
| |
| /* Set up RSS table defaults */ |
| for (i = 0; i < si->num_rss; i++) |
| rss_table[i] = i % num_groups; |
| |
| enetc_set_rss_table(si, rss_table, si->num_rss); |
| |
| kfree(rss_table); |
| |
| return 0; |
| } |
| |
| int enetc_configure_si(struct enetc_ndev_priv *priv) |
| { |
| struct enetc_si *si = priv->si; |
| struct enetc_hw *hw = &si->hw; |
| int err; |
| |
| /* set SI cache attributes */ |
| enetc_wr(hw, ENETC_SICAR0, |
| ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT); |
| enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI); |
| /* enable SI */ |
| enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN); |
| |
| if (si->num_rss) { |
| err = enetc_setup_default_rss_table(si, priv->num_rx_rings); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| void enetc_init_si_rings_params(struct enetc_ndev_priv *priv) |
| { |
| struct enetc_si *si = priv->si; |
| int cpus = num_online_cpus(); |
| |
| priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE; |
| priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE; |
| |
| /* Enable all available TX rings in order to configure as many |
| * priorities as possible, when needed. |
| * TODO: Make # of TX rings run-time configurable |
| */ |
| priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings); |
| priv->num_tx_rings = si->num_tx_rings; |
| priv->bdr_int_num = cpus; |
| priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL; |
| priv->tx_ictt = ENETC_TXIC_TIMETHR; |
| } |
| |
| int enetc_alloc_si_resources(struct enetc_ndev_priv *priv) |
| { |
| struct enetc_si *si = priv->si; |
| |
| priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules), |
| GFP_KERNEL); |
| if (!priv->cls_rules) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| void enetc_free_si_resources(struct enetc_ndev_priv *priv) |
| { |
| kfree(priv->cls_rules); |
| } |
| |
| static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring) |
| { |
| int idx = tx_ring->index; |
| u32 tbmr; |
| |
| enetc_txbdr_wr(hw, idx, ENETC_TBBAR0, |
| lower_32_bits(tx_ring->bd_dma_base)); |
| |
| enetc_txbdr_wr(hw, idx, ENETC_TBBAR1, |
| upper_32_bits(tx_ring->bd_dma_base)); |
| |
| WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */ |
| enetc_txbdr_wr(hw, idx, ENETC_TBLENR, |
| ENETC_RTBLENR_LEN(tx_ring->bd_count)); |
| |
| /* clearing PI/CI registers for Tx not supported, adjust sw indexes */ |
| tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR); |
| tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR); |
| |
| /* enable Tx ints by setting pkt thr to 1 */ |
| enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1); |
| |
| tbmr = ENETC_TBMR_EN; |
| if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) |
| tbmr |= ENETC_TBMR_VIH; |
| |
| /* enable ring */ |
| enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr); |
| |
| tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR); |
| tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR); |
| tx_ring->idr = hw->reg + ENETC_SITXIDR; |
| } |
| |
| static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring) |
| { |
| int idx = rx_ring->index; |
| u32 rbmr; |
| |
| enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0, |
| lower_32_bits(rx_ring->bd_dma_base)); |
| |
| enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1, |
| upper_32_bits(rx_ring->bd_dma_base)); |
| |
| WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */ |
| enetc_rxbdr_wr(hw, idx, ENETC_RBLENR, |
| ENETC_RTBLENR_LEN(rx_ring->bd_count)); |
| |
| if (rx_ring->xdp.prog) |
| enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP); |
| else |
| enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE); |
| |
| enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0); |
| |
