blob: 06c6a58136063964abd91c99b4017dc29825f36e [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
/* QLogic qede NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
* Copyright (c) 2019-2020 Marvell International Ltd.
*/
#include <linux/crash_dump.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <asm/byteorder.h>
#include <asm/param.h>
#include <linux/io.h>
#include <linux/netdev_features.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <net/udp_tunnel.h>
#include <linux/ip.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/pkt_sched.h>
#include <linux/ethtool.h>
#include <linux/in.h>
#include <linux/random.h>
#include <net/ip6_checksum.h>
#include <linux/bitops.h>
#include <linux/vmalloc.h>
#include <linux/aer.h>
#include "qede.h"
#include "qede_ptp.h"
MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
MODULE_LICENSE("GPL");
static uint debug;
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, " Default debug msglevel");
static const struct qed_eth_ops *qed_ops;
#define CHIP_NUM_57980S_40 0x1634
#define CHIP_NUM_57980S_10 0x1666
#define CHIP_NUM_57980S_MF 0x1636
#define CHIP_NUM_57980S_100 0x1644
#define CHIP_NUM_57980S_50 0x1654
#define CHIP_NUM_57980S_25 0x1656
#define CHIP_NUM_57980S_IOV 0x1664
#define CHIP_NUM_AH 0x8070
#define CHIP_NUM_AH_IOV 0x8090
#ifndef PCI_DEVICE_ID_NX2_57980E
#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
#define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
#define PCI_DEVICE_ID_AH CHIP_NUM_AH
#define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
#endif
enum qede_pci_private {
QEDE_PRIVATE_PF,
QEDE_PRIVATE_VF
};
static const struct pci_device_id qede_pci_tbl[] = {
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
#ifdef CONFIG_QED_SRIOV
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
#endif
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
#ifdef CONFIG_QED_SRIOV
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
#endif
{ 0 }
};
MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
static pci_ers_result_t
qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
#define TX_TIMEOUT (5 * HZ)
/* Utilize last protocol index for XDP */
#define XDP_PI 11
static void qede_remove(struct pci_dev *pdev);
static void qede_shutdown(struct pci_dev *pdev);
static void qede_link_update(void *dev, struct qed_link_output *link);
static void qede_schedule_recovery_handler(void *dev);
static void qede_recovery_handler(struct qede_dev *edev);
static void qede_schedule_hw_err_handler(void *dev,
enum qed_hw_err_type err_type);
static void qede_get_eth_tlv_data(void *edev, void *data);
static void qede_get_generic_tlv_data(void *edev,
struct qed_generic_tlvs *data);
static void qede_generic_hw_err_handler(struct qede_dev *edev);
#ifdef CONFIG_QED_SRIOV
static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
__be16 vlan_proto)
{
struct qede_dev *edev = netdev_priv(ndev);
if (vlan > 4095) {
DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
return -EINVAL;
}
if (vlan_proto != htons(ETH_P_8021Q))
return -EPROTONOSUPPORT;
DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
vlan, vf);
return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
}
static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
{
struct qede_dev *edev = netdev_priv(ndev);
DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
if (!is_valid_ether_addr(mac)) {
DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
return -EINVAL;
}
return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
}
static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
{
struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
struct qed_dev_info *qed_info = &edev->dev_info.common;
struct qed_update_vport_params *vport_params;
int rc;
vport_params = vzalloc(sizeof(*vport_params));
if (!vport_params)
return -ENOMEM;
DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
/* Enable/Disable Tx switching for PF */
if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
!qed_info->b_inter_pf_switch && qed_info->tx_switching) {
vport_params->vport_id = 0;
vport_params->update_tx_switching_flg = 1;
vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
edev->ops->vport_update(edev->cdev, vport_params);
}
vfree(vport_params);
return rc;
}
#endif
static const struct pci_error_handlers qede_err_handler = {
.error_detected = qede_io_error_detected,
};
static struct pci_driver qede_pci_driver = {
.name = "qede",
.id_table = qede_pci_tbl,
.probe = qede_probe,
.remove = qede_remove,
.shutdown = qede_shutdown,
#ifdef CONFIG_QED_SRIOV
.sriov_configure = qede_sriov_configure,
#endif
.err_handler = &qede_err_handler,
};
static struct qed_eth_cb_ops qede_ll_ops = {
{
#ifdef CONFIG_RFS_ACCEL
.arfs_filter_op = qede_arfs_filter_op,
#endif
.link_update = qede_link_update,
.schedule_recovery_handler = qede_schedule_recovery_handler,
.schedule_hw_err_handler = qede_schedule_hw_err_handler,
.get_generic_tlv_data = qede_get_generic_tlv_data,
.get_protocol_tlv_data = qede_get_eth_tlv_data,
},
.force_mac = qede_force_mac,
.ports_update = qede_udp_ports_update,
};
static int qede_netdev_event(struct notifier_block *this, unsigned long event,
void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct ethtool_drvinfo drvinfo;
struct qede_dev *edev;
if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
goto done;
/* Check whether this is a qede device */
if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
goto done;
memset(&drvinfo, 0, sizeof(drvinfo));
ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
if (strcmp(drvinfo.driver, "qede"))
goto done;
edev = netdev_priv(ndev);
switch (event) {
case NETDEV_CHANGENAME:
/* Notify qed of the name change */
if (!edev->ops || !edev->ops->common)
goto done;
edev->ops->common->set_name(edev->cdev, edev->ndev->name);
break;
case NETDEV_CHANGEADDR:
edev = netdev_priv(ndev);
qede_rdma_event_changeaddr(edev);
break;
}
done:
return NOTIFY_DONE;
}
static struct notifier_block qede_netdev_notifier = {
.notifier_call = qede_netdev_event,
};
static
int __init qede_init(void)
{
int ret;
pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
qede_forced_speed_maps_init();
qed_ops = qed_get_eth_ops();
if (!qed_ops) {
pr_notice("Failed to get qed ethtool operations\n");
return -EINVAL;
}
/* Must register notifier before pci ops, since we might miss
* interface rename after pci probe and netdev registration.
*/
ret = register_netdevice_notifier(&qede_netdev_notifier);
if (ret) {
pr_notice("Failed to register netdevice_notifier\n");
qed_put_eth_ops();
return -EINVAL;
}
ret = pci_register_driver(&qede_pci_driver);
if (ret) {
pr_notice("Failed to register driver\n");
unregister_netdevice_notifier(&qede_netdev_notifier);
qed_put_eth_ops();
return -EINVAL;
}
return 0;
}
static void __exit qede_cleanup(void)
{
if (debug & QED_LOG_INFO_MASK)
pr_info("qede_cleanup called\n");
unregister_netdevice_notifier(&qede_netdev_notifier);
pci_unregister_driver(&qede_pci_driver);
qed_put_eth_ops();
}
module_init(qede_init);
module_exit(qede_cleanup);
static int qede_open(struct net_device *ndev);
static int qede_close(struct net_device *ndev);
void qede_fill_by_demand_stats(struct qede_dev *edev)
{
struct qede_stats_common *p_common = &edev->stats.common;
struct qed_eth_stats stats;
edev->ops->get_vport_stats(edev->cdev, &stats);
p_common->no_buff_discards = stats.common.no_buff_discards;
p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
p_common->ttl0_discard = stats.common.ttl0_discard;
p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
p_common->mac_filter_discards = stats.common.mac_filter_discards;
p_common->gft_filter_drop = stats.common.gft_filter_drop;
p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
p_common->coalesced_events = stats.common.tpa_coalesced_events;
p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
p_common->rx_65_to_127_byte_packets =
stats.common.rx_65_to_127_byte_packets;
p_common->rx_128_to_255_byte_packets =
stats.common.rx_128_to_255_byte_packets;
p_common->rx_256_to_511_byte_packets =
stats.common.rx_256_to_511_byte_packets;
p_common->rx_512_to_1023_byte_packets =
stats.common.rx_512_to_1023_byte_packets;
p_common->rx_1024_to_1518_byte_packets =
stats.common.rx_1024_to_1518_byte_packets;
p_common->rx_crc_errors = stats.common.rx_crc_errors;
p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
p_common->rx_pause_frames = stats.common.rx_pause_frames;
p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
p_common->rx_align_errors = stats.common.rx_align_errors;
p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
p_common->rx_jabbers = stats.common.rx_jabbers;
p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
p_common->rx_fragments = stats.common.rx_fragments;
p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
p_common->tx_65_to_127_byte_packets =
stats.common.tx_65_to_127_byte_packets;
p_common->tx_128_to_255_byte_packets =
stats.common.tx_128_to_255_byte_packets;
p_common->tx_256_to_511_byte_packets =
stats.common.tx_256_to_511_byte_packets;
p_common->tx_512_to_1023_byte_packets =
stats.common.tx_512_to_1023_byte_packets;
p_common->tx_1024_to_1518_byte_packets =
stats.common.tx_1024_to_1518_byte_packets;
p_common->tx_pause_frames = stats.common.tx_pause_frames;
p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
p_common->brb_truncates = stats.common.brb_truncates;
