| // SPDX-License-Identifier: (GPL-2.0 OR MIT) |
| /* Google virtual Ethernet (gve) driver |
| * |
| * Copyright (C) 2015-2021 Google, Inc. |
| */ |
| |
| #include "gve.h" |
| #include "gve_adminq.h" |
| #include "gve_utils.h" |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/vmalloc.h> |
| #include <linux/skbuff.h> |
| |
| static inline void gve_tx_put_doorbell(struct gve_priv *priv, |
| struct gve_queue_resources *q_resources, |
| u32 val) |
| { |
| iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]); |
| } |
| |
| /* gvnic can only transmit from a Registered Segment. |
| * We copy skb payloads into the registered segment before writing Tx |
| * descriptors and ringing the Tx doorbell. |
| * |
| * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must |
| * free allocations in the order they were allocated. |
| */ |
| |
| static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo) |
| { |
| fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP, |
| PAGE_KERNEL); |
| if (unlikely(!fifo->base)) { |
| netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n", |
| fifo->qpl->id); |
| return -ENOMEM; |
| } |
| |
| fifo->size = fifo->qpl->num_entries * PAGE_SIZE; |
| atomic_set(&fifo->available, fifo->size); |
| fifo->head = 0; |
| return 0; |
| } |
| |
| static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo) |
| { |
| WARN(atomic_read(&fifo->available) != fifo->size, |
| "Releasing non-empty fifo"); |
| |
| vunmap(fifo->base); |
| } |
| |
| static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo, |
| size_t bytes) |
| { |
| return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head; |
| } |
| |
| static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes) |
| { |
| return (atomic_read(&fifo->available) <= bytes) ? false : true; |
| } |
| |
| /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO |
| * @fifo: FIFO to allocate from |
| * @bytes: Allocation size |
| * @iov: Scatter-gather elements to fill with allocation fragment base/len |
| * |
| * Returns number of valid elements in iov[] or negative on error. |
| * |
| * Allocations from a given FIFO must be externally synchronized but concurrent |
| * allocation and frees are allowed. |
| */ |
| static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes, |
| struct gve_tx_iovec iov[2]) |
| { |
| size_t overflow, padding; |
| u32 aligned_head; |
| int nfrags = 0; |
| |
| if (!bytes) |
| return 0; |
| |
| /* This check happens before we know how much padding is needed to |
| * align to a cacheline boundary for the payload, but that is fine, |
| * because the FIFO head always start aligned, and the FIFO's boundaries |
| * are aligned, so if there is space for the data, there is space for |
| * the padding to the next alignment. |
| */ |
| WARN(!gve_tx_fifo_can_alloc(fifo, bytes), |
| "Reached %s when there's not enough space in the fifo", __func__); |
| |
| nfrags++; |
| |
| iov[0].iov_offset = fifo->head; |
| iov[0].iov_len = bytes; |
| fifo->head += bytes; |
| |
| if (fifo->head > fifo->size) { |
| /* If the allocation did not fit in the tail fragment of the |
| * FIFO, also use the head fragment. |
| */ |
| nfrags++; |
| overflow = fifo->head - fifo->size; |
| iov[0].iov_len -= overflow; |
| iov[1].iov_offset = 0; /* Start of fifo*/ |
| iov[1].iov_len = overflow; |
| |
| fifo->head = overflow; |
| } |
| |
| /* Re-align to a cacheline boundary */ |
| aligned_head = L1_CACHE_ALIGN(fifo->head); |
| padding = aligned_head - fifo->head; |
| iov[nfrags - 1].iov_padding = padding; |
| atomic_sub(bytes + padding, &fifo->available); |
| fifo->head = aligned_head; |