| /* enable Rx ints by setting pkt thr to 1 */ |
| enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1); |
| |
| rbmr = ENETC_RBMR_EN; |
| |
| if (rx_ring->ext_en) |
| rbmr |= ENETC_RBMR_BDS; |
| |
| if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) |
| rbmr |= ENETC_RBMR_VTE; |
| |
| rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR); |
| rx_ring->idr = hw->reg + ENETC_SIRXIDR; |
| |
| enetc_lock_mdio(); |
| enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring)); |
| enetc_unlock_mdio(); |
| |
| /* enable ring */ |
| enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr); |
| } |
| |
| static void enetc_setup_bdrs(struct enetc_ndev_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_tx_rings; i++) |
| enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]); |
| |
| for (i = 0; i < priv->num_rx_rings; i++) |
| enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]); |
| } |
| |
| static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring) |
| { |
| int idx = rx_ring->index; |
| |
| /* disable EN bit on ring */ |
| enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0); |
| } |
| |
| static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring) |
| { |
| int delay = 8, timeout = 100; |
| int idx = tx_ring->index; |
| |
| /* disable EN bit on ring */ |
| enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0); |
| |
| /* wait for busy to clear */ |
| while (delay < timeout && |
| enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) { |
| msleep(delay); |
| delay *= 2; |
| } |
| |
| if (delay >= timeout) |
| netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n", |
| idx); |
| } |
| |
| static void enetc_clear_bdrs(struct enetc_ndev_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_tx_rings; i++) |
| enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]); |
| |
| for (i = 0; i < priv->num_rx_rings; i++) |
| enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]); |
| |
| udelay(1); |
| } |
| |
| static int enetc_setup_irqs(struct enetc_ndev_priv *priv) |
| { |
| struct pci_dev *pdev = priv->si->pdev; |
| int i, j, err; |
| |
| for (i = 0; i < priv->bdr_int_num; i++) { |
| int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); |
| struct enetc_int_vector *v = priv->int_vector[i]; |
| int entry = ENETC_BDR_INT_BASE_IDX + i; |
| struct enetc_hw *hw = &priv->si->hw; |
| |
| snprintf(v->name, sizeof(v->name), "%s-rxtx%d", |
| priv->ndev->name, i); |
| err = request_irq(irq, enetc_msix, 0, v->name, v); |
| if (err) { |
| dev_err(priv->dev, "request_irq() failed!\n"); |
| goto irq_err; |
| } |
| disable_irq(irq); |
| |
| v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER); |
| v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER); |
| v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1); |
| |
| enetc_wr(hw, ENETC_SIMSIRRV(i), entry); |
| |
| for (j = 0; j < v->count_tx_rings; j++) { |
| int idx = v->tx_ring[j].index; |
| |
| enetc_wr(hw, ENETC_SIMSITRV(idx), entry); |
| } |
| irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus())); |
| } |
| |
| return 0; |
| |
| irq_err: |
| while (i--) { |
| int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); |
| |
| irq_set_affinity_hint(irq, NULL); |
| free_irq(irq, priv->int_vector[i]); |
| } |
| |
| return err; |
| } |
| |
| static void enetc_free_irqs(struct enetc_ndev_priv *priv) |
| { |
| struct pci_dev *pdev = priv->si->pdev; |
| int i; |
| |
| for (i = 0; i < priv->bdr_int_num; i++) { |
| int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); |
| |
| irq_set_affinity_hint(irq, NULL); |
| free_irq(irq, priv->int_vector[i]); |
| } |
| } |
| |
| static void enetc_setup_interrupts(struct enetc_ndev_priv *priv) |
| { |
| struct enetc_hw *hw = &priv->si->hw; |
| u32 icpt, ictt; |
| int i; |