p_common->brb_discards = stats.common.brb_discards;
p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
p_common->link_change_count = stats.common.link_change_count;
p_common->ptp_skip_txts = edev->ptp_skip_txts;
if (QEDE_IS_BB(edev)) {
struct qede_stats_bb *p_bb = &edev->stats.bb;
p_bb->rx_1519_to_1522_byte_packets =
stats.bb.rx_1519_to_1522_byte_packets;
p_bb->rx_1519_to_2047_byte_packets =
stats.bb.rx_1519_to_2047_byte_packets;
p_bb->rx_2048_to_4095_byte_packets =
stats.bb.rx_2048_to_4095_byte_packets;
p_bb->rx_4096_to_9216_byte_packets =
stats.bb.rx_4096_to_9216_byte_packets;
p_bb->rx_9217_to_16383_byte_packets =
stats.bb.rx_9217_to_16383_byte_packets;
p_bb->tx_1519_to_2047_byte_packets =
stats.bb.tx_1519_to_2047_byte_packets;
p_bb->tx_2048_to_4095_byte_packets =
stats.bb.tx_2048_to_4095_byte_packets;
p_bb->tx_4096_to_9216_byte_packets =
stats.bb.tx_4096_to_9216_byte_packets;
p_bb->tx_9217_to_16383_byte_packets =
stats.bb.tx_9217_to_16383_byte_packets;
p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
} else {
struct qede_stats_ah *p_ah = &edev->stats.ah;
p_ah->rx_1519_to_max_byte_packets =
stats.ah.rx_1519_to_max_byte_packets;
p_ah->tx_1519_to_max_byte_packets =
stats.ah.tx_1519_to_max_byte_packets;
}
}
static void qede_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct qede_dev *edev = netdev_priv(dev);
struct qede_stats_common *p_common;
qede_fill_by_demand_stats(edev);
p_common = &edev->stats.common;
stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
p_common->rx_bcast_pkts;
stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
p_common->tx_bcast_pkts;
stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
p_common->rx_bcast_bytes;
stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
p_common->tx_bcast_bytes;
stats->tx_errors = p_common->tx_err_drop_pkts;
stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
stats->rx_fifo_errors = p_common->no_buff_discards;
if (QEDE_IS_BB(edev))
stats->collisions = edev->stats.bb.tx_total_collisions;
stats->rx_crc_errors = p_common->rx_crc_errors;
stats->rx_frame_errors = p_common->rx_align_errors;
}
#ifdef CONFIG_QED_SRIOV
static int qede_get_vf_config(struct net_device *dev, int vfidx,
struct ifla_vf_info *ivi)
{
struct qede_dev *edev = netdev_priv(dev);
if (!edev->ops)
return -EINVAL;
return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
}
static int qede_set_vf_rate(struct net_device *dev, int vfidx,
int min_tx_rate, int max_tx_rate)
{
struct qede_dev *edev = netdev_priv(dev);
return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
max_tx_rate);
}
static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
{
struct qede_dev *edev = netdev_priv(dev);
if (!edev->ops)
return -EINVAL;
return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
}
static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
int link_state)
{
struct qede_dev *edev = netdev_priv(dev);
if (!edev->ops)
return -EINVAL;
return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
}
static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
{
struct qede_dev *edev = netdev_priv(dev);
if (!edev->ops)
return -EINVAL;
return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
}
#endif
static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct qede_dev *edev = netdev_priv(dev);
if (!netif_running(dev))
return -EAGAIN;
switch (cmd) {
case SIOCSHWTSTAMP:
return qede_ptp_hw_ts(edev, ifr);
default:
DP_VERBOSE(edev, QED_MSG_DEBUG,
"default IOCTL cmd 0x%x\n", cmd);
return -EOPNOTSUPP;
}
return 0;
}
static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
{
DP_NOTICE(edev,
"Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
txq->index, le16_to_cpu(*txq->hw_cons_ptr),
qed_chain_get_cons_idx(&txq->tx_pbl),
qed_chain_get_prod_idx(&txq->tx_pbl),
jiffies);
}
static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct qede_dev *edev = netdev_priv(dev);
struct qede_tx_queue *txq;
int cos;
netif_carrier_off(dev);
DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
return;
for_each_cos_in_txq(edev, cos) {
txq = &edev->fp_array[txqueue].txq[cos];
if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
qed_chain_get_prod_idx(&txq->tx_pbl))
qede_tx_log_print(edev, txq);
}
if (IS_VF(edev))
return;
if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
edev->state == QEDE_STATE_RECOVERY) {
DP_INFO(edev,
"Avoid handling a Tx timeout while another HW error is being handled\n");
return;
}
set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
schedule_delayed_work(&edev->sp_task, 0);
}
static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
{
struct qede_dev *edev = netdev_priv(ndev);
int cos, count, offset;
if (num_tc > edev->dev_info.num_tc)
return -EINVAL;
netdev_reset_tc(ndev);
netdev_set_num_tc(ndev, num_tc);
for_each_cos_in_txq(edev, cos) {
count = QEDE_TSS_COUNT(edev);
offset = cos * QEDE_TSS_COUNT(edev);
netdev_set_tc_queue(ndev, cos, count, offset);
}
return 0;
}
static int
qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
__be16 proto)
{
switch (f->command) {
case FLOW_CLS_REPLACE:
return qede_add_tc_flower_fltr(edev, proto, f);
case FLOW_CLS_DESTROY:
return qede_delete_flow_filter(edev, f->cookie);
default:
return -EOPNOTSUPP;
}
}
static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct flow_cls_offload *f;
struct qede_dev *edev = cb_priv;
if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
f = type_data;
return qede_set_flower(edev, f, f->common.protocol);
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(qede_block_cb_list);
static int
qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
struct qede_dev *edev = netdev_priv(dev);
struct tc_mqprio_qopt *mqprio;
switch (type) {
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&qede_block_cb_list,
qede_setup_tc_block_cb,
edev, edev, true);
case TC_SETUP_QDISC_MQPRIO:
mqprio = type_data;
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
return qede_setup_tc(dev, mqprio->num_tc);
default:
return -EOPNOTSUPP;
}
}
static const struct net_device_ops qede_netdev_ops = {
.ndo_open = qede_open,
.ndo_stop = qede_close,
.ndo_start_xmit = qede_start_xmit,
.ndo_select_queue = qede_select_queue,
.ndo_set_rx_mode = qede_set_rx_mode,
.ndo_set_mac_address = qede_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = qede_change_mtu,
.ndo_eth_ioctl = qede_ioctl,
.ndo_tx_timeout = qede_tx_timeout,
#ifdef CONFIG_QED_SRIOV
.ndo_set_vf_mac = qede_set_vf_mac,
.ndo_set_vf_vlan = qede_set_vf_vlan,
.ndo_set_vf_trust = qede_set_vf_trust,
#endif
.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
.ndo_fix_features = qede_fix_features,
.ndo_set_features = qede_set_features,
.ndo_get_stats64 = qede_get_stats64,
#ifdef CONFIG_QED_SRIOV
.ndo_set_vf_link_state = qede_set_vf_link_state,
.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
.ndo_get_vf_config = qede_get_vf_config,
.ndo_set_vf_rate = qede_set_vf_rate,
#endif
.ndo_features_check = qede_features_check,
.ndo_bpf = qede_xdp,
#ifdef CONFIG_RFS_ACCEL
.ndo_rx_flow_steer = qede_rx_flow_steer,
#endif
.ndo_xdp_xmit = qede_xdp_transmit,
.ndo_setup_tc = qede_setup_tc_offload,
};
static const struct net_device_ops qede_netdev_vf_ops = {
.ndo_open = qede_open,
.ndo_stop = qede_close,
.ndo_start_xmit = qede_start_xmit,
.ndo_select_queue = qede_select_queue,
.ndo_set_rx_mode = qede_set_rx_mode,
.ndo_set_mac_address = qede_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = qede_change_mtu,
.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
.ndo_fix_features = qede_fix_features,
.ndo_set_features = qede_set_features,
.ndo_get_stats64 = qede_get_stats64,
.ndo_features_check = qede_features_check,
};
static const struct net_device_ops qede_netdev_vf_xdp_ops = {
.ndo_open = qede_open,
.ndo_stop = qede_close,
.ndo_start_xmit = qede_start_xmit,
.ndo_select_queue = qede_select_queue,
.ndo_set_rx_mode = qede_set_rx_mode,
.ndo_set_mac_address = qede_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = qede_change_mtu,
.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
.ndo_fix_features = qede_fix_features,
.ndo_set_features = qede_set_features,
.ndo_get_stats64 = qede_get_stats64,
.ndo_features_check = qede_features_check,
.ndo_bpf = qede_xdp,
.ndo_xdp_xmit = qede_xdp_transmit,
};
/* -------------------------------------------------------------------------
* START OF PROBE / REMOVE
* -------------------------------------------------------------------------
*/
static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
struct pci_dev *pdev,
struct qed_dev_eth_info *info,
u32 dp_module, u8 dp_level)
{
struct net_device *ndev;
struct qede_dev *edev;
ndev = alloc_etherdev_mqs(sizeof(*edev),
info->num_queues * info->num_tc,
info->num_queues);
if (!ndev) {
pr_err("etherdev allocation failed\n");
return NULL;
}
edev = netdev_priv(ndev);
edev->ndev = ndev;
edev->cdev = cdev;
edev->pdev = pdev;
edev->dp_module = dp_module;
edev->dp_level = dp_level;
edev->ops = qed_ops;
if (is_kdump_kernel()) {
edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
} else {
edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
}
DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
info->num_queues, info->num_queues);
SET_NETDEV_DEV(ndev, &pdev->dev);
memset(&edev->stats, 0, sizeof(edev->stats));
memcpy(&edev->dev_info, info, sizeof(*info));
/* As ethtool doesn't have the ability to show WoL behavior as
* 'default', if device supports it declare it's enabled.
*/
if (edev->dev_info.common.wol_support)
edev->wol_enabled = true;
INIT_LIST_HEAD(&edev->vlan_list);
return edev;
}
static void qede_init_ndev(struct qede_dev *edev)
{
struct net_device *ndev = edev->ndev;
struct pci_dev *pdev = edev->pdev;
bool udp_tunnel_enable = false;
netdev_features_t hw_features;
pci_set_drvdata(pdev, ndev);
ndev->mem_start = edev->dev_info.common.pci_mem_start;
ndev->base_addr = ndev->mem_start;
ndev->mem_end = edev->dev_info.common.pci_mem_end;
ndev->irq = edev->dev_info.common.pci_irq;
ndev->watchdog_timeo = TX_TIMEOUT;
if (IS_VF(edev)) {
if (edev->dev_info.xdp_supported)
ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
else
ndev->netdev_ops = &qede_netdev_vf_ops;
} else {
ndev->netdev_ops = &qede_netdev_ops;
}
qede_set_ethtool_ops(ndev);
ndev->priv_flags |= IFF_UNICAST_FLT;
/* user-changeble features */
hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
if (edev->dev_info.common.b_arfs_capable)
hw_features |= NETIF_F_NTUPLE;
if (edev->dev_info.common.vxlan_enable ||
edev->dev_info.common.geneve_enable)
udp_tunnel_enable = true;
if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
hw_features |= NETIF_F_TSO_ECN;
ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_SG | NETIF_F_TSO |
NETIF_F_TSO_ECN | NETIF_F_TSO6 |
NETIF_F_RXCSUM;
}
if (udp_tunnel_enable) {
hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM);
ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM);
qede_set_udp_tunnels(edev);
}
if (edev->dev_info.common.gre_enable) {
hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
NETIF_F_GSO_GRE_CSUM);
}
ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
NETIF_F_HIGHDMA;
ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
ndev->hw_features = hw_features;
/* MTU range: 46 - 9600 */
ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
/* Set network device HW mac */
eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
ndev->mtu = edev->dev_info.common.mtu;
}
/* This function converts from 32b param to two params of level and module
* Input 32b decoding:
* b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
* 'happy' flow, e.g. memory allocation failed.
* b30 - enable all INFO prints. INFO prints are for major steps in the flow
* and provide important parameters.
* b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
* module. VERBOSE prints are for tracking the specific flow in low level.
*
* Notice that the level should be that of the lowest required logs.
*/
void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
{
*p_dp_level = QED_LEVEL_NOTICE;
*p_dp_module = 0;
if (debug & QED_LOG_VERBOSE_MASK) {
*p_dp_level = QED_LEVEL_VERBOSE;
*p_dp_module = (debug & 0x3FFFFFFF);
} else if (debug & QED_LOG_INFO_MASK) {
*p_dp_level = QED_LEVEL_INFO;
} else if (debug & QED_LOG_NOTICE_MASK) {
*p_dp_level = QED_LEVEL_NOTICE;
}
}
static void qede_free_fp_array(struct qede_dev *edev)
{
if (edev->fp_array) {
struct qede_fastpath *fp;
int i;
for_each_queue(i) {
fp = &edev->fp_array[i];
kfree(fp->sb_info);
/* Handle mem alloc failure case where qede_init_fp
* didn't register xdp_rxq_info yet.
* Implicit only (fp->type & QEDE_FASTPATH_RX)
*/
if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
kfree(fp->rxq);
kfree(fp->xdp_tx);
kfree(fp->txq);
}
kfree(edev->fp_array);
}
edev->num_queues = 0;
edev->fp_num_tx = 0;
edev->fp_num_rx = 0;
}
static int qede_alloc_fp_array(struct qede_dev *edev)
{
u8 fp_combined, fp_rx = edev->fp_num_rx;
struct qede_fastpath *fp;
void *mem;
int i;
edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
sizeof(*edev->fp_array), GFP_KERNEL);
if (!edev->fp_array) {
DP_NOTICE(edev, "fp array allocation failed\n");
goto err;
}
mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
sizeof(*edev->coal_entry), GFP_KERNEL);
if (!mem) {
DP_ERR(edev, "coalesce entry allocation failed\n");
kfree(edev->coal_entry);
goto err;
}
edev->coal_entry = mem;
fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
/* Allocate the FP elements for Rx queues followed by combined and then
* the Tx. This ordering should be maintained so that the respective
* queues (Rx or Tx) will be together in the fastpath array and the
* associated ids will be sequential.
*/
for_each_queue(i) {
fp = &edev->fp_array[i];
fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
if (!fp->sb_info) {
DP_NOTICE(edev, "sb info struct allocation failed\n");
goto err;
}
if (fp_rx) {
fp->type = QEDE_FASTPATH_RX;
fp_rx--;
} else if (fp_combined) {
fp->type = QEDE_FASTPATH_COMBINED;
fp_combined--;
} else {
fp->type = QEDE_FASTPATH_TX;
}
if (fp->type & QEDE_FASTPATH_TX) {
fp->txq = kcalloc(edev->dev_info.num_tc,
sizeof(*fp->txq), GFP_KERNEL);
if (!fp->txq)
goto err;
}
if (fp->type & QEDE_FASTPATH_RX) {
fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
if (!fp->rxq)
goto err;
if (edev->xdp_prog) {
fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
GFP_KERNEL);
if (!fp->xdp_tx)
goto err;
fp->type |= QEDE_FASTPATH_XDP;
}
}
}
return 0;
err:
qede_free_fp_array(edev);
return -ENOMEM;
}
/* The qede lock is used to protect driver state change and driver flows that
* are not reentrant.
*/
void __qede_lock(struct qede_dev *edev)
{
mutex_lock(&edev->qede_lock);
}
void __qede_unlock(struct qede_dev *edev)
{
mutex_unlock(&edev->qede_lock);
}
/* This version of the lock should be used when acquiring the RTNL lock is also
* needed in addition to the internal qede lock.
*/
static void qede_lock(struct qede_dev *edev)
{
rtnl_lock();
__qede_lock(edev);
}
static void qede_unlock(struct qede_dev *edev)
{
__qede_unlock(edev);
rtnl_unlock();
}
static void qede_sp_task(struct work_struct *work)
{
struct qede_dev *edev = container_of(work, struct qede_dev,
sp_task.work);
/* Disable execution of this deferred work once
* qede removal is in progress, this stop any future
* scheduling of sp_task.
*/
if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
return;
/* The locking scheme depends on the specific flag:
* In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
* ensure that ongoing flows are ended and new ones are not started.
* In other cases - only the internal qede lock should be acquired.
*/
if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
#ifdef CONFIG_QED_SRIOV
/* SRIOV must be disabled outside the lock to avoid a deadlock.
* The recovery of the active VFs is currently not supported.
*/
if (pci_num_vf(edev->pdev))
qede_sriov_configure(edev->pdev, 0);
#endif
qede_lock(edev);
qede_recovery_handler(edev);
qede_unlock(edev);
}
__qede_lock(edev);
if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
if (edev->state == QEDE_STATE_OPEN)
qede_config_rx_mode(edev->ndev);
#ifdef CONFIG_RFS_ACCEL
if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
if (edev->state == QEDE_STATE_OPEN)
qede_process_arfs_filters(edev, false);
}
#endif
if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
qede_generic_hw_err_handler(edev);
__qede_unlock(edev);
if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
#ifdef CONFIG_QED_SRIOV
/* SRIOV must be disabled outside the lock to avoid a deadlock.
* The recovery of the active VFs is currently not supported.
*/
if (pci_num_vf(edev->pdev))
qede_sriov_configure(edev->pdev, 0);
#endif
edev->ops->common->recovery_process(edev->cdev);
}
}
static void qede_update_pf_params(struct qed_dev *cdev)
{
struct qed_pf_params pf_params;
u16 num_cons;
/* 64 rx + 64 tx + 64 XDP */
memset(&pf_params, 0, sizeof(struct qed_pf_params));
/* 1 rx + 1 xdp + max tx cos */
num_cons = QED_MIN_L2_CONS;
pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
/* Same for VFs - make sure they'll have sufficient connections
* to support XDP Tx queues.
*/
pf_params.eth_pf_params.num_vf_cons = 48;
pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
qed_ops->common->update_pf_params(cdev, &pf_params);
}
#define QEDE_FW_VER_STR_SIZE 80
static void qede_log_probe(struct qede_dev *edev)
{
struct qed_dev_info *p_dev_info = &edev->dev_info.common;
u8 buf[QEDE_FW_VER_STR_SIZE];
size_t left_size;
snprintf(buf, QEDE_FW_VER_STR_SIZE,
"Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
p_dev_info->fw_eng,
(p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
QED_MFW_VERSION_3_OFFSET,
(p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
QED_MFW_VERSION_2_OFFSET,
(p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
QED_MFW_VERSION_1_OFFSET,
(p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
QED_MFW_VERSION_0_OFFSET);
left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
if (p_dev_info->mbi_version && left_size)
snprintf(buf + strlen(buf), left_size,
" [MBI %d.%d.%d]",
(p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
QED_MBI_VERSION_2_OFFSET,
(p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
QED_MBI_VERSION_1_OFFSET,
(p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
QED_MBI_VERSION_0_OFFSET);
pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
buf, edev->ndev->name);
}
enum qede_probe_mode {
QEDE_PROBE_NORMAL,
QEDE_PROBE_RECOVERY,
};
static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
bool is_vf, enum qede_probe_mode mode)
{
struct qed_probe_params probe_params;
struct qed_slowpath_params sp_params;
struct qed_dev_eth_info dev_info;
struct qede_dev *edev;
struct qed_dev *cdev;
int rc;
if (unlikely(dp_level & QED_LEVEL_INFO))
pr_notice("Starting qede probe\n");
memset(&probe_params, 0, sizeof(probe_params));
probe_params.protocol = QED_PROTOCOL_ETH;
probe_params.dp_module = dp_module;
probe_params.dp_level = dp_level;
probe_params.is_vf = is_vf;
probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
cdev = qed_ops->common->probe(pdev, &probe_params);
if (!cdev) {
rc = -ENODEV;
goto err0;
}
qede_update_pf_params(cdev);
/* Start the Slowpath-process */
memset(&sp_params, 0, sizeof(sp_params));
sp_params.int_mode = QED_INT_MODE_MSIX;
strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
rc = qed_ops->common->slowpath_start(cdev, &sp_params);
if (rc) {
pr_notice("Cannot start slowpath\n");
goto err1;
}
/* Learn information crucial for qede to progress */
rc = qed_ops->fill_dev_info(cdev, &dev_info);
if (rc)
goto err2;
if (mode != QEDE_PROBE_RECOVERY) {
edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
dp_level);
if (!edev) {
rc = -ENOMEM;
goto err2;
}
edev->devlink = qed_ops->common->devlink_register(cdev);
if (IS_ERR(edev->devlink)) {
DP_NOTICE(edev, "Cannot register devlink\n");
rc = PTR_ERR(edev->devlink);
edev->devlink = NULL;
goto err3;
}
} else {
struct net_device *ndev = pci_get_drvdata(pdev);
struct qed_devlink *qdl;
edev = netdev_priv(ndev);
qdl = devlink_priv(edev->devlink);
qdl->cdev = cdev;
edev->cdev = cdev;
memset(&edev->stats, 0, sizeof(edev->stats));
memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
}
if (is_vf)
set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
qede_init_ndev(edev);
rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
if (rc)
goto err3;
if (mode != QEDE_PROBE_RECOVERY) {
/* Prepare the lock prior to the registration of the netdev,
* as once it's registered we might reach flows requiring it
* [it's even possible to reach a flow needing it directly
* from there, although it's unlikely].
*/
INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
mutex_init(&edev->qede_lock);
rc = register_netdev(edev->ndev);
if (rc) {
DP_NOTICE(edev, "Cannot register net-device\n");
goto err4;
}
}
edev->ops->common->set_name(cdev, edev->ndev->name);
/* PTP not supported on VFs */
if (!is_vf)
qede_ptp_enable(edev);
edev->ops->register_ops(cdev, &qede_ll_ops, edev);
#ifdef CONFIG_DCB
if (!IS_VF(edev))
qede_set_dcbnl_ops(edev->ndev);
#endif
edev->rx_copybreak = QEDE_RX_HDR_SIZE;
qede_log_probe(edev);
return 0;
err4:
qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
err3:
if (mode != QEDE_PROBE_RECOVERY)
free_netdev(edev->ndev);
else
edev->cdev = NULL;
err2:
qed_ops->common->slowpath_stop(cdev);
err1:
qed_ops->common->remove(cdev);
err0:
return rc;
}
static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
bool is_vf = false;
u32 dp_module = 0;
u8 dp_level = 0;
switch ((enum qede_pci_private)id->driver_data) {
case QEDE_PRIVATE_VF:
if (debug & QED_LOG_VERBOSE_MASK)
dev_err(&pdev->dev, "Probing a VF\n");
is_vf = true;
break;
default:
if (debug & QED_LOG_VERBOSE_MASK)
dev_err(&pdev->dev, "Probing a PF\n");
}
qede_config_debug(debug, &dp_module, &dp_level);
return __qede_probe(pdev, dp_module, dp_level, is_vf,
QEDE_PROBE_NORMAL);
}
enum qede_remove_mode {
QEDE_REMOVE_NORMAL,
QEDE_REMOVE_RECOVERY,
};
static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct qede_dev *edev;
struct qed_dev *cdev;
if (!ndev) {
dev_info(&pdev->dev, "Device has already been removed\n");
return;
}
edev = netdev_priv(ndev);
cdev = edev->cdev;
DP_INFO(edev, "Starting qede_remove\n");
qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
if (mode != QEDE_REMOVE_RECOVERY) {
set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
unregister_netdev(ndev);
cancel_delayed_work_sync(&edev->sp_task);
edev->ops->common->set_power_state(cdev, PCI_D0);
pci_set_drvdata(pdev, NULL);
}
qede_ptp_disable(edev);
/* Use global ops since we've freed edev */
qed_ops->common->slowpath_stop(cdev);
if (system_state == SYSTEM_POWER_OFF)
return;
if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
qed_ops->common->devlink_unregister(edev->devlink);
edev->devlink = NULL;
}
qed_ops->common->remove(cdev);
edev->cdev = NULL;
/* Since this can happen out-of-sync with other flows,
* don't release the netdevice until after slowpath stop
* has been called to guarantee various other contexts
* [e.g., QED register callbacks] won't break anything when
* accessing the netdevice.
*/
if (mode != QEDE_REMOVE_RECOVERY) {
kfree(edev->coal_entry);
free_netdev(ndev);
}
dev_info(&pdev->dev, "Ending qede_remove successfully\n");
}
static void qede_remove(struct pci_dev *pdev)
{
__qede_remove(pdev, QEDE_REMOVE_NORMAL);
}
static void qede_shutdown(struct pci_dev *pdev)
{
__qede_remove(pdev, QEDE_REMOVE_NORMAL);
}
/* -------------------------------------------------------------------------
* START OF LOAD / UNLOAD
* -------------------------------------------------------------------------
*/
static int qede_set_num_queues(struct qede_dev *edev)
{
int rc;
u16 rss_num;
/* Setup queues according to possible resources*/
if (edev->req_queues)
rss_num = edev->req_queues;
else
rss_num = netif_get_num_default_rss_queues() *
edev->dev_info.common.num_hwfns;
rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
if (rc > 0) {
/* Managed to request interrupts for our queues */
edev->num_queues = rc;
DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
QEDE_QUEUE_CNT(edev), rss_num);
rc = 0;
}
edev->fp_num_tx = edev->req_num_tx;
edev->fp_num_rx = edev->req_num_rx;
return rc;
}
static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
u16 sb_id)
{
if (sb_info->sb_virt) {
edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
QED_SB_TYPE_L2_QUEUE);
dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
(void *)sb_info->sb_virt, sb_info->sb_phys);
memset(sb_info, 0, sizeof(*sb_info));
}
}
/* This function allocates fast-path status block memory */
static int qede_alloc_mem_sb(struct qede_dev *edev,
struct qed_sb_info *sb_info, u16 sb_id)
{
struct status_block *sb_virt;
dma_addr_t sb_phys;
int rc;
sb_virt = dma_alloc_coherent(&edev->pdev->dev,
sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
if (!sb_virt) {
DP_ERR(edev, "Status block allocation failed\n");
return -ENOMEM;
}
rc = edev->ops->common->sb_init(edev->cdev, sb_info,
sb_virt, sb_phys, sb_id,
QED_SB_TYPE_L2_QUEUE);
if (rc) {
DP_ERR(edev, "Status block initialization failed\n");
dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
sb_virt, sb_phys);
return rc;
}
return 0;
}
static void qede_free_rx_buffers(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
u16 i;
for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
struct sw_rx_data *rx_buf;
struct page *data;
rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
data = rx_buf->data;
dma_unmap_page(&edev->pdev->dev,
rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
rx_buf->data = NULL;
__free_page(data);
}
}
static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
{
/* Free rx buffers */
qede_free_rx_buffers(edev, rxq);
/* Free the parallel SW ring */
kfree(rxq->sw_rx_ring);
/* Free the real RQ ring used by FW */
edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
}
static void qede_set_tpa_param(struct qede_rx_queue *rxq)
{
int i;
for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
tpa_info->state = QEDE_AGG_STATE_NONE;
}
}
/* This function allocates all memory needed per Rx queue */
static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
{
struct qed_chain_init_params params = {
.cnt_type = QED_CHAIN_CNT_TYPE_U16,
.num_elems = RX_RING_SIZE,
};
struct qed_dev *cdev = edev->cdev;
int i, rc, size;
rxq->num_rx_buffers = edev->q_num_rx_buffers;
rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
size = rxq->rx_headroom +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
/* Make sure that the headroom and payload fit in a single page */
if (rxq->rx_buf_size + size > PAGE_SIZE)
rxq->rx_buf_size = PAGE_SIZE - size;
/* Segment size to split a page in multiple equal parts,
* unless XDP is used in which case we'd use the entire page.
*/
if (!edev->xdp_prog) {
size = size + rxq->rx_buf_size;
rxq->rx_buf_seg_size = roundup_pow_of_two(size);
} else {
rxq->rx_buf_seg_size = PAGE_SIZE;
edev->ndev->features &= ~NETIF_F_GRO_HW;
}
/* Allocate the parallel driver ring for Rx buffers */
size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
if (!rxq->sw_rx_ring) {
DP_ERR(edev, "Rx buffers ring allocation failed\n");
rc = -ENOMEM;
goto err;
}
/* Allocate FW Rx ring */
params.mode = QED_CHAIN_MODE_NEXT_PTR;
params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
params.elem_size = sizeof(struct eth_rx_bd);
rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
if (rc)
goto err;
/* Allocate FW completion ring */
params.mode = QED_CHAIN_MODE_PBL;
params.intended_use = QED_CHAIN_USE_TO_CONSUME;
params.elem_size = sizeof(union eth_rx_cqe);
rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
if (rc)
goto err;
/* Allocate buffers for the Rx ring */
rxq->filled_buffers = 0;
for (i = 0; i < rxq->num_rx_buffers; i++) {
rc = qede_alloc_rx_buffer(rxq, false);
if (rc) {
DP_ERR(edev,
"Rx buffers allocation failed at index %d\n", i);
goto err;
}
}
edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
if (!edev->gro_disable)
qede_set_tpa_param(rxq);
err:
return rc;
}
static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
{
/* Free the parallel SW ring */
if (txq->is_xdp)
kfree(txq->sw_tx_ring.xdp);
else
kfree(txq->sw_tx_ring.skbs);
/* Free the real RQ ring used by FW */
edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
}
/* This function allocates all memory needed per Tx queue */
static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
{
struct qed_chain_init_params params = {
.mode = QED_CHAIN_MODE_PBL,
.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
.cnt_type = QED_CHAIN_CNT_TYPE_U16,
.num_elems = edev->q_num_tx_buffers,
.elem_size = sizeof(union eth_tx_bd_types),
};
int size, rc;
txq->num_tx_buffers = edev->q_num_tx_buffers;
/* Allocate the parallel driver ring for Tx buffers */
if (txq->is_xdp) {
size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
if (!txq->sw_tx_ring.xdp)
goto err;
} else {
size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
if (!txq->sw_tx_ring.skbs)
goto err;
}
rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
if (rc)
goto err;
return 0;
err:
qede_free_mem_txq(edev, txq);
return -ENOMEM;
}
/* This function frees all memory of a single fp */
static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
{
qede_free_mem_sb(edev, fp->sb_info, fp->id);
if (fp->type & QEDE_FASTPATH_RX)
qede_free_mem_rxq(edev, fp->rxq);
if (fp->type & QEDE_FASTPATH_XDP)
qede_free_mem_txq(edev, fp->xdp_tx);
if (fp->type & QEDE_FASTPATH_TX) {
int cos;
for_each_cos_in_txq(edev, cos)
qede_free_mem_txq(edev, &fp->txq[cos]);
}
}
/* This function allocates all memory needed for a single fp (i.e. an entity
* which contains status block, one rx queue and/or multiple per-TC tx queues.
*/
static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
{
int rc = 0;
rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
if (rc)
goto out;
if (fp->type & QEDE_FASTPATH_RX) {
rc = qede_alloc_mem_rxq(edev, fp->rxq);
if (rc)
goto out;
}
if (fp->type & QEDE_FASTPATH_XDP) {
rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
if (rc)
goto out;
}
if (fp->type & QEDE_FASTPATH_TX) {
int cos;
for_each_cos_in_txq(edev, cos) {
rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
if (rc)
goto out;
}
}
out:
return rc;
}
static void qede_free_mem_load(struct qede_dev *edev)
{
int i;
for_each_queue(i) {
struct qede_fastpath *fp = &edev->fp_array[i];
qede_free_mem_fp(edev, fp);
}
}
/* This function allocates all qede memory at NIC load. */
static int qede_alloc_mem_load(struct qede_dev *edev)
{
int rc = 0, queue_id;
for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
struct qede_fastpath *fp = &edev->fp_array[queue_id];
rc = qede_alloc_mem_fp(edev, fp);
if (rc) {
DP_ERR(edev,
"Failed to allocate memory for fastpath - rss id = %d\n",
queue_id);
qede_free_mem_load(edev);
return rc;
}
}
return 0;
}
static void qede_empty_tx_queue(struct qede_dev *edev,
struct qede_tx_queue *txq)
{
unsigned int pkts_compl = 0, bytes_compl = 0;
struct netdev_queue *netdev_txq;
int rc, len = 0;
netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
qed_chain_get_prod_idx(&txq->tx_pbl)) {
DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
"Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
qed_chain_get_prod_idx(&txq->tx_pbl));
rc = qede_free_tx_pkt(edev, txq, &len);
if (rc) {
DP_NOTICE(edev,
"Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
txq->index,
qed_chain_get_cons_idx(&txq->tx_pbl),
qed_chain_get_prod_idx(&txq->tx_pbl));
break;
}
bytes_compl += len;
pkts_compl++;
txq->sw_tx_cons++;
}
netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
}
static void qede_empty_tx_queues(struct qede_dev *edev)
{
int i;
for_each_queue(i)
if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
int cos;
for_each_cos_in_txq(edev, cos) {
struct qede_fastpath *fp;
fp = &edev->fp_array[i];
qede_empty_tx_queue(edev,
&fp->txq[cos]);
}
}
}
/* This function inits fp content and resets the SB, RXQ and TXQ structures */
static void qede_init_fp(struct qede_dev *edev)
{
int queue_id, rxq_index = 0, txq_index = 0;
struct qede_fastpath *fp;
bool init_xdp = false;
for_each_queue(queue_id) {
fp = &edev->fp_array[queue_id];
fp->edev = edev;
fp->id = queue_id;
if (fp->type & QEDE_FASTPATH_XDP) {
fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
rxq_index);
fp->xdp_tx->is_xdp = 1;
spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
init_xdp = true;
}
if (fp->type & QEDE_FASTPATH_RX) {
fp->rxq->rxq_id = rxq_index++;
/* Determine how to map buffers for this queue */
if (fp->type & QEDE_FASTPATH_XDP)
fp->rxq->data_direction = DMA_BIDIRECTIONAL;
else
fp->rxq->data_direction = DMA_FROM_DEVICE;
fp->rxq->dev = &edev->pdev->dev;
/* Driver have no error path from here */
WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
fp->rxq->rxq_id, 0) < 0);
if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
MEM_TYPE_PAGE_ORDER0,
NULL)) {
DP_NOTICE(edev,
"Failed to register XDP memory model\n");
}
}
if (fp->type & QEDE_FASTPATH_TX) {
int cos;
for_each_cos_in_txq(edev, cos) {
struct qede_tx_queue *txq = &fp->txq[cos];
u16 ndev_tx_id;
txq->cos = cos;
txq->index = txq_index;
ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
txq->ndev_txq_id = ndev_tx_id;
if (edev->dev_info.is_legacy)
txq->is_legacy = true;
txq->dev = &edev->pdev->dev;
}
txq_index++;
}
snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
edev->ndev->name, queue_id);
}
if (init_xdp) {
edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
}
}
static int qede_set_real_num_queues(struct qede_dev *edev)
{
int rc = 0;
rc = netif_set_real_num_tx_queues(edev->ndev,
QEDE_TSS_COUNT(edev) *
edev->dev_info.num_tc);
if (rc) {
DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
return rc;
}
rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
if (rc) {
DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
return rc;
}
return 0;
}
static void qede_napi_disable_remove(struct qede_dev *edev)
{
int i;
for_each_queue(i) {
napi_disable(&edev->fp_array[i].napi);
netif_napi_del(&edev->fp_array[i].napi);
}
}
static void qede_napi_add_enable(struct qede_dev *edev)
{
int i;
/* Add NAPI objects */
for_each_queue(i) {
netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
qede_poll, NAPI_POLL_WEIGHT);
napi_enable(&edev->fp_array[i].napi);
}
}
static void qede_sync_free_irqs(struct qede_dev *edev)
{
int i;
for (i = 0; i < edev->int_info.used_cnt; i++) {
if (edev->int_info.msix_cnt) {
synchronize_irq(edev->int_info.msix[i].vector);
free_irq(edev->int_info.msix[i].vector,
&edev->fp_array[i]);
} else {
edev->ops->common->simd_handler_clean(edev->cdev, i);
}
}
edev->int_info.used_cnt = 0;
edev->int_info.msix_cnt = 0;
}
static int qede_req_msix_irqs(struct qede_dev *edev)
{
int i, rc;
/* Sanitize number of interrupts == number of prepared RSS queues */
if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
DP_ERR(edev,
"Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
return -EINVAL;
}
for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
#ifdef CONFIG_RFS_ACCEL
struct qede_fastpath *fp = &edev->fp_array[i];
if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
edev->int_info.msix[i].vector);
if (rc) {
DP_ERR(edev, "Failed to add CPU rmap\n");
qede_free_arfs(edev);
}
}
#endif
rc = request_irq(edev->int_info.msix[i].vector,
qede_msix_fp_int, 0, edev->fp_array[i].name,
&edev->fp_array[i]);
if (rc) {
DP_ERR(edev, "Request fp %d irq failed\n", i);
#ifdef CONFIG_RFS_ACCEL
if (edev->ndev->rx_cpu_rmap)
free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
edev->ndev->rx_cpu_rmap = NULL;
#endif
qede_sync_free_irqs(edev);
return rc;
}
DP_VERBOSE(edev, NETIF_MSG_INTR,
"Requested fp irq for %s [entry %d]. Cookie is at %p\n",
edev->fp_array[i].name, i,
&edev->fp_array[i]);
edev->int_info.used_cnt++;
}
return 0;
}
static void qede_simd_fp_handler(void *cookie)
{
struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
napi_schedule_irqoff(&fp->napi);
}
static int qede_setup_irqs(struct qede_dev *edev)
{
int i, rc = 0;
/* Learn Interrupt configuration */
rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
if (rc)
return rc;
if (edev->int_info.msix_cnt) {
rc = qede_req_msix_irqs(edev);
if (rc)
return rc;
edev->ndev->irq = edev->int_info.msix[0].vector;
} else {
const struct qed_common_ops *ops;
/* qed should learn receive the RSS ids and callbacks */
ops = edev->ops->common;
for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
ops->simd_handler_config(edev->cdev,
&edev->fp_array[i], i,
qede_simd_fp_handler);
edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
}
return 0;
}
static int qede_drain_txq(struct qede_dev *edev,
struct qede_tx_queue *txq, bool allow_drain)
{
int rc, cnt = 1000;
while (txq->sw_tx_cons != txq->sw_tx_prod) {
if (!cnt) {
if (allow_drain) {
DP_NOTICE(edev,
"Tx queue[%d] is stuck, requesting MCP to drain\n",
txq->index);
rc = edev->ops->common->drain(edev->cdev);
if (rc)
return rc;
return qede_drain_txq(edev, txq, false);
}
DP_NOTICE(edev,
"Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
txq->index, txq->sw_tx_prod,
txq->sw_tx_cons);
return -ENODEV;
}
cnt--;
usleep_range(1000, 2000);
barrier();
}
/* FW finished processing, wait for HW to transmit all tx packets */
usleep_range(1000, 2000);
return 0;
}
static int qede_stop_txq(struct qede_dev *edev,
struct qede_tx_queue *txq, int rss_id)
{
/* delete doorbell from doorbell recovery mechanism */
edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
&txq->tx_db);
return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
}
static int qede_stop_queues(struct qede_dev *edev)
{
struct qed_update_vport_params *vport_update_params;
struct qed_dev *cdev = edev->cdev;
struct qede_fastpath *fp;
int rc, i;
/* Disable the vport */
vport_update_params = vzalloc(sizeof(*vport_update_params));
if (!vport_update_params)
return -ENOMEM;
vport_update_params->vport_id = 0;
vport_update_params->update_vport_active_flg = 1;
vport_update_params->vport_active_flg = 0;
vport_update_params->update_rss_flg = 0;
rc = edev->ops->vport_update(cdev, vport_update_params);
vfree(vport_update_params);
if (rc) {
DP_ERR(edev, "Failed to update vport\n");
return rc;
}
/* Flush Tx queues. If needed, request drain from MCP */
for_each_queue(i) {
fp = &edev->fp_array[i];
if (fp->type & QEDE_FASTPATH_TX) {
int cos;
for_each_cos_in_txq(edev, cos) {
rc = qede_drain_txq(edev, &fp->txq[cos], true);
if (rc)
return rc;
}
}
if (fp->type & QEDE_FASTPATH_XDP) {
rc = qede_drain_txq(edev, fp->xdp_tx, true);
if (rc)
return rc;
}
}
/* Stop all Queues in reverse order */
for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
fp = &edev->fp_array[i];
/* Stop the Tx Queue(s) */
if (fp->type & QEDE_FASTPATH_TX) {
int cos;
for_each_cos_in_txq(edev, cos) {
rc = qede_stop_txq(edev, &fp->txq[cos], i);
if (rc)
return rc;
}
}
/* Stop the Rx Queue */
if (fp->type & QEDE_FASTPATH_RX) {
rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
if (rc) {
DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
return rc;
}
}
/* Stop the XDP forwarding queue */
if (fp->type & QEDE_FASTPATH_XDP) {
rc = qede_stop_txq(edev, fp->xdp_tx, i);
if (rc)
return rc;
bpf_prog_put(fp->rxq->xdp_prog);
}
}
/* Stop the vport */
rc = edev->ops->vport_stop(cdev, 0);
if (rc)
DP_ERR(edev, "Failed to stop VPORT\n");
return rc;
}
static int qede_start_txq(struct qede_dev *edev,
struct qede_fastpath *fp,
struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
{
dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
struct qed_queue_start_common_params params;
struct qed_txq_start_ret_params ret_params;
int rc;
memset(&params, 0, sizeof(params));
memset(&ret_params, 0, sizeof(ret_params));
/* Let the XDP queue share the queue-zone with one of the regular txq.
* We don't really care about its coalescing.
*/
if (txq->is_xdp)
params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
else
params.queue_id = txq->index;
params.p_sb = fp->sb_info;
params.sb_idx = sb_idx;
params.tc = txq->cos;
rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
page_cnt, &ret_params);
if (rc) {
DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
return rc;
}
txq->doorbell_addr = ret_params.p_doorbell;
txq->handle = ret_params.p_handle;
/* Determine the FW consumer address associated */
txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
/* Prepare the doorbell parameters */
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
DQ_XCM_ETH_TX_BD_PROD_CMD);
txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
/* register doorbell with doorbell recovery mechanism */
rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
&txq->tx_db, DB_REC_WIDTH_32B,
DB_REC_KERNEL);
return rc;
}
static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
{
int vlan_removal_en = 1;
struct qed_dev *cdev = edev->cdev;
struct qed_dev_info *qed_info = &edev->dev_info.common;
struct qed_update_vport_params *vport_update_params;
struct qed_queue_start_common_params q_params;
struct qed_start_vport_params start = {0};
int rc, i;
if (!edev->num_queues) {
DP_ERR(edev,
"Cannot update V-VPORT as active as there are no Rx queues\n");
return -EINVAL;
}
vport_update_params = vzalloc(sizeof(*vport_update_params));
if (!vport_update_params)
return -ENOMEM;
start.handle_ptp_pkts = !!(edev->ptp);
start.gro_enable = !edev->gro_disable;
start.mtu = edev->ndev->mtu;
start.vport_id = 0;
start.drop_ttl0 = true;
start.remove_inner_vlan = vlan_removal_en;
start.clear_stats = clear_stats;
rc = edev->ops->vport_start(cdev, &start);
if (rc) {
DP_ERR(edev, "Start V-PORT failed %d\n", rc);
goto out;
}
DP_VERBOSE(edev, NETIF_MSG_IFUP,
"Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
for_each_queue(i) {
struct qede_fastpath *fp = &edev->fp_array[i];
dma_addr_t p_phys_table;
u32 page_cnt;
if (fp->type & QEDE_FASTPATH_RX) {
struct qed_rxq_start_ret_params ret_params;
struct qede_rx_queue *rxq = fp->rxq;
__le16 *val;
memset(&ret_params, 0, sizeof(ret_params));
memset(&q_params, 0, sizeof(q_params));
q_params.queue_id = rxq->rxq_id;
q_params.vport_id = 0;
q_params.p_sb = fp->sb_info;
q_params.sb_idx = RX_PI;
p_phys_table =
qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
rc = edev->ops->q_rx_start(cdev, i, &q_params,
rxq->rx_buf_size,
rxq->rx_bd_ring.p_phys_addr,
p_phys_table,
page_cnt, &ret_params);
if (rc) {
DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
rc);
goto out;
}
/* Use the return parameters */
rxq->hw_rxq_prod_addr = ret_params.p_prod;
rxq->handle = ret_params.p_handle;
val = &fp->sb_info->sb_virt->pi_array[RX_PI];
rxq->hw_cons_ptr = val;
qede_update_rx_prod(edev, rxq);
}
if (fp->type & QEDE_FASTPATH_XDP) {
rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
if (rc)
goto out;
bpf_prog_add(edev->xdp_prog, 1);
fp->rxq->xdp_prog = edev->xdp_prog;
}
if (fp->type & QEDE_FASTPATH_TX) {
int cos;
for_each_cos_in_txq(edev, cos) {
rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
TX_PI(cos));
if (rc)
goto out;
}
}
}
/* Prepare and send the vport enable */
vport_update_params->vport_id = start.vport_id;
vport_update_params->update_vport_active_flg = 1;
vport_update_params->vport_active_flg = 1;
if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
qed_info->tx_switching) {
vport_update_params->update_tx_switching_flg = 1;
vport_update_params->tx_switching_flg = 1;
}
qede_fill_rss_params(edev, &vport_update_params->rss_params,
&vport_update_params->update_rss_flg);
rc = edev->ops->vport_update(cdev, vport_update_params);
if (rc)
DP_ERR(edev, "Update V-PORT failed %d\n", rc);
out:
vfree(vport_update_params);
return rc;
}
enum qede_unload_mode {
QEDE_UNLOAD_NORMAL,
QEDE_UNLOAD_RECOVERY,
};
static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
bool is_locked)
{
struct qed_link_params link_params;
int rc;
DP_INFO(edev, "Starting qede unload\n");
if (!is_locked)
__qede_lock(edev);
clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
if (mode != QEDE_UNLOAD_RECOVERY)
edev->state = QEDE_STATE_CLOSED;
qede_rdma_dev_event_close(edev);
/* Close OS Tx */
netif_tx_disable(edev->ndev);
netif_carrier_off(edev->ndev);
if (mode != QEDE_UNLOAD_RECOVERY) {
/* Reset the link */
memset(&link_params, 0, sizeof(link_params));
link_params.link_up = false;
edev->ops->common->set_link(edev->cdev, &link_params);
rc = qede_stop_queues(edev);
if (rc) {
#ifdef CONFIG_RFS_ACCEL
if (edev->dev_info.common.b_arfs_capable) {
qede_poll_for_freeing_arfs_filters(edev);
if (edev->ndev->rx_cpu_rmap)
free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
edev->ndev->rx_cpu_rmap = NULL;
}
#endif
qede_sync_free_irqs(edev);
goto out;
}
DP_INFO(edev, "Stopped Queues\n");
}
qede_vlan_mark_nonconfigured(edev);
edev->ops->fastpath_stop(edev->cdev);
if (edev->dev_info.common.b_arfs_capable) {
qede_poll_for_freeing_arfs_filters(edev);
qede_free_arfs(edev);
}
/* Release the interrupts */
qede_sync_free_irqs(edev);
edev->ops->common->set_fp_int(edev->cdev, 0);
qede_napi_disable_remove(edev);
if (mode == QEDE_UNLOAD_RECOVERY)
qede_empty_tx_queues(edev);
qede_free_mem_load(edev);
qede_free_fp_array(edev);
out:
if (!is_locked)
__qede_unlock(edev);
if (mode != QEDE_UNLOAD_RECOVERY)
DP_NOTICE(edev, "Link is down\n");
edev->ptp_skip_txts = 0;
DP_INFO(edev, "Ending qede unload\n");
}
enum qede_load_mode {
QEDE_LOAD_NORMAL,
QEDE_LOAD_RELOAD,
QEDE_LOAD_RECOVERY,
};
static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
bool is_locked)
{
struct qed_link_params link_params;
struct ethtool_coalesce coal = {};
u8 num_tc;
int rc, i;
DP_INFO(edev, "Starting qede load\n");
if (!is_locked)
__qede_lock(edev);
rc = qede_set_num_queues(edev);
if (rc)
goto out;
rc = qede_alloc_fp_array(edev);
if (rc)
goto out;
qede_init_fp(edev);
rc = qede_alloc_mem_load(edev);
if (rc)
goto err1;
DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
rc = qede_set_real_num_queues(edev);
if (rc)
goto err2;
if (qede_alloc_arfs(edev)) {
edev->ndev->features &= ~NETIF_F_NTUPLE;
edev->dev_info.common.b_arfs_capable = false;
}
qede_napi_add_enable(edev);
DP_INFO(edev, "Napi added and enabled\n");
rc = qede_setup_irqs(edev);
if (rc)
goto err3;
DP_INFO(edev, "Setup IRQs succeeded\n");
rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
if (rc)
goto err4;
DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
num_tc = netdev_get_num_tc(edev->ndev);
num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
qede_setup_tc(edev->ndev, num_tc);
/* Program un-configured VLANs */
qede_configure_vlan_filters(edev);
set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
/* Ask for link-up using current configuration */
memset(&link_params, 0, sizeof(link_params));
link_params.link_up = true;
edev->ops->common->set_link(edev->cdev, &link_params);
edev->state = QEDE_STATE_OPEN;
coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
for_each_queue(i) {
if (edev->coal_entry[i].isvalid) {
coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
}
__qede_unlock(edev);
qede_set_per_coalesce(edev->ndev, i, &coal);
__qede_lock(edev);
}
DP_INFO(edev, "Ending successfully qede load\n");
goto out;
err4:
qede_sync_free_irqs(edev);
err3:
qede_napi_disable_remove(edev);
err2:
qede_free_mem_load(edev);
err1:
edev->ops->common->set_fp_int(edev->cdev, 0);
qede_free_fp_array(edev);
edev->num_queues = 0;
edev->fp_num_tx = 0;
edev->fp_num_rx = 0;
out:
if (!is_locked)
__qede_unlock(edev);
return rc;
}
/* 'func' should be able to run between unload and reload assuming interface
* is actually running, or afterwards in case it's currently DOWN.
*/
void qede_reload(struct qede_dev *edev,
struct qede_reload_args *args, bool is_locked)
{
if (!is_locked)
__qede_lock(edev);
/* Since qede_lock is held, internal state wouldn't change even
* if netdev state would start transitioning. Check whether current
* internal configuration indicates device is up, then reload.
*/
if (edev->state == QEDE_STATE_OPEN) {
qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
if (args)
args->func(edev, args);
qede_load(edev, QEDE_LOAD_RELOAD, true);
/* Since no one is going to do it for us, re-configure */
qede_config_rx_mode(edev->ndev);
} else if (args) {
args->func(edev, args);
}
if (!is_locked)
__qede_unlock(edev);
}
/* called with rtnl_lock */
static int qede_open(struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
int rc;
netif_carrier_off(ndev);
edev->ops->common->set_power_state(edev->cdev, PCI_D0);
rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
if (rc)
return rc;
udp_tunnel_nic_reset_ntf(ndev);
edev->ops->common->update_drv_state(edev->cdev, true);
return 0;
}
static int qede_close(struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
if (edev->cdev)
edev->ops->common->update_drv_state(edev->cdev, false);
return 0;
}
static void qede_link_update(void *dev, struct qed_link_output *link)
{
struct qede_dev *edev = dev;
if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
return;
}
if (link->link_up) {
if (!netif_carrier_ok(edev->ndev)) {
DP_NOTICE(edev, "Link is up\n");
netif_tx_start_all_queues(edev->ndev);
netif_carrier_on(edev->ndev);
qede_rdma_dev_event_open(edev);
}
} else {
if (netif_carrier_ok(edev->ndev)) {
DP_NOTICE(edev, "Link is down\n");
netif_tx_disable(edev->ndev);
netif_carrier_off(edev->ndev);
qede_rdma_dev_event_close(edev);
}
}
}
static void qede_schedule_recovery_handler(void *dev)
{
struct qede_dev *edev = dev;
if (edev->state == QEDE_STATE_RECOVERY) {
DP_NOTICE(edev,
"Avoid scheduling a recovery handling since already in recovery state\n");
return;
}
set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
schedule_delayed_work(&edev->sp_task, 0);
DP_INFO(edev, "Scheduled a recovery handler\n");
}
static void qede_recovery_failed(struct qede_dev *edev)
{
netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
netif_device_detach(edev->ndev);
if (edev->cdev)
edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
}
static void qede_recovery_handler(struct qede_dev *edev)
{
u32 curr_state = edev->state;
int rc;
DP_NOTICE(edev, "Starting a recovery process\n");
/* No need to acquire first the qede_lock since is done by qede_sp_task
* before calling this function.
*/
edev->state = QEDE_STATE_RECOVERY;
edev->ops->common->recovery_prolog(edev->cdev);
if (curr_state == QEDE_STATE_OPEN)
qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
IS_VF(edev), QEDE_PROBE_RECOVERY);
if (rc) {
edev->cdev = NULL;
goto err;
}
if (curr_state == QEDE_STATE_OPEN) {
rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
if (rc)
goto err;
qede_config_rx_mode(edev->ndev);
udp_tunnel_nic_reset_ntf(edev->ndev);
}
edev->state = curr_state;
DP_NOTICE(edev, "Recovery handling is done\n");
return;
err:
qede_recovery_failed(edev);
}
static void qede_atomic_hw_err_handler(struct qede_dev *edev)
{
struct qed_dev *cdev = edev->cdev;
DP_NOTICE(edev,
"Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
edev->err_flags);
/* Get a call trace of the flow that led to the error */
WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
/* Prevent HW attentions from being reasserted */
if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
edev->ops->common->attn_clr_enable(cdev, true);
DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
}
static void qede_generic_hw_err_handler(struct qede_dev *edev)
{
DP_NOTICE(edev,
"Generic sleepable HW error handling started - err_flags 0x%lx\n",
edev->err_flags);
if (edev->devlink) {
DP_NOTICE(edev, "Reporting fatal error to devlink\n");
edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
}
clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
}
static void qede_set_hw_err_flags(struct qede_dev *edev,
enum qed_hw_err_type err_type)
{
unsigned long err_flags = 0;
switch (err_type) {
case QED_HW_ERR_DMAE_FAIL:
set_bit(QEDE_ERR_WARN, &err_flags);
fallthrough;
case QED_HW_ERR_MFW_RESP_FAIL:
case QED_HW_ERR_HW_ATTN:
case QED_HW_ERR_RAMROD_FAIL:
case QED_HW_ERR_FW_ASSERT:
set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
/* make this error as recoverable and start recovery*/
set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
break;
default:
DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
break;
}
edev->err_flags |= err_flags;
}
static void qede_schedule_hw_err_handler(void *dev,
enum qed_hw_err_type err_type)
{
struct qede_dev *edev = dev;
/* Fan failure cannot be masked by handling of another HW error or by a
* concurrent recovery process.
*/
if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
edev->state == QEDE_STATE_RECOVERY) &&
err_type != QED_HW_ERR_FAN_FAIL) {
DP_INFO(edev,
"Avoid scheduling an error handling while another HW error is being handled\n");
return;
}
if (err_type >= QED_HW_ERR_LAST) {
DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
return;
}
edev->last_err_type = err_type;
qede_set_hw_err_flags(edev, err_type);
qede_atomic_hw_err_handler(edev);
set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
schedule_delayed_work(&edev->sp_task, 0);
DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
}
static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
{
struct netdev_queue *netdev_txq;
netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
if (netif_xmit_stopped(netdev_txq))
return true;
return false;
}
static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
{
struct qede_dev *edev = dev;
struct netdev_hw_addr *ha;
int i;
if (edev->ndev->features & NETIF_F_IP_CSUM)
data->feat_flags |= QED_TLV_IP_CSUM;
if (edev->ndev->features & NETIF_F_TSO)
data->feat_flags |= QED_TLV_LSO;
ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
eth_zero_addr(data->mac[1]);
eth_zero_addr(data->mac[2]);
/* Copy the first two UC macs */
netif_addr_lock_bh(edev->ndev);
i = 1;
netdev_for_each_uc_addr(ha, edev->ndev) {
ether_addr_copy(data->mac[i++], ha->addr);
if (i == QED_TLV_MAC_COUNT)
break;
}
netif_addr_unlock_bh(edev->ndev);
}
static void qede_get_eth_tlv_data(void *dev, void *data)
{
struct qed_mfw_tlv_eth *etlv = data;
struct qede_dev *edev = dev;
struct qede_fastpath *fp;
int i;
etlv->lso_maxoff_size = 0XFFFF;
etlv->lso_maxoff_size_set = true;
etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
etlv->lso_minseg_size_set = true;
etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
etlv->prom_mode_set = true;
etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
etlv->tx_descr_size_set = true;
etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
etlv->rx_descr_size_set = true;
etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
etlv->iov_offload_set = true;
/* Fill information regarding queues; Should be done under the qede
* lock to guarantee those don't change beneath our feet.
*/
etlv->txqs_empty = true;
etlv->rxqs_empty = true;
etlv->num_txqs_full = 0;
etlv->num_rxqs_full = 0;
__qede_lock(edev);
for_each_queue(i) {
fp = &edev->fp_array[i];
if (fp->type & QEDE_FASTPATH_TX) {
struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
if (txq->sw_tx_cons != txq->sw_tx_prod)
etlv->txqs_empty = false;
if (qede_is_txq_full(edev, txq))
etlv->num_txqs_full++;
}
if (fp->type & QEDE_FASTPATH_RX) {
if (qede_has_rx_work(fp->rxq))
etlv->rxqs_empty = false;
/* This one is a bit tricky; Firmware might stop
* placing packets if ring is not yet full.
* Give an approximation.
*/
if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
RX_RING_SIZE - 100)
etlv->num_rxqs_full++;
}
}
__qede_unlock(edev);
etlv->txqs_empty_set = true;
etlv->rxqs_empty_set = true;
etlv->num_txqs_full_set = true;
etlv->num_rxqs_full_set = true;
}
/**
* qede_io_error_detected(): Called when PCI error is detected
*
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
*Return: pci_ers_result_t.
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t
qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct qede_dev *edev = netdev_priv(dev);
if (!edev)
return PCI_ERS_RESULT_NONE;
DP_NOTICE(edev, "IO error detected [%d]\n", state);
__qede_lock(edev);
if (edev->state == QEDE_STATE_RECOVERY) {
DP_NOTICE(edev, "Device already in the recovery state\n");
__qede_unlock(edev);
return PCI_ERS_RESULT_NONE;
}
/* PF handles the recovery of its VFs */
if (IS_VF(edev)) {
DP_VERBOSE(edev, QED_MSG_IOV,
"VF recovery is handled by its PF\n");
__qede_unlock(edev);
return PCI_ERS_RESULT_RECOVERED;
}
/* Close OS Tx */
netif_tx_disable(edev->ndev);
netif_carrier_off(edev->ndev);
set_bit(QEDE_SP_AER, &edev->sp_flags);
schedule_delayed_work(&edev->sp_task, 0);
__qede_unlock(edev);
return PCI_ERS_RESULT_CAN_RECOVER;
}