| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2006-2013 Solarflare Communications Inc. |
| */ |
| |
| #ifndef EF4_NIC_H |
| #define EF4_NIC_H |
| |
| #include <linux/net_tstamp.h> |
| #include <linux/i2c-algo-bit.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| |
| enum { |
| EF4_REV_FALCON_A0 = 0, |
| EF4_REV_FALCON_A1 = 1, |
| EF4_REV_FALCON_B0 = 2, |
| }; |
| |
| static inline int ef4_nic_rev(struct ef4_nic *efx) |
| { |
| return efx->type->revision; |
| } |
| |
| u32 ef4_farch_fpga_ver(struct ef4_nic *efx); |
| |
| /* NIC has two interlinked PCI functions for the same port. */ |
| static inline bool ef4_nic_is_dual_func(struct ef4_nic *efx) |
| { |
| return ef4_nic_rev(efx) < EF4_REV_FALCON_B0; |
| } |
| |
| /* Read the current event from the event queue */ |
| static inline ef4_qword_t *ef4_event(struct ef4_channel *channel, |
| unsigned int index) |
| { |
| return ((ef4_qword_t *) (channel->eventq.buf.addr)) + |
| (index & channel->eventq_mask); |
| } |
| |
| /* See if an event is present |
| * |
| * We check both the high and low dword of the event for all ones. We |
| * wrote all ones when we cleared the event, and no valid event can |
| * have all ones in either its high or low dwords. This approach is |
| * robust against reordering. |
| * |
| * Note that using a single 64-bit comparison is incorrect; even |
| * though the CPU read will be atomic, the DMA write may not be. |
| */ |
| static inline int ef4_event_present(ef4_qword_t *event) |
| { |
| return !(EF4_DWORD_IS_ALL_ONES(event->dword[0]) | |
| EF4_DWORD_IS_ALL_ONES(event->dword[1])); |
| } |
| |
| /* Returns a pointer to the specified transmit descriptor in the TX |
| * descriptor queue belonging to the specified channel. |
| */ |
| static inline ef4_qword_t * |
| ef4_tx_desc(struct ef4_tx_queue *tx_queue, unsigned int index) |
| { |
| return ((ef4_qword_t *) (tx_queue->txd.buf.addr)) + index; |
| } |
| |
| /* Get partner of a TX queue, seen as part of the same net core queue */ |
| static inline struct ef4_tx_queue *ef4_tx_queue_partner(struct ef4_tx_queue *tx_queue) |
| { |
| if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD) |
| return tx_queue - EF4_TXQ_TYPE_OFFLOAD; |
| else |
| return tx_queue + EF4_TXQ_TYPE_OFFLOAD; |
| } |
| |
| /* Report whether this TX queue would be empty for the given write_count. |
| * May return false negative. |
| */ |
| static inline bool __ef4_nic_tx_is_empty(struct ef4_tx_queue *tx_queue, |
| unsigned int write_count) |
| { |
| unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count); |
| |
| if (empty_read_count == 0) |
| return false; |
| |
| return ((empty_read_count ^ write_count) & ~EF4_EMPTY_COUNT_VALID) == 0; |
| } |
| |
| /* Decide whether to push a TX descriptor to the NIC vs merely writing |
| * the doorbell. This can reduce latency when we are adding a single |
| * descriptor to an empty queue, but is otherwise pointless. Further, |
| * Falcon and Siena have hardware bugs (SF bug 33851) that may be |
| * triggered if we don't check this. |
| * We use the write_count used for the last doorbell push, to get the |
| * NIC's view of the tx queue. |
| */ |
| static inline bool ef4_nic_may_push_tx_desc(struct ef4_tx_queue *tx_queue, |
| unsigned int write_count) |
| { |
| bool was_empty = __ef4_nic_tx_is_empty(tx_queue, write_count); |
| |
| tx_queue->empty_read_count = 0; |
| return was_empty && tx_queue->write_count - write_count == 1; |
| } |
| |
| /* Returns a pointer to the specified descriptor in the RX descriptor queue */ |
| static inline ef4_qword_t * |
| ef4_rx_desc(struct ef4_rx_queue *rx_queue, unsigned int index) |