| |
| /* enable Tx & Rx event indication */ |
| if (priv->ic_mode & |
| (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) { |
| icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR); |
| /* init to non-0 minimum, will be adjusted later */ |
| ictt = 0x1; |
| } else { |
| icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */ |
| ictt = 0; |
| } |
| |
| for (i = 0; i < priv->num_rx_rings; i++) { |
| enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt); |
| enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt); |
| enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE); |
| } |
| |
| if (priv->ic_mode & ENETC_IC_TX_MANUAL) |
| icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR); |
| else |
| icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */ |
| |
| for (i = 0; i < priv->num_tx_rings; i++) { |
| enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt); |
| enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt); |
| enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE); |
| } |
| } |
| |
| static void enetc_clear_interrupts(struct enetc_ndev_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_tx_rings; i++) |
| enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0); |
| |
| for (i = 0; i < priv->num_rx_rings; i++) |
| enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0); |
| } |
| |
| static int enetc_phylink_connect(struct net_device *ndev) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| struct ethtool_eee edata; |
| int err; |
| |
| if (!priv->phylink) |
| return 0; /* phy-less mode */ |
| |
| err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0); |
| if (err) { |
| dev_err(&ndev->dev, "could not attach to PHY\n"); |
| return err; |
| } |
| |
| /* disable EEE autoneg, until ENETC driver supports it */ |
| memset(&edata, 0, sizeof(struct ethtool_eee)); |
| phylink_ethtool_set_eee(priv->phylink, &edata); |
| |
| return 0; |
| } |
| |
| static void enetc_tx_onestep_tstamp(struct work_struct *work) |
| { |
| struct enetc_ndev_priv *priv; |
| struct sk_buff *skb; |
| |
| priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp); |
| |
| netif_tx_lock(priv->ndev); |
| |
| clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags); |
| skb = skb_dequeue(&priv->tx_skbs); |
| if (skb) |
| enetc_start_xmit(skb, priv->ndev); |
| |
| netif_tx_unlock(priv->ndev); |
| } |
| |
| static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv) |
| { |
| INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp); |
| skb_queue_head_init(&priv->tx_skbs); |
| } |
| |
| void enetc_start(struct net_device *ndev) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| int i; |
| |
| enetc_setup_interrupts(priv); |
| |
| for (i = 0; i < priv->bdr_int_num; i++) { |
| int irq = pci_irq_vector(priv->si->pdev, |
| ENETC_BDR_INT_BASE_IDX + i); |
| |
| napi_enable(&priv->int_vector[i]->napi); |
| enable_irq(irq); |
| } |
| |
| if (priv->phylink) |
| phylink_start(priv->phylink); |
| else |
| netif_carrier_on(ndev); |
| |
| netif_tx_start_all_queues(ndev); |
| } |
| |
| int enetc_open(struct net_device *ndev) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| int num_stack_tx_queues; |
| int err; |
| |
| err = enetc_setup_irqs(priv); |
| if (err) |
| return err; |
| |
| err = enetc_phylink_connect(ndev); |
| if (err) |
| goto err_phy_connect; |
| |
| err = enetc_alloc_tx_resources(priv); |
| if (err) |
| goto err_alloc_tx; |
| |
| err = enetc_alloc_rx_resources(priv); |
| if (err) |
| goto err_alloc_rx; |
| |
| num_stack_tx_queues = enetc_num_stack_tx_queues(priv); |
| |
| err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues); |
| if (err) |
| goto err_set_queues; |
| |
| err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings); |
| if (err) |
| goto err_set_queues; |
| |
| enetc_tx_onestep_tstamp_init(priv); |
| enetc_setup_bdrs(priv); |
| enetc_start(ndev); |
| |
| return 0; |
| |
| err_set_queues: |
| enetc_free_rx_resources(priv); |
| err_alloc_rx: |
| enetc_free_tx_resources(priv); |
| err_alloc_tx: |
| if (priv->phylink) |
| phylink_disconnect_phy(priv->phylink); |
| err_phy_connect: |
| enetc_free_irqs(priv); |
| |
| return err; |
| } |
| |
| void enetc_stop(struct net_device *ndev) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| int i; |
| |
| netif_tx_stop_all_queues(ndev); |
| |
| for (i = 0; i < priv->bdr_int_num; i++) { |
| int irq = pci_irq_vector(priv->si->pdev, |
| ENETC_BDR_INT_BASE_IDX + i); |
| |
| disable_irq(irq); |
| napi_synchronize(&priv->int_vector[i]->napi); |
| napi_disable(&priv->int_vector[i]->napi); |
| } |
| |
| if (priv->phylink) |
| phylink_stop(priv->phylink); |
| else |
| netif_carrier_off(ndev); |
| |
| enetc_clear_interrupts(priv); |
| } |
| |
| int enetc_close(struct net_device *ndev) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| |
| enetc_stop(ndev); |
| enetc_clear_bdrs(priv); |
| |
| if (priv->phylink) |
| phylink_disconnect_phy(priv->phylink); |
| enetc_free_rxtx_rings(priv); |
| enetc_free_rx_resources(priv); |
| enetc_free_tx_resources(priv); |
| enetc_free_irqs(priv); |
| |
| return 0; |
| } |
| |
| static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| struct tc_mqprio_qopt *mqprio = type_data; |
| struct enetc_bdr *tx_ring; |
| int num_stack_tx_queues; |
| u8 num_tc; |
| int i; |
| |
| num_stack_tx_queues = enetc_num_stack_tx_queues(priv); |
| mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; |
| num_tc = mqprio->num_tc; |
| |
| if (!num_tc) { |
| netdev_reset_tc(ndev); |
| netif_set_real_num_tx_queues(ndev, num_stack_tx_queues); |
| |
| /* Reset all ring priorities to 0 */ |
| for (i = 0; i < priv->num_tx_rings; i++) { |
| tx_ring = priv->tx_ring[i]; |
| enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0); |
| } |
| |
| return 0; |
| } |
| |
| /* Check if we have enough BD rings available to accommodate all TCs */ |
| if (num_tc > num_stack_tx_queues) { |
| netdev_err(ndev, "Max %d traffic classes supported\n", |
| priv->num_tx_rings); |
| return -EINVAL; |
| } |
| |
| /* For the moment, we use only one BD ring per TC. |
| * |
| * Configure num_tc BD rings with increasing priorities. |
| */ |
| for (i = 0; i < num_tc; i++) { |
| tx_ring = priv->tx_ring[i]; |
| enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i); |
| } |
| |
| /* Reset the number of netdev queues based on the TC count */ |
| netif_set_real_num_tx_queues(ndev, num_tc); |
| |
| netdev_set_num_tc(ndev, num_tc); |
| |
| /* Each TC is associated with one netdev queue */ |
| for (i = 0; i < num_tc; i++) |
| netdev_set_tc_queue(ndev, i, 1, i); |
| |
| return 0; |
| } |
| |
| int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type, |
| void *type_data) |
| { |
| switch (type) { |
| case TC_SETUP_QDISC_MQPRIO: |
| return enetc_setup_tc_mqprio(ndev, type_data); |
| case TC_SETUP_QDISC_TAPRIO: |
| return enetc_setup_tc_taprio(ndev, type_data); |
| case TC_SETUP_QDISC_CBS: |
| return enetc_setup_tc_cbs(ndev, type_data); |
| case TC_SETUP_QDISC_ETF: |
| return enetc_setup_tc_txtime(ndev, type_data); |
| case TC_SETUP_BLOCK: |
| return enetc_setup_tc_psfp(ndev, type_data); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int enetc_setup_xdp_prog(struct net_device *dev, struct bpf_prog *prog, |
| struct netlink_ext_ack *extack) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(dev); |
| struct bpf_prog *old_prog; |
| bool is_up; |
| int i; |
| |
| /* The buffer layout is changing, so we need to drain the old |
| * RX buffers and seed new ones. |
| */ |
| is_up = netif_running(dev); |
| if (is_up) |
| dev_close(dev); |
| |
| old_prog = xchg(&priv->xdp_prog, prog); |
| if (old_prog) |
| bpf_prog_put(old_prog); |
| |
| for (i = 0; i < priv->num_rx_rings; i++) { |
| struct enetc_bdr *rx_ring = priv->rx_ring[i]; |
| |
| rx_ring->xdp.prog = prog; |
| |
| if (prog) |
| rx_ring->buffer_offset = XDP_PACKET_HEADROOM; |
| else |
| rx_ring->buffer_offset = ENETC_RXB_PAD; |
| } |
| |
| if (is_up) |
| return dev_open(dev, extack); |
| |
| return 0; |
| } |
| |
| int enetc_setup_bpf(struct net_device *dev, struct netdev_bpf *xdp) |
| { |
| switch (xdp->command) { |
| case XDP_SETUP_PROG: |
| return enetc_setup_xdp_prog(dev, xdp->prog, xdp->extack); |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| struct net_device_stats *enetc_get_stats(struct net_device *ndev) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| struct net_device_stats *stats = &ndev->stats; |
| unsigned long packets = 0, bytes = 0; |
| int i; |
| |
| for (i = 0; i < priv->num_rx_rings; i++) { |
| packets += priv->rx_ring[i]->stats.packets; |
| bytes += priv->rx_ring[i]->stats.bytes; |
| } |
| |
| stats->rx_packets = packets; |
| stats->rx_bytes = bytes; |
| bytes = 0; |
| packets = 0; |
| |
| for (i = 0; i < priv->num_tx_rings; i++) { |
| packets += priv->tx_ring[i]->stats.packets; |
| bytes += priv->tx_ring[i]->stats.bytes; |
| } |
| |
| stats->tx_packets = packets; |
| stats->tx_bytes = bytes; |
| |
| return stats; |
| } |
| |
| static int enetc_set_rss(struct net_device *ndev, int en) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| struct enetc_hw *hw = &priv->si->hw; |
| u32 reg; |
| |
| enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings); |
| |
| reg = enetc_rd(hw, ENETC_SIMR); |
| reg &= ~ENETC_SIMR_RSSE; |
| reg |= (en) ? ENETC_SIMR_RSSE : 0; |
| enetc_wr(hw, ENETC_SIMR, reg); |
| |
| return 0; |
| } |
| |
| static int enetc_set_psfp(struct net_device *ndev, int en) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| int err; |
| |
| if (en) { |
| err = enetc_psfp_enable(priv); |
| if (err) |
| return err; |
| |
| priv->active_offloads |= ENETC_F_QCI; |
| return 0; |
| } |
| |
| err = enetc_psfp_disable(priv); |
| if (err) |
| return err; |
| |
| priv->active_offloads &= ~ENETC_F_QCI; |
| |
| return 0; |
| } |
| |
| static void enetc_enable_rxvlan(struct net_device *ndev, bool en) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| int i; |
| |
| for (i = 0; i < priv->num_rx_rings; i++) |
| enetc_bdr_enable_rxvlan(&priv->si->hw, i, en); |
| } |
| |
| static void enetc_enable_txvlan(struct net_device *ndev, bool en) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| int i; |
| |
| for (i = 0; i < priv->num_tx_rings; i++) |
| enetc_bdr_enable_txvlan(&priv->si->hw, i, en); |
| } |
| |
| int enetc_set_features(struct net_device *ndev, |
| netdev_features_t features) |
| { |
| netdev_features_t changed = ndev->features ^ features; |
| int err = 0; |
| |
| if (changed & NETIF_F_RXHASH) |
| enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH)); |
| |
| if (changed & NETIF_F_HW_VLAN_CTAG_RX) |
| enetc_enable_rxvlan(ndev, |
| !!(features & NETIF_F_HW_VLAN_CTAG_RX)); |
| |
| if (changed & NETIF_F_HW_VLAN_CTAG_TX) |
| enetc_enable_txvlan(ndev, |
| !!(features & NETIF_F_HW_VLAN_CTAG_TX)); |
| |
| if (changed & NETIF_F_HW_TC) |
| err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC)); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_FSL_ENETC_PTP_CLOCK |
| static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| struct hwtstamp_config config; |
| int ao; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| switch (config.tx_type) { |
| case HWTSTAMP_TX_OFF: |
| priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK; |
| break; |
| case HWTSTAMP_TX_ON: |
| priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK; |
| priv->active_offloads |= ENETC_F_TX_TSTAMP; |
| break; |
| case HWTSTAMP_TX_ONESTEP_SYNC: |
| priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK; |
| priv->active_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| ao = priv->active_offloads; |
| switch (config.rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| priv->active_offloads &= ~ENETC_F_RX_TSTAMP; |
| break; |
| default: |
| priv->active_offloads |= ENETC_F_RX_TSTAMP; |
| config.rx_filter = HWTSTAMP_FILTER_ALL; |
| } |
| |
| if (netif_running(ndev) && ao != priv->active_offloads) { |
| enetc_close(ndev); |
| enetc_open(ndev); |
| } |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| struct hwtstamp_config config; |
| |
| config.flags = 0; |
| |
| if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) |
| config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC; |
| else if (priv->active_offloads & ENETC_F_TX_TSTAMP) |
| config.tx_type = HWTSTAMP_TX_ON; |
| else |
| config.tx_type = HWTSTAMP_TX_OFF; |
| |
| config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ? |
| HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE; |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| #endif |
| |
| int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) |
| { |
| struct enetc_ndev_priv *priv = netdev_priv(ndev); |
| #ifdef CONFIG_FSL_ENETC_PTP_CLOCK |
| if (cmd == SIOCSHWTSTAMP) |
| return enetc_hwtstamp_set(ndev, rq); |
| if (cmd == SIOCGHWTSTAMP) |
| return enetc_hwtstamp_get(ndev, rq); |
| #endif |
| |
| if (!priv->phylink) |
| return -EOPNOTSUPP; |
| |
| return phylink_mii_ioctl(priv->phylink, rq, cmd); |
| } |
| |
| int enetc_alloc_msix(struct enetc_ndev_priv *priv) |
| { |
| struct pci_dev *pdev = priv->si->pdev; |
| int first_xdp_tx_ring; |
| int i, n, err, nvec; |
| int v_tx_rings; |
| |
| nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num; |
| /* allocate MSIX for both messaging and Rx/Tx interrupts */ |
| n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX); |
| |
| if (n < 0) |
| return n; |
| |
| if (n != nvec) |
| return -EPERM; |
| |
| /* # of tx rings per int vector */ |
| v_tx_rings = priv->num_tx_rings / priv->bdr_int_num; |
| |
| for (i = 0; i < priv->bdr_int_num; i++) { |
| struct enetc_int_vector *v; |
| struct enetc_bdr *bdr; |
| int j; |
| |
| v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL); |
| if (!v) { |
| err = -ENOMEM; |
| goto fail; |
| } |
| |
| priv->int_vector[i] = v; |
| |
| bdr = &v->rx_ring; |
| bdr->index = i; |
| bdr->ndev = priv->ndev; |
| bdr->dev = priv->dev; |
| bdr->bd_count = priv->rx_bd_count; |
| bdr->buffer_offset = ENETC_RXB_PAD; |
| priv->rx_ring[i] = bdr; |
| |
| err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0); |
| if (err) { |
| kfree(v); |
| goto fail; |
| } |
| |
| err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq, |
| MEM_TYPE_PAGE_SHARED, NULL); |
| if (err) { |
| xdp_rxq_info_unreg(&bdr->xdp.rxq); |
| kfree(v); |
| goto fail; |
| } |
| |
| /* init defaults for adaptive IC */ |
| if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) { |
| v->rx_ictt = 0x1; |
| v->rx_dim_en = true; |
| } |
| INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work); |
| netif_napi_add(priv->ndev, &v->napi, enetc_poll, |
| NAPI_POLL_WEIGHT); |
| v->count_tx_rings = v_tx_rings; |
| |
| for (j = 0; j < v_tx_rings; j++) { |
| int idx; |
| |
| /* default tx ring mapping policy */ |
| idx = priv->bdr_int_num * j + i; |
| __set_bit(idx, &v->tx_rings_map); |
| bdr = &v->tx_ring[j]; |
| bdr->index = idx; |
| bdr->ndev = priv->ndev; |
| bdr->dev = priv->dev; |
| bdr->bd_count = priv->tx_bd_count; |
| priv->tx_ring[idx] = bdr; |
| } |
| } |
| |
| first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus(); |
| priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring]; |
| |
| return 0; |
| |
| fail: |
| while (i--) { |
| struct enetc_int_vector *v = priv->int_vector[i]; |
| struct enetc_bdr *rx_ring = &v->rx_ring; |
| |
| xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq); |
| xdp_rxq_info_unreg(&rx_ring->xdp.rxq); |
| netif_napi_del(&v->napi); |
| cancel_work_sync(&v->rx_dim.work); |
| kfree(v); |
| } |
| |
| pci_free_irq_vectors(pdev); |
| |
| return err; |
| } |
| |
| void enetc_free_msix(struct enetc_ndev_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->bdr_int_num; i++) { |
| struct enetc_int_vector *v = priv->int_vector[i]; |
| struct enetc_bdr *rx_ring = &v->rx_ring; |
| |
| xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq); |
| xdp_rxq_info_unreg(&rx_ring->xdp.rxq); |
| netif_napi_del(&v->napi); |
| cancel_work_sync(&v->rx_dim.work); |
| } |
| |
| for (i = 0; i < priv->num_rx_rings; i++) |
| priv->rx_ring[i] = NULL; |
| |
| for (i = 0; i < priv->num_tx_rings; i++) |
| priv->tx_ring[i] = NULL; |
| |
| for (i = 0; i < priv->bdr_int_num; i++) { |
| kfree(priv->int_vector[i]); |
| priv->int_vector[i] = NULL; |
| } |
| |
| /* disable all MSIX for this device */ |
| pci_free_irq_vectors(priv->si->pdev); |
| } |
| |
| static void enetc_kfree_si(struct enetc_si *si) |
| { |
| char *p = (char *)si - si->pad; |
| |
| kfree(p); |
| } |
| |
| static void enetc_detect_errata(struct enetc_si *si) |
| { |
| if (si->pdev->revision == ENETC_REV1) |
| si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP; |
| } |
| |
| int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv) |
| { |
| struct enetc_si *si, *p; |
| struct enetc_hw *hw; |
| size_t alloc_size; |
| int err, len; |
| |
| pcie_flr(pdev); |
| err = pci_enable_device_mem(pdev); |
| if (err) |
| return dev_err_probe(&pdev->dev, err, "device enable failed\n"); |
| |
| /* set up for high or low dma */ |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); |
| if (err) { |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) { |
| dev_err(&pdev->dev, |
| "DMA configuration failed: 0x%x\n", err); |
| goto err_dma; |
| } |
| } |
| |
| err = pci_request_mem_regions(pdev, name); |
| if (err) { |
| dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err); |
| goto err_pci_mem_reg; |
| } |
| |
| pci_set_master(pdev); |
| |
| alloc_size = sizeof(struct enetc_si); |
| if (sizeof_priv) { |
| /* align priv to 32B */ |
| alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN); |
| alloc_size += sizeof_priv; |
| } |
| /* force 32B alignment for enetc_si */ |
| alloc_size += ENETC_SI_ALIGN - 1; |
| |
| p = kzalloc(alloc_size, GFP_KERNEL); |
| if (!p) { |
| err = -ENOMEM; |
| goto err_alloc_si; |
| } |
| |
| si = PTR_ALIGN(p, ENETC_SI_ALIGN); |
| si->pad = (char *)si - (char *)p; |
| |
| pci_set_drvdata(pdev, si); |
| si->pdev = pdev; |
| hw = &si->hw; |
| |
| len = pci_resource_len(pdev, ENETC_BAR_REGS); |
| hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len); |
| if (!hw->reg) { |
| err = -ENXIO; |
| dev_err(&pdev->dev, "ioremap() failed\n"); |
| goto err_ioremap; |
| } |
| if (len > ENETC_PORT_BASE) |
| hw->port = hw->reg + ENETC_PORT_BASE; |
| if (len > ENETC_GLOBAL_BASE) |
| hw->global = hw->reg + ENETC_GLOBAL_BASE; |
| |
| enetc_detect_errata(si); |
| |
| return 0; |
| |
| err_ioremap: |
| enetc_kfree_si(si); |
| err_alloc_si: |
| pci_release_mem_regions(pdev); |
| err_pci_mem_reg: |
| err_dma: |
| pci_disable_device(pdev); |
| |
| return err; |
| } |
| |
| void enetc_pci_remove(struct pci_dev *pdev) |
| { |
| struct enetc_si *si = pci_get_drvdata(pdev); |
| struct enetc_hw *hw = &si->hw; |
| |
| iounmap(hw->reg); |
| enetc_kfree_si(si); |
| pci_release_mem_regions(pdev); |
| pci_disable_device(pdev); |
| } |