| |
| if (fifo->head == fifo->size) |
| fifo->head = 0; |
| |
| return nfrags; |
| } |
| |
| /* gve_tx_free_fifo - Return space to Tx FIFO |
| * @fifo: FIFO to return fragments to |
| * @bytes: Bytes to free |
| */ |
| static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes) |
| { |
| atomic_add(bytes, &fifo->available); |
| } |
| |
| static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, |
| u32 to_do, bool try_to_wake); |
| |
| static void gve_tx_free_ring(struct gve_priv *priv, int idx) |
| { |
| struct gve_tx_ring *tx = &priv->tx[idx]; |
| struct device *hdev = &priv->pdev->dev; |
| size_t bytes; |
| u32 slots; |
| |
| gve_tx_remove_from_block(priv, idx); |
| slots = tx->mask + 1; |
| gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false); |
| netdev_tx_reset_queue(tx->netdev_txq); |
| |
| dma_free_coherent(hdev, sizeof(*tx->q_resources), |
| tx->q_resources, tx->q_resources_bus); |
| tx->q_resources = NULL; |
| |
| if (!tx->raw_addressing) { |
| gve_tx_fifo_release(priv, &tx->tx_fifo); |
| gve_unassign_qpl(priv, tx->tx_fifo.qpl->id); |
| tx->tx_fifo.qpl = NULL; |
| } |
| |
| bytes = sizeof(*tx->desc) * slots; |
| dma_free_coherent(hdev, bytes, tx->desc, tx->bus); |
| tx->desc = NULL; |
| |
| vfree(tx->info); |
| tx->info = NULL; |
| |
| netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); |
| } |
| |
| static int gve_tx_alloc_ring(struct gve_priv *priv, int idx) |
| { |
| struct gve_tx_ring *tx = &priv->tx[idx]; |
| struct device *hdev = &priv->pdev->dev; |
| u32 slots = priv->tx_desc_cnt; |
| size_t bytes; |
| |
| /* Make sure everything is zeroed to start */ |
| memset(tx, 0, sizeof(*tx)); |
| spin_lock_init(&tx->clean_lock); |
| tx->q_num = idx; |
| |
| tx->mask = slots - 1; |
| |
| /* alloc metadata */ |
| tx->info = vzalloc(sizeof(*tx->info) * slots); |
| if (!tx->info) |
| return -ENOMEM; |
| |
| /* alloc tx queue */ |
| bytes = sizeof(*tx->desc) * slots; |
| tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); |
| if (!tx->desc) |
| goto abort_with_info; |
| |
| tx->raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT; |
| tx->dev = &priv->pdev->dev; |
| if (!tx->raw_addressing) { |
| tx->tx_fifo.qpl = gve_assign_tx_qpl(priv); |
| if (!tx->tx_fifo.qpl) |
| goto abort_with_desc; |
| /* map Tx FIFO */ |
| if (gve_tx_fifo_init(priv, &tx->tx_fifo)) |
| goto abort_with_qpl; |
| } |
| |
| tx->q_resources = |
| dma_alloc_coherent(hdev, |
| sizeof(*tx->q_resources), |
| &tx->q_resources_bus, |
| GFP_KERNEL); |
| if (!tx->q_resources) |
| goto abort_with_fifo; |
| |
| netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx, |
| (unsigned long)tx->bus); |
| tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); |
| gve_tx_add_to_block(priv, idx); |
| |
| return 0; |
| |
| abort_with_fifo: |
| if (!tx->raw_addressing) |
| gve_tx_fifo_release(priv, &tx->tx_fifo); |
| abort_with_qpl: |
| if (!tx->raw_addressing) |
| gve_unassign_qpl(priv, tx->tx_fifo.qpl->id); |
| abort_with_desc: |
| dma_free_coherent(hdev, bytes, tx->desc, tx->bus); |
| tx->desc = NULL; |
| abort_with_info: |
| vfree(tx->info); |
| tx->info = NULL; |
| return -ENOMEM; |
| } |
| |
| int gve_tx_alloc_rings(struct gve_priv *priv) |
| { |
| int err = 0; |
| int i; |
| |
| for (i = 0; i < priv->tx_cfg.num_queues; i++) { |
| err = gve_tx_alloc_ring(priv, i); |
| if (err) { |
| netif_err(priv, drv, priv->dev, |
| "Failed to alloc tx ring=%d: err=%d\n", |
| i, err); |
| break; |
| } |
| } |
| /* Unallocate if there was an error */ |
| if (err) { |
| int j; |
| |
| for (j = 0; j < i; j++) |
| gve_tx_free_ring(priv, j); |
| } |
| return err; |
| } |
| |
| void gve_tx_free_rings_gqi(struct gve_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->tx_cfg.num_queues; i++) |
| gve_tx_free_ring(priv, i); |
| } |
| |
| /* gve_tx_avail - Calculates the number of slots available in the ring |
| * @tx: tx ring to check |
| * |
| * Returns the number of slots available |
| * |
| * The capacity of the queue is mask + 1. We don't need to reserve an entry. |
| **/ |
| static inline u32 gve_tx_avail(struct gve_tx_ring *tx) |
| { |
| return tx->mask + 1 - (tx->req - tx->done); |
| } |
| |
| static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx, |
| struct sk_buff *skb) |
| { |
| int pad_bytes, align_hdr_pad; |
| int bytes; |
| int hlen; |
| |
| hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + |
| tcp_hdrlen(skb) : skb_headlen(skb); |
| |
| pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, |
| hlen); |
| /* We need to take into account the header alignment padding. */ |
| align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen; |
| bytes = align_hdr_pad + pad_bytes + skb->len; |
| |
| return bytes; |
| } |
| |
| /* The most descriptors we could need is MAX_SKB_FRAGS + 3 : 1 for each skb frag, |
| * +1 for the skb linear portion, +1 for when tcp hdr needs to be in separate descriptor, |
| * and +1 if the payload wraps to the beginning of the FIFO. |
| */ |
| #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 3) |
| static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info) |
| { |
| if (info->skb) { |
| dma_unmap_single(dev, dma_unmap_addr(info, dma), |
| dma_unmap_len(info, len), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(info, len, 0); |
| } else { |
| dma_unmap_page(dev, dma_unmap_addr(info, dma), |
| dma_unmap_len(info, len), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(info, len, 0); |
| } |
| } |
| |
| /* Check if sufficient resources (descriptor ring space, FIFO space) are |
| * available to transmit the given number of bytes. |
| */ |
| static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required) |
| { |
| bool can_alloc = true; |
| |
| if (!tx->raw_addressing) |
| can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required); |
| |
| return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc); |
| } |
| |
| static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED); |
| |
| /* Stops the queue if the skb cannot be transmitted. */ |
| static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx, |
| struct sk_buff *skb) |
| { |
| int bytes_required = 0; |
| u32 nic_done; |
| u32 to_do; |
| int ret; |
| |
| if (!tx->raw_addressing) |
| bytes_required = gve_skb_fifo_bytes_required(tx, skb); |
| |
| if (likely(gve_can_tx(tx, bytes_required))) |
| return 0; |
| |
| ret = -EBUSY; |
| spin_lock(&tx->clean_lock); |
| nic_done = gve_tx_load_event_counter(priv, tx); |
| to_do = nic_done - tx->done; |
| |
| /* Only try to clean if there is hope for TX */ |
| if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) { |
| if (to_do > 0) { |
| to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT); |
| gve_clean_tx_done(priv, tx, to_do, false); |
| } |
| if (likely(gve_can_tx(tx, bytes_required))) |
| ret = 0; |
| } |
| if (ret) { |
| /* No space, so stop the queue */ |
| tx->stop_queue++; |
| netif_tx_stop_queue(tx->netdev_txq); |
| } |
| spin_unlock(&tx->clean_lock); |
| |
| return ret; |
| } |
| |
| static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc, |
| struct sk_buff *skb, bool is_gso, |
| int l4_hdr_offset, u32 desc_cnt, |
| u16 hlen, u64 addr) |
| { |
| /* l4_hdr_offset and csum_offset are in units of 16-bit words */ |
| if (is_gso) { |
| pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM; |
| pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1; |
| pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; |
| } else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { |
| pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM; |
| pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1; |
| pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; |
| } else { |
| pkt_desc->pkt.type_flags = GVE_TXD_STD; |
| pkt_desc->pkt.l4_csum_offset = 0; |
| pkt_desc->pkt.l4_hdr_offset = 0; |
| } |
| pkt_desc->pkt.desc_cnt = desc_cnt; |
| pkt_desc->pkt.len = cpu_to_be16(skb->len); |
| pkt_desc->pkt.seg_len = cpu_to_be16(hlen); |
| pkt_desc->pkt.seg_addr = cpu_to_be64(addr); |
| } |
| |
| static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc, |
| struct sk_buff *skb, bool is_gso, |
| u16 len, u64 addr) |
| { |
| seg_desc->seg.type_flags = GVE_TXD_SEG; |
| if (is_gso) { |
| if (skb_is_gso_v6(skb)) |
| seg_desc->seg.type_flags |= GVE_TXSF_IPV6; |
| seg_desc->seg.l3_offset = skb_network_offset(skb) >> 1; |
| seg_desc->seg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); |
| } |
| seg_desc->seg.seg_len = cpu_to_be16(len); |
| seg_desc->seg.seg_addr = cpu_to_be64(addr); |
| } |
| |
| static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses, |
| u64 iov_offset, u64 iov_len) |
| { |
| u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE; |
| u64 first_page = iov_offset / PAGE_SIZE; |
| u64 page; |
| |
| for (page = first_page; page <= last_page; page++) |
| dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE); |
| } |
| |
| static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) |
| { |
| int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset; |
| union gve_tx_desc *pkt_desc, *seg_desc; |
| struct gve_tx_buffer_state *info; |
| bool is_gso = skb_is_gso(skb); |
| u32 idx = tx->req & tx->mask; |
| int payload_iov = 2; |
| int copy_offset; |
| u32 next_idx; |
| int i; |
| |
| info = &tx->info[idx]; |
| pkt_desc = &tx->desc[idx]; |
| |
| l4_hdr_offset = skb_checksum_start_offset(skb); |
| /* If the skb is gso, then we want the tcp header in the first segment |
| * otherwise we want the linear portion of the skb (which will contain |
| * the checksum because skb->csum_start and skb->csum_offset are given |
| * relative to skb->head) in the first segment. |
| */ |
| hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : |
| skb_headlen(skb); |
| |
| info->skb = skb; |
| /* We don't want to split the header, so if necessary, pad to the end |
| * of the fifo and then put the header at the beginning of the fifo. |
| */ |
| pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); |
| hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes, |
| &info->iov[0]); |
| WARN(!hdr_nfrags, "hdr_nfrags should never be 0!"); |
| payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen, |
| &info->iov[payload_iov]); |
| |
| gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset, |
| 1 + payload_nfrags, hlen, |
| info->iov[hdr_nfrags - 1].iov_offset); |
| |
| skb_copy_bits(skb, 0, |
| tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset, |
| hlen); |
| gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, |
| info->iov[hdr_nfrags - 1].iov_offset, |
| info->iov[hdr_nfrags - 1].iov_len); |
| copy_offset = hlen; |
| |
| for (i = payload_iov; i < payload_nfrags + payload_iov; i++) { |
| next_idx = (tx->req + 1 + i - payload_iov) & tx->mask; |
| seg_desc = &tx->desc[next_idx]; |
| |
| gve_tx_fill_seg_desc(seg_desc, skb, is_gso, |
| info->iov[i].iov_len, |
| info->iov[i].iov_offset); |
| |
| skb_copy_bits(skb, copy_offset, |
| tx->tx_fifo.base + info->iov[i].iov_offset, |
| info->iov[i].iov_len); |
| gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, |
| info->iov[i].iov_offset, |
| info->iov[i].iov_len); |
| copy_offset += info->iov[i].iov_len; |
| } |
| |
| return 1 + payload_nfrags; |
| } |
| |
| static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx, |
| struct sk_buff *skb) |
| { |
| const struct skb_shared_info *shinfo = skb_shinfo(skb); |
| int hlen, payload_nfrags, l4_hdr_offset; |
| union gve_tx_desc *pkt_desc, *seg_desc; |
| struct gve_tx_buffer_state *info; |
| bool is_gso = skb_is_gso(skb); |
| u32 idx = tx->req & tx->mask; |
| u64 addr; |
| u32 len; |
| int i; |
| |
| info = &tx->info[idx]; |
| pkt_desc = &tx->desc[idx]; |
| |
| l4_hdr_offset = skb_checksum_start_offset(skb); |
| /* If the skb is gso, then we want only up to the tcp header in the first segment |
| * to efficiently replicate on each segment otherwise we want the linear portion |
| * of the skb (which will contain the checksum because skb->csum_start and |
| * skb->csum_offset are given relative to skb->head) in the first segment. |
| */ |
| hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); |
| len = skb_headlen(skb); |
| |
| info->skb = skb; |
| |
| addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(tx->dev, addr))) { |
| tx->dma_mapping_error++; |
| goto drop; |
| } |
| dma_unmap_len_set(info, len, len); |
| dma_unmap_addr_set(info, dma, addr); |
| |
| payload_nfrags = shinfo->nr_frags; |
| if (hlen < len) { |
| /* For gso the rest of the linear portion of the skb needs to |
| * be in its own descriptor. |
| */ |
| payload_nfrags++; |
| gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset, |
| 1 + payload_nfrags, hlen, addr); |
| |
| len -= hlen; |
| addr += hlen; |
| idx = (tx->req + 1) & tx->mask; |
| seg_desc = &tx->desc[idx]; |
| gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr); |
| } else { |
| gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset, |
| 1 + payload_nfrags, hlen, addr); |
| } |
| |
| for (i = 0; i < shinfo->nr_frags; i++) { |
| const skb_frag_t *frag = &shinfo->frags[i]; |
| |
| idx = (idx + 1) & tx->mask; |
| seg_desc = &tx->desc[idx]; |
| len = skb_frag_size(frag); |
| addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(tx->dev, addr))) { |
| tx->dma_mapping_error++; |
| goto unmap_drop; |
| } |
| tx->info[idx].skb = NULL; |
| dma_unmap_len_set(&tx->info[idx], len, len); |
| dma_unmap_addr_set(&tx->info[idx], dma, addr); |
| |
| gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr); |
| } |
| |
| return 1 + payload_nfrags; |
| |
| unmap_drop: |
| i += (payload_nfrags == shinfo->nr_frags ? 1 : 2); |
| while (i--) { |
| idx--; |
| gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]); |
| } |
| drop: |
| tx->dropped_pkt++; |
| return 0; |
| } |
| |
| netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct gve_priv *priv = netdev_priv(dev); |
| struct gve_tx_ring *tx; |
| int nsegs; |
| |
| WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues, |
| "skb queue index out of range"); |
| tx = &priv->tx[skb_get_queue_mapping(skb)]; |
| if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) { |
| /* We need to ring the txq doorbell -- we have stopped the Tx |
| * queue for want of resources, but prior calls to gve_tx() |
| * may have added descriptors without ringing the doorbell. |
| */ |
| |
| gve_tx_put_doorbell(priv, tx->q_resources, tx->req); |
| return NETDEV_TX_BUSY; |
| } |
| if (tx->raw_addressing) |
| nsegs = gve_tx_add_skb_no_copy(priv, tx, skb); |
| else |
| nsegs = gve_tx_add_skb_copy(priv, tx, skb); |
| |
| /* If the packet is getting sent, we need to update the skb */ |
| if (nsegs) { |
| netdev_tx_sent_queue(tx->netdev_txq, skb->len); |
| skb_tx_timestamp(skb); |
| tx->req += nsegs; |
| } else { |
| dev_kfree_skb_any(skb); |
| } |
| |
| if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) |
| return NETDEV_TX_OK; |
| |
| /* Give packets to NIC. Even if this packet failed to send the doorbell |
| * might need to be rung because of xmit_more. |
| */ |
| gve_tx_put_doorbell(priv, tx->q_resources, tx->req); |
| return NETDEV_TX_OK; |
| } |
| |
| #define GVE_TX_START_THRESH PAGE_SIZE |
| |
| static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, |
| u32 to_do, bool try_to_wake) |
| { |
| struct gve_tx_buffer_state *info; |
| u64 pkts = 0, bytes = 0; |
| size_t space_freed = 0; |
| struct sk_buff *skb; |
| int i, j; |
| u32 idx; |
| |
| for (j = 0; j < to_do; j++) { |
| idx = tx->done & tx->mask; |
| netif_info(priv, tx_done, priv->dev, |
| "[%d] %s: idx=%d (req=%u done=%u)\n", |
| tx->q_num, __func__, idx, tx->req, tx->done); |
| info = &tx->info[idx]; |
| skb = info->skb; |
| |
| /* Unmap the buffer */ |
| if (tx->raw_addressing) |
| gve_tx_unmap_buf(tx->dev, info); |
| tx->done++; |
| /* Mark as free */ |
| if (skb) { |
| info->skb = NULL; |
| bytes += skb->len; |
| pkts++; |
| dev_consume_skb_any(skb); |
| if (tx->raw_addressing) |
| continue; |
| /* FIFO free */ |
| for (i = 0; i < ARRAY_SIZE(info->iov); i++) { |
| space_freed += info->iov[i].iov_len + info->iov[i].iov_padding; |
| info->iov[i].iov_len = 0; |
| info->iov[i].iov_padding = 0; |
| } |
| } |
| } |
| |
| if (!tx->raw_addressing) |
| gve_tx_free_fifo(&tx->tx_fifo, space_freed); |
| u64_stats_update_begin(&tx->statss); |
| tx->bytes_done += bytes; |
| tx->pkt_done += pkts; |
| u64_stats_update_end(&tx->statss); |
| netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes); |
| |
| /* start the queue if we've stopped it */ |
| #ifndef CONFIG_BQL |
| /* Make sure that the doorbells are synced */ |
| smp_mb(); |
| #endif |
| if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) && |
| likely(gve_can_tx(tx, GVE_TX_START_THRESH))) { |
| tx->wake_queue++; |
| netif_tx_wake_queue(tx->netdev_txq); |
| } |
| |
| return pkts; |
| } |
| |
| u32 gve_tx_load_event_counter(struct gve_priv *priv, |
| struct gve_tx_ring *tx) |
| { |
| u32 counter_index = be32_to_cpu(tx->q_resources->counter_index); |
| __be32 counter = READ_ONCE(priv->counter_array[counter_index]); |
| |
| return be32_to_cpu(counter); |
| } |
| |
| bool gve_tx_poll(struct gve_notify_block *block, int budget) |
| { |
| struct gve_priv *priv = block->priv; |
| struct gve_tx_ring *tx = block->tx; |
| u32 nic_done; |
| u32 to_do; |
| |
| /* If budget is 0, do all the work */ |
| if (budget == 0) |
| budget = INT_MAX; |
| |
| /* In TX path, it may try to clean completed pkts in order to xmit, |
| * to avoid cleaning conflict, use spin_lock(), it yields better |
| * concurrency between xmit/clean than netif's lock. |
| */ |
| spin_lock(&tx->clean_lock); |
| /* Find out how much work there is to be done */ |
| nic_done = gve_tx_load_event_counter(priv, tx); |
| to_do = min_t(u32, (nic_done - tx->done), budget); |
| gve_clean_tx_done(priv, tx, to_do, true); |
| spin_unlock(&tx->clean_lock); |
| /* If we still have work we want to repoll */ |
| return nic_done != tx->done; |
| } |
| |
| bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx) |
| { |
| u32 nic_done = gve_tx_load_event_counter(priv, tx); |
| |
| return nic_done != tx->done; |
| } |