| { |
| return ((ef4_qword_t *) (rx_queue->rxd.buf.addr)) + index; |
| } |
| |
| enum { |
| PHY_TYPE_NONE = 0, |
| PHY_TYPE_TXC43128 = 1, |
| PHY_TYPE_88E1111 = 2, |
| PHY_TYPE_SFX7101 = 3, |
| PHY_TYPE_QT2022C2 = 4, |
| PHY_TYPE_PM8358 = 6, |
| PHY_TYPE_SFT9001A = 8, |
| PHY_TYPE_QT2025C = 9, |
| PHY_TYPE_SFT9001B = 10, |
| }; |
| |
| #define FALCON_XMAC_LOOPBACKS \ |
| ((1 << LOOPBACK_XGMII) | \ |
| (1 << LOOPBACK_XGXS) | \ |
| (1 << LOOPBACK_XAUI)) |
| |
| /* Alignment of PCIe DMA boundaries (4KB) */ |
| #define EF4_PAGE_SIZE 4096 |
| /* Size and alignment of buffer table entries (same) */ |
| #define EF4_BUF_SIZE EF4_PAGE_SIZE |
| |
| /* NIC-generic software stats */ |
| enum { |
| GENERIC_STAT_rx_noskb_drops, |
| GENERIC_STAT_rx_nodesc_trunc, |
| GENERIC_STAT_COUNT |
| }; |
| |
| /** |
| * struct falcon_board_type - board operations and type information |
| * @id: Board type id, as found in NVRAM |
| * @init: Allocate resources and initialise peripheral hardware |
| * @init_phy: Do board-specific PHY initialisation |
| * @fini: Shut down hardware and free resources |
| * @set_id_led: Set state of identifying LED or revert to automatic function |
| * @monitor: Board-specific health check function |
| */ |
| struct falcon_board_type { |
| u8 id; |
| int (*init) (struct ef4_nic *nic); |
| void (*init_phy) (struct ef4_nic *efx); |
| void (*fini) (struct ef4_nic *nic); |
| void (*set_id_led) (struct ef4_nic *efx, enum ef4_led_mode mode); |
| int (*monitor) (struct ef4_nic *nic); |
| }; |
| |
| /** |
| * struct falcon_board - board information |
| * @type: Type of board |
| * @major: Major rev. ('A', 'B' ...) |
| * @minor: Minor rev. (0, 1, ...) |
| * @i2c_adap: I2C adapter for on-board peripherals |
| * @i2c_data: Data for bit-banging algorithm |
| * @hwmon_client: I2C client for hardware monitor |
| * @ioexp_client: I2C client for power/port control |
| */ |
| struct falcon_board { |
| const struct falcon_board_type *type; |
| int major; |
| int minor; |
| struct i2c_adapter i2c_adap; |
| struct i2c_algo_bit_data i2c_data; |
| struct i2c_client *hwmon_client, *ioexp_client; |
| }; |
| |
| /** |
| * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device |
| * @device_id: Controller's id for the device |
| * @size: Size (in bytes) |
| * @addr_len: Number of address bytes in read/write commands |
| * @munge_address: Flag whether addresses should be munged. |
| * Some devices with 9-bit addresses (e.g. AT25040A EEPROM) |
| * use bit 3 of the command byte as address bit A8, rather |
| * than having a two-byte address. If this flag is set, then |
| * commands should be munged in this way. |
| * @erase_command: Erase command (or 0 if sector erase not needed). |
| * @erase_size: Erase sector size (in bytes) |
| * Erase commands affect sectors with this size and alignment. |
| * This must be a power of two. |
| * @block_size: Write block size (in bytes). |
| * Write commands are limited to blocks with this size and alignment. |
| */ |
| struct falcon_spi_device { |
| int device_id; |
| unsigned int size; |
| unsigned int addr_len; |
| unsigned int munge_address:1; |
| u8 erase_command; |
| unsigned int erase_size; |
| unsigned int block_size; |
| }; |
| |
| static inline bool falcon_spi_present(const struct falcon_spi_device *spi) |
| { |
| return spi->size != 0; |
| } |
| |
| enum { |
| FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT, |
| FALCON_STAT_tx_packets, |
| FALCON_STAT_tx_pause, |
| FALCON_STAT_tx_control, |
| FALCON_STAT_tx_unicast, |
| FALCON_STAT_tx_multicast, |
| FALCON_STAT_tx_broadcast, |
| FALCON_STAT_tx_lt64, |
| FALCON_STAT_tx_64, |
| FALCON_STAT_tx_65_to_127, |
| FALCON_STAT_tx_128_to_255, |
| FALCON_STAT_tx_256_to_511, |
| FALCON_STAT_tx_512_to_1023, |
| FALCON_STAT_tx_1024_to_15xx, |
| FALCON_STAT_tx_15xx_to_jumbo, |
| FALCON_STAT_tx_gtjumbo, |
| FALCON_STAT_tx_non_tcpudp, |
| FALCON_STAT_tx_mac_src_error, |
| FALCON_STAT_tx_ip_src_error, |
| FALCON_STAT_rx_bytes, |
| FALCON_STAT_rx_good_bytes, |
| FALCON_STAT_rx_bad_bytes, |
| FALCON_STAT_rx_packets, |
| FALCON_STAT_rx_good, |
| FALCON_STAT_rx_bad, |
| FALCON_STAT_rx_pause, |
| FALCON_STAT_rx_control, |
| FALCON_STAT_rx_unicast, |
| FALCON_STAT_rx_multicast, |
| FALCON_STAT_rx_broadcast, |
| FALCON_STAT_rx_lt64, |
| FALCON_STAT_rx_64, |
| FALCON_STAT_rx_65_to_127, |
| FALCON_STAT_rx_128_to_255, |
| FALCON_STAT_rx_256_to_511, |
| FALCON_STAT_rx_512_to_1023, |
| FALCON_STAT_rx_1024_to_15xx, |
| FALCON_STAT_rx_15xx_to_jumbo, |
| FALCON_STAT_rx_gtjumbo, |
| FALCON_STAT_rx_bad_lt64, |
| FALCON_STAT_rx_bad_gtjumbo, |
| FALCON_STAT_rx_overflow, |
| FALCON_STAT_rx_symbol_error, |
| FALCON_STAT_rx_align_error, |
| FALCON_STAT_rx_length_error, |
| FALCON_STAT_rx_internal_error, |
| FALCON_STAT_rx_nodesc_drop_cnt, |
| FALCON_STAT_COUNT |
| }; |
| |
| /** |
| * struct falcon_nic_data - Falcon NIC state |
| * @pci_dev2: Secondary function of Falcon A |
| * @efx: ef4_nic pointer |
| * @board: Board state and functions |
| * @stats: Hardware statistics |
| * @stats_disable_count: Nest count for disabling statistics fetches |
| * @stats_pending: Is there a pending DMA of MAC statistics. |
| * @stats_timer: A timer for regularly fetching MAC statistics. |
| * @spi_flash: SPI flash device |
| * @spi_eeprom: SPI EEPROM device |
| * @spi_lock: SPI bus lock |
| * @mdio_lock: MDIO bus lock |
| * @xmac_poll_required: XMAC link state needs polling |
| */ |
| struct falcon_nic_data { |
| struct pci_dev *pci_dev2; |
| struct ef4_nic *efx; |
| struct falcon_board board; |
| u64 stats[FALCON_STAT_COUNT]; |
| unsigned int stats_disable_count; |
| bool stats_pending; |
| struct timer_list stats_timer; |
| struct falcon_spi_device spi_flash; |
| struct falcon_spi_device spi_eeprom; |
| struct mutex spi_lock; |
| struct mutex mdio_lock; |
| bool xmac_poll_required; |
| }; |
| |
| static inline struct falcon_board *falcon_board(struct ef4_nic *efx) |
| { |
| struct falcon_nic_data *data = efx->nic_data; |
| return &data->board; |
| } |
| |
| struct ethtool_ts_info; |
| |
| extern const struct ef4_nic_type falcon_a1_nic_type; |
| extern const struct ef4_nic_type falcon_b0_nic_type; |
| |
| /************************************************************************** |
| * |
| * Externs |
| * |
| ************************************************************************** |
| */ |
| |
| int falcon_probe_board(struct ef4_nic *efx, u16 revision_info); |
| |
| /* TX data path */ |
| static inline int ef4_nic_probe_tx(struct ef4_tx_queue *tx_queue) |
| { |
| return tx_queue->efx->type->tx_probe(tx_queue); |
| } |
| static inline void ef4_nic_init_tx(struct ef4_tx_queue *tx_queue) |
| { |
| tx_queue->efx->type->tx_init(tx_queue); |
| } |
| static inline void ef4_nic_remove_tx(struct ef4_tx_queue *tx_queue) |
| { |
| tx_queue->efx->type->tx_remove(tx_queue); |
| } |
| static inline void ef4_nic_push_buffers(struct ef4_tx_queue *tx_queue) |
| { |
| tx_queue->efx->type->tx_write(tx_queue); |
| } |
| |
| /* RX data path */ |
| static inline int ef4_nic_probe_rx(struct ef4_rx_queue *rx_queue) |
| { |
| return rx_queue->efx->type->rx_probe(rx_queue); |
| } |
| static inline void ef4_nic_init_rx(struct ef4_rx_queue *rx_queue) |
| { |
| rx_queue->efx->type->rx_init(rx_queue); |
| } |
| static inline void ef4_nic_remove_rx(struct ef4_rx_queue *rx_queue) |
| { |
| rx_queue->efx->type->rx_remove(rx_queue); |
| } |
| static inline void ef4_nic_notify_rx_desc(struct ef4_rx_queue *rx_queue) |
| { |
| rx_queue->efx->type->rx_write(rx_queue); |
| } |
| static inline void ef4_nic_generate_fill_event(struct ef4_rx_queue *rx_queue) |
| { |
| rx_queue->efx->type->rx_defer_refill(rx_queue); |
| } |
| |
| /* Event data path */ |
| static inline int ef4_nic_probe_eventq(struct ef4_channel *channel) |
| { |
| return channel->efx->type->ev_probe(channel); |
| } |
| static inline int ef4_nic_init_eventq(struct ef4_channel *channel) |
| { |
| return channel->efx->type->ev_init(channel); |
| } |
| static inline void ef4_nic_fini_eventq(struct ef4_channel *channel) |
| { |
| channel->efx->type->ev_fini(channel); |
| } |
| static inline void ef4_nic_remove_eventq(struct ef4_channel *channel) |
| { |
| channel->efx->type->ev_remove(channel); |
| } |
| static inline int |
| ef4_nic_process_eventq(struct ef4_channel *channel, int quota) |
| { |
| return channel->efx->type->ev_process(channel, quota); |
| } |
| static inline void ef4_nic_eventq_read_ack(struct ef4_channel *channel) |
| { |
| channel->efx->type->ev_read_ack(channel); |
| } |
| void ef4_nic_event_test_start(struct ef4_channel *channel); |
| |
| /* queue operations */ |
| int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue); |
| void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue); |
| void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue); |
| void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue); |
| void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue); |
| unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue, |
| dma_addr_t dma_addr, unsigned int len); |
| int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue); |
| void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue); |
| void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue); |
| void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue); |
| void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue); |
| void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue); |
| int ef4_farch_ev_probe(struct ef4_channel *channel); |
| int ef4_farch_ev_init(struct ef4_channel *channel); |
| void ef4_farch_ev_fini(struct ef4_channel *channel); |
| void ef4_farch_ev_remove(struct ef4_channel *channel); |
| int ef4_farch_ev_process(struct ef4_channel *channel, int quota); |
| void ef4_farch_ev_read_ack(struct ef4_channel *channel); |
| void ef4_farch_ev_test_generate(struct ef4_channel *channel); |
| |
| /* filter operations */ |
| int ef4_farch_filter_table_probe(struct ef4_nic *efx); |
| void ef4_farch_filter_table_restore(struct ef4_nic *efx); |
| void ef4_farch_filter_table_remove(struct ef4_nic *efx); |
| void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx); |
| s32 ef4_farch_filter_insert(struct ef4_nic *efx, struct ef4_filter_spec *spec, |
| bool replace); |
| int ef4_farch_filter_remove_safe(struct ef4_nic *efx, |
| enum ef4_filter_priority priority, |
| u32 filter_id); |
| int ef4_farch_filter_get_safe(struct ef4_nic *efx, |
| enum ef4_filter_priority priority, u32 filter_id, |
| struct ef4_filter_spec *); |
| int ef4_farch_filter_clear_rx(struct ef4_nic *efx, |
| enum ef4_filter_priority priority); |
| u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx, |
| enum ef4_filter_priority priority); |
| u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx); |
| s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx, |
| enum ef4_filter_priority priority, u32 *buf, |
| u32 size); |
| #ifdef CONFIG_RFS_ACCEL |
| s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx, |
| struct ef4_filter_spec *spec); |
| bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id, |
| unsigned int index); |
| #endif |
| void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx); |
| |
| bool ef4_nic_event_present(struct ef4_channel *channel); |
| |
| /* Some statistics are computed as A - B where A and B each increase |
| * linearly with some hardware counter(s) and the counters are read |
| * asynchronously. If the counters contributing to B are always read |
| * after those contributing to A, the computed value may be lower than |
| * the true value by some variable amount, and may decrease between |
| * subsequent computations. |
| * |
| * We should never allow statistics to decrease or to exceed the true |
| * value. Since the computed value will never be greater than the |
| * true value, we can achieve this by only storing the computed value |
| * when it increases. |
| */ |
| static inline void ef4_update_diff_stat(u64 *stat, u64 diff) |
| { |
| if ((s64)(diff - *stat) > 0) |
| *stat = diff; |
| } |
| |
| /* Interrupts */ |
| int ef4_nic_init_interrupt(struct ef4_nic *efx); |
| int ef4_nic_irq_test_start(struct ef4_nic *efx); |
| void ef4_nic_fini_interrupt(struct ef4_nic *efx); |
| void ef4_farch_irq_enable_master(struct ef4_nic *efx); |
| int ef4_farch_irq_test_generate(struct ef4_nic *efx); |
| void ef4_farch_irq_disable_master(struct ef4_nic *efx); |
| irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id); |
| irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id); |
| irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx); |
| |
| static inline int ef4_nic_event_test_irq_cpu(struct ef4_channel *channel) |
| { |
| return READ_ONCE(channel->event_test_cpu); |
| } |
| static inline int ef4_nic_irq_test_irq_cpu(struct ef4_nic *efx) |
| { |
| return READ_ONCE(efx->last_irq_cpu); |
| } |
| |
| /* Global Resources */ |
| int ef4_nic_flush_queues(struct ef4_nic *efx); |
| int ef4_farch_fini_dmaq(struct ef4_nic *efx); |
| void ef4_farch_finish_flr(struct ef4_nic *efx); |
| void falcon_start_nic_stats(struct ef4_nic *efx); |
| void falcon_stop_nic_stats(struct ef4_nic *efx); |
| int falcon_reset_xaui(struct ef4_nic *efx); |
| void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw); |
| void ef4_farch_init_common(struct ef4_nic *efx); |
| void ef4_farch_rx_push_indir_table(struct ef4_nic *efx); |
| |
| int ef4_nic_alloc_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer, |
| unsigned int len, gfp_t gfp_flags); |
| void ef4_nic_free_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer); |
| |
| /* Tests */ |
| struct ef4_farch_register_test { |
| unsigned address; |
| ef4_oword_t mask; |
| }; |
| int ef4_farch_test_registers(struct ef4_nic *efx, |
| const struct ef4_farch_register_test *regs, |
| size_t n_regs); |
| |
| size_t ef4_nic_get_regs_len(struct ef4_nic *efx); |
| void ef4_nic_get_regs(struct ef4_nic *efx, void *buf); |
| |
| size_t ef4_nic_describe_stats(const struct ef4_hw_stat_desc *desc, size_t count, |
| const unsigned long *mask, u8 *names); |
| void ef4_nic_update_stats(const struct ef4_hw_stat_desc *desc, size_t count, |
| const unsigned long *mask, u64 *stats, |
| const void *dma_buf, bool accumulate); |
| void ef4_nic_fix_nodesc_drop_stat(struct ef4_nic *efx, u64 *stat); |
| |
| #define EF4_MAX_FLUSH_TIME 5000 |
| |
| void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq, |
| ef4_qword_t *event); |
| |
| #endif /* EF4_NIC_H */ |