| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* ZD1211 USB-WLAN driver for Linux |
| * |
| * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> |
| * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| |
| #include "zd_rf.h" |
| #include "zd_usb.h" |
| #include "zd_chip.h" |
| |
| /* This RF programming code is based upon the code found in v2.16.0.0 of the |
| * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs |
| * for this RF on their website, so we're able to understand more than |
| * usual as to what is going on. Thumbs up for Ubec for doing that. */ |
| |
| /* The 3-wire serial interface provides access to 8 write-only registers. |
| * The data format is a 4 bit register address followed by a 20 bit value. */ |
| #define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff)) |
| |
| /* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth |
| * fractional divide ratio) and 3 (VCO config). |
| * |
| * We configure the RF to produce an interrupt when the PLL is locked onto |
| * the configured frequency. During initialization, we run through a variety |
| * of different VCO configurations on channel 1 until we detect a PLL lock. |
| * When this happens, we remember which VCO configuration produced the lock |
| * and use it later. Actually, we use the configuration *after* the one that |
| * produced the lock, which seems odd, but it works. |
| * |
| * If we do not see a PLL lock on any standard VCO config, we fall back on an |
| * autocal configuration, which has a fixed (as opposed to per-channel) VCO |
| * config and different synth values from the standard set (divide ratio |
| * is still shared with the standard set). */ |
| |
| /* The per-channel synth values for all standard VCO configurations. These get |
| * written to register 1. */ |
| static const u8 uw2453_std_synth[] = { |
| RF_CHANNEL( 1) = 0x47, |
| RF_CHANNEL( 2) = 0x47, |
| RF_CHANNEL( 3) = 0x67, |
| RF_CHANNEL( 4) = 0x67, |
| RF_CHANNEL( 5) = 0x67, |
| RF_CHANNEL( 6) = 0x67, |
| RF_CHANNEL( 7) = 0x57, |
| RF_CHANNEL( 8) = 0x57, |
| RF_CHANNEL( 9) = 0x57, |
| RF_CHANNEL(10) = 0x57, |
| RF_CHANNEL(11) = 0x77, |
| RF_CHANNEL(12) = 0x77, |
| RF_CHANNEL(13) = 0x77, |
| RF_CHANNEL(14) = 0x4f, |
| }; |
| |
| /* This table stores the synthesizer fractional divide ratio for *all* VCO |
| * configurations (both standard and autocal). These get written to register 2. |
| */ |
| static const u16 uw2453_synth_divide[] = { |
| RF_CHANNEL( 1) = 0x999, |
| RF_CHANNEL( 2) = 0x99b, |
| RF_CHANNEL( 3) = 0x998, |
| RF_CHANNEL( 4) = 0x99a, |
| RF_CHANNEL( 5) = 0x999, |
| RF_CHANNEL( 6) = 0x99b, |
| RF_CHANNEL( 7) = 0x998, |
| RF_CHANNEL( 8) = 0x99a, |
| RF_CHANNEL( 9) = 0x999, |
| RF_CHANNEL(10) = 0x99b, |
| RF_CHANNEL(11) = 0x998, |
| RF_CHANNEL(12) = 0x99a, |
| RF_CHANNEL(13) = 0x999, |
| RF_CHANNEL(14) = 0xccc, |
| }; |
| |
| /* Here is the data for all the standard VCO configurations. We shrink our |
| * table a little by observing that both channels in a consecutive pair share |
| * the same value. We also observe that the high 4 bits ([0:3] in the specs) |
| * are all 'Reserved' and are always set to 0x4 - we chop them off in the data |
| * below. */ |
| #define CHAN_TO_PAIRIDX(a) ((a - 1) / 2) |
| #define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)] |
| static const u16 uw2453_std_vco_cfg[][7] = { |
| { /* table 1 */ |
| RF_CHANPAIR( 1, 2) = 0x664d, |
| RF_CHANPAIR( 3, 4) = 0x604d, |
| RF_CHANPAIR( 5, 6) = 0x6675, |
| RF_CHANPAIR( 7, 8) = 0x6475, |
| RF_CHANPAIR( 9, 10) = 0x6655, |
| RF_CHANPAIR(11, 12) = 0x6455, |
| RF_CHANPAIR(13, 14) = 0x6665, |
| }, |
| { /* table 2 */ |
| RF_CHANPAIR( 1, 2) = 0x666d, |
| RF_CHANPAIR( 3, 4) = 0x606d, |
| RF_CHANPAIR( 5, 6) = 0x664d, |
| RF_CHANPAIR( 7, 8) = 0x644d, |
| RF_CHANPAIR( 9, 10) = 0x6675, |
| RF_CHANPAIR(11, 12) = 0x6475, |
| RF_CHANPAIR(13, 14) = 0x6655, |
| }, |
| { /* table 3 */ |
| RF_CHANPAIR( 1, 2) = 0x665d, |
| RF_CHANPAIR( 3, 4) = 0x605d, |
| RF_CHANPAIR( 5, 6) = 0x666d, |
| RF_CHANPAIR( 7, 8) = 0x646d, |
| RF_CHANPAIR( 9, 10) = 0x664d, |
| RF_CHANPAIR(11, 12) = 0x644d, |
| RF_CHANPAIR(13, 14) = 0x6675, |
| }, |
| { /* table 4 */ |
| RF_CHANPAIR( 1, 2) = 0x667d, |
| RF_CHANPAIR( 3, 4) = 0x607d, |
| RF_CHANPAIR( 5, 6) = 0x665d, |
| RF_CHANPAIR( 7, 8) = 0x645d, |
| RF_CHANPAIR( 9, 10) = 0x666d, |
| RF_CHANPAIR(11, 12) = 0x646d, |
| RF_CHANPAIR(13, 14) = 0x664d, |
| }, |
| { /* table 5 */ |
| RF_CHANPAIR( 1, 2) = 0x6643, |
| RF_CHANPAIR( 3, 4) = 0x6043, |
| RF_CHANPAIR( 5, 6) = 0x667d, |
| RF_CHANPAIR( 7, 8) = 0x647d, |
| RF_CHANPAIR( 9, 10) = 0x665d, |
| RF_CHANPAIR(11, 12) = 0x645d, |
| RF_CHANPAIR(13, 14) = 0x666d, |
| }, |
| { /* table 6 */ |
| RF_CHANPAIR( 1, 2) = 0x6663, |
| RF_CHANPAIR( 3, 4) = 0x6063, |
| RF_CHANPAIR( 5, 6) = 0x6643, |
| RF_CHANPAIR( 7, 8) = 0x6443, |
| RF_CHANPAIR( 9, 10) = 0x667d, |
| RF_CHANPAIR(11, 12) = 0x647d, |
| RF_CHANPAIR(13, 14) = 0x665d, |
| }, |
| { /* table 7 */ |
| RF_CHANPAIR( 1, 2) = 0x6653, |
| RF_CHANPAIR( 3, 4) = 0x6053, |
| RF_CHANPAIR( 5, 6) = 0x6663, |
| RF_CHANPAIR( 7, 8) = 0x6463, |
| RF_CHANPAIR( 9, 10) = 0x6643, |
| RF_CHANPAIR(11, 12) = 0x6443, |
| RF_CHANPAIR(13, 14) = 0x667d, |
| }, |
| { /* table 8 */ |
| RF_CHANPAIR( 1, 2) = 0x6673, |
| RF_CHANPAIR( 3, 4) = 0x6073, |
| RF_CHANPAIR( 5, 6) = 0x6653, |
| RF_CHANPAIR( 7, 8) = 0x6453, |
| RF_CHANPAIR( 9, 10) = 0x6663, |
| RF_CHANPAIR(11, 12) = 0x6463, |
| RF_CHANPAIR(13, 14) = 0x6643, |
| }, |
| { /* table 9 */ |
| RF_CHANPAIR( 1, 2) = 0x664b, |
| RF_CHANPAIR( 3, 4) = 0x604b, |
| RF_CHANPAIR( 5, 6) = 0x6673, |
| RF_CHANPAIR( 7, 8) = 0x6473, |
| RF_CHANPAIR( 9, 10) = 0x6653, |
| RF_CHANPAIR(11, 12) = 0x6453, |
| RF_CHANPAIR(13, 14) = 0x6663, |
| }, |
| { /* table 10 */ |
| RF_CHANPAIR( 1, 2) = 0x666b, |
| RF_CHANPAIR( 3, 4) = 0x606b, |
| RF_CHANPAIR( 5, 6) = 0x664b, |
| RF_CHANPAIR( 7, 8) = 0x644b, |
| RF_CHANPAIR( 9, 10) = 0x6673, |
| RF_CHANPAIR(11, 12) = 0x6473, |
| RF_CHANPAIR(13, 14) = 0x6653, |
| }, |
| { /* table 11 */ |
| RF_CHANPAIR( 1, 2) = 0x665b, |
| RF_CHANPAIR( 3, 4) = 0x605b, |
| RF_CHANPAIR( 5, 6) = 0x666b, |
| RF_CHANPAIR( 7, 8) = 0x646b, |
| RF_CHANPAIR( 9, 10) = 0x664b, |
| RF_CHANPAIR(11, 12) = 0x644b, |
| RF_CHANPAIR(13, 14) = 0x6673, |
| }, |
| |
| }; |
| |
| /* The per-channel synth values for autocal. These get written to register 1. */ |
| static const u16 uw2453_autocal_synth[] = { |
| RF_CHANNEL( 1) = 0x6847, |
| RF_CHANNEL( 2) = 0x6847, |
| RF_CHANNEL( 3) = 0x6867, |
| RF_CHANNEL( 4) = 0x6867, |
| RF_CHANNEL( 5) = 0x6867, |
| RF_CHANNEL( 6) = 0x6867, |
| RF_CHANNEL( 7) = 0x6857, |
| RF_CHANNEL( 8) = 0x6857, |
| RF_CHANNEL( 9) = 0x6857, |
| RF_CHANNEL(10) = 0x6857, |
| RF_CHANNEL(11) = 0x6877, |
| RF_CHANNEL(12) = 0x6877, |
| RF_CHANNEL(13) = 0x6877, |
| RF_CHANNEL(14) = 0x684f, |
| }; |
| |
| /* The VCO configuration for autocal (all channels) */ |
| static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662; |
| |
| /* TX gain settings. The array index corresponds to the TX power integration |
| * values found in the EEPROM. The values get written to register 7. */ |
| static u32 uw2453_txgain[] = { |
| [0x00] = 0x0e313, |
| [0x01] = 0x0fb13, |
| [0x02] = 0x0e093, |
| [0x03] = 0x0f893, |
| [0x04] = 0x0ea93, |
| [0x05] = 0x1f093, |
| [0x06] = 0x1f493, |
| [0x07] = 0x1f693, |
| [0x08] = 0x1f393, |
| [0x09] = 0x1f35b, |
| [0x0a] = 0x1e6db, |
| [0x0b] = 0x1ff3f, |
| [0x0c] = 0x1ffff, |
| [0x0d] = 0x361d7, |
| [0x0e] = 0x37fbf, |
| [0x0f] = 0x3ff8b, |
| [0x10] = 0x3ff33, |
| [0x11] = 0x3fb3f, |
| [0x12] = 0x3ffff, |
| }; |
| |
| /* RF-specific structure */ |
| struct uw2453_priv { |
| /* index into synth/VCO config tables where PLL lock was found |
| * -1 means autocal */ |
| int config; |
| }; |
| |
| #define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv) |
| |
| static int uw2453_synth_set_channel(struct zd_chip *chip, int channel, |
| bool autocal) |
| { |
| int r; |
| int idx = channel - 1; |
| u32 val; |
| |
| if (autocal) |
| val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]); |
| else |
| val = UW2453_REGWRITE(1, uw2453_std_synth[idx]); |
| |
| r = zd_rfwrite_locked(chip, val, RF_RV_BITS); |
| if (r) |
| return r; |
| |
| return zd_rfwrite_locked(chip, |
| UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS); |
| } |
| |
| static int uw2453_write_vco_cfg(struct zd_chip *chip, u16 value) |
| { |
| /* vendor driver always sets these upper bits even though the specs say |
| * they are reserved */ |
| u32 val = 0x40000 | value; |
| return zd_rfwrite_locked(chip, UW2453_REGWRITE(3, val), RF_RV_BITS); |
| } |
| |
| static int uw2453_init_mode(struct zd_chip *chip) |
| { |
| static const u32 rv[] = { |
| UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */ |
| UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */ |
| UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */ |
| UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */ |
| }; |
| |
| return zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS); |
| } |
| |
| static int uw2453_set_tx_gain_level(struct zd_chip *chip, int channel) |
| { |
| u8 int_value = chip->pwr_int_values[channel - 1]; |
| |
| if (int_value >= ARRAY_SIZE(uw2453_txgain)) { |
| dev_dbg_f(zd_chip_dev(chip), "can't configure TX gain for " |
| "int value %x on channel %d\n", int_value, channel); |
| return 0; |
| } |
| |
| return zd_rfwrite_locked(chip, |
| UW2453_REGWRITE(7, uw2453_txgain[int_value]), RF_RV_BITS); |
| } |
| |
| static int uw2453_init_hw(struct zd_rf *rf) |
| { |
| int i, r; |
| int found_config = -1; |
| u16 intr_status; |
| struct zd_chip *chip = zd_rf_to_chip(rf); |
| |
| static const struct zd_ioreq16 ioreqs[] = { |
| { ZD_CR10, 0x89 }, { ZD_CR15, 0x20 }, |
| { ZD_CR17, 0x28 }, /* 6112 no change */ |
| { ZD_CR23, 0x38 }, { ZD_CR24, 0x20 }, { ZD_CR26, 0x93 }, |
| { ZD_CR27, 0x15 }, { ZD_CR28, 0x3e }, { ZD_CR29, 0x00 }, |
| { ZD_CR33, 0x28 }, { ZD_CR34, 0x30 }, |
| { ZD_CR35, 0x43 }, /* 6112 3e->43 */ |
| { ZD_CR41, 0x24 }, { ZD_CR44, 0x32 }, |
| { ZD_CR46, 0x92 }, /* 6112 96->92 */ |
| { ZD_CR47, 0x1e }, |
| { ZD_CR48, 0x04 }, /* 5602 Roger */ |
| { ZD_CR49, 0xfa }, { ZD_CR79, 0x58 }, { ZD_CR80, 0x30 }, |
| { ZD_CR81, 0x30 }, { ZD_CR87, 0x0a }, { ZD_CR89, 0x04 }, |
| { ZD_CR91, 0x00 }, { ZD_CR92, 0x0a }, { ZD_CR98, 0x8d }, |
| { ZD_CR99, 0x28 }, { ZD_CR100, 0x02 }, |
| { ZD_CR101, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */ |
| { ZD_CR102, 0x27 }, |
| { ZD_CR106, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f |
| * 6221 1f->1c |
| */ |
| { ZD_CR107, 0x1c }, /* 6220 1c->1a 5221 1a->1c */ |
| { ZD_CR109, 0x13 }, |
| { ZD_CR110, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */ |
| { ZD_CR111, 0x13 }, { ZD_CR112, 0x1f }, { ZD_CR113, 0x27 }, |
| { ZD_CR114, 0x23 }, /* 6221 27->23 */ |
| { ZD_CR115, 0x24 }, /* 6112 24->1c 6220 1c->24 */ |
| { ZD_CR116, 0x24 }, /* 6220 1c->24 */ |
| { ZD_CR117, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */ |
| { ZD_CR118, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */ |
| { ZD_CR119, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */ |
| { ZD_CR120, 0x4f }, |
| { ZD_CR121, 0x1f }, /* 6220 4f->1f */ |
| { ZD_CR122, 0xf0 }, { ZD_CR123, 0x57 }, { ZD_CR125, 0xad }, |
| { ZD_CR126, 0x6c }, { ZD_CR127, 0x03 }, |
| { ZD_CR128, 0x14 }, /* 6302 12->11 */ |
| { ZD_CR129, 0x12 }, /* 6301 10->0f */ |
| { ZD_CR130, 0x10 }, { ZD_CR137, 0x50 }, { ZD_CR138, 0xa8 }, |
| { ZD_CR144, 0xac }, { ZD_CR146, 0x20 }, { ZD_CR252, 0xff }, |
| { ZD_CR253, 0xff }, |
| }; |
| |
| static const u32 rv[] = { |
| UW2453_REGWRITE(4, 0x2b), /* configure receiver gain */ |
| UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */ |
| UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */ |
| UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */ |
| |
| /* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins, |
| * RSSI circuit powered down, reduced RSSI range */ |
| UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */ |
| |
| /* synthesizer configuration for channel 1 */ |
| UW2453_REGWRITE(1, 0x47), |
| UW2453_REGWRITE(2, 0x999), |
| |
| /* disable manual VCO band selection */ |
| UW2453_REGWRITE(3, 0x7602), |
| |
| /* enable manual VCO band selection, configure current level */ |
| UW2453_REGWRITE(3, 0x46063), |
| }; |
| |
| r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| if (r) |
| return r; |
| |
| r = zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS); |
| if (r) |
| return r; |
| |
| r = uw2453_init_mode(chip); |
| if (r) |
| return r; |
| |
| /* Try all standard VCO configuration settings on channel 1 */ |
| for (i = 0; i < ARRAY_SIZE(uw2453_std_vco_cfg) - 1; i++) { |
| /* Configure synthesizer for channel 1 */ |
| r = uw2453_synth_set_channel(chip, 1, false); |
| if (r) |
| return r; |
| |
| /* Write VCO config */ |
| r = uw2453_write_vco_cfg(chip, uw2453_std_vco_cfg[i][0]); |
| if (r) |
| return r; |
| |
| /* ack interrupt event */ |
| r = zd_iowrite16_locked(chip, 0x0f, UW2453_INTR_REG); |
| if (r) |
| return r; |
| |
| /* check interrupt status */ |
| r = zd_ioread16_locked(chip, &intr_status, UW2453_INTR_REG); |
| if (r) |
| return r; |
| |
| if (!(intr_status & 0xf)) { |
| dev_dbg_f(zd_chip_dev(chip), |
| "PLL locked on configuration %d\n", i); |
| found_config = i; |
| break; |
| } |
| } |
| |
| if (found_config == -1) { |
| /* autocal */ |
| dev_dbg_f(zd_chip_dev(chip), |
| "PLL did not lock, using autocal\n"); |
| |
| r = uw2453_synth_set_channel(chip, 1, true); |
| if (r) |
| return r; |
| |
| r = uw2453_write_vco_cfg(chip, UW2453_AUTOCAL_VCO_CFG); |
| if (r) |
| return r; |
| } |
| |
| /* To match the vendor driver behaviour, we use the configuration after |
| * the one that produced a lock. */ |
| UW2453_PRIV(rf)->config = found_config + 1; |
| |
| return zd_iowrite16_locked(chip, 0x06, ZD_CR203); |
| } |
| |
| static int uw2453_set_channel(struct zd_rf *rf, u8 channel) |
| { |
| int r; |
| u16 vco_cfg; |
| int config = UW2453_PRIV(rf)->config; |
| bool autocal = (config == -1); |
| struct zd_chip *chip = zd_rf_to_chip(rf); |
| |
| static const struct zd_ioreq16 ioreqs[] = { |
| { ZD_CR80, 0x30 }, { ZD_CR81, 0x30 }, { ZD_CR79, 0x58 }, |
| { ZD_CR12, 0xf0 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x58 }, |
| }; |
| |
| r = uw2453_synth_set_channel(chip, channel, autocal); |
| if (r) |
| return r; |
| |
| if (autocal) |
| vco_cfg = UW2453_AUTOCAL_VCO_CFG; |
| else |
| vco_cfg = uw2453_std_vco_cfg[config][CHAN_TO_PAIRIDX(channel)]; |
| |
| r = uw2453_write_vco_cfg(chip, vco_cfg); |
| if (r) |
| return r; |
| |
| r = uw2453_init_mode(chip); |
| if (r) |
| return r; |
| |
| r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| if (r) |
| return r; |
| |
| r = uw2453_set_tx_gain_level(chip, channel); |
| if (r) |
| return r; |
| |
| return zd_iowrite16_locked(chip, 0x06, ZD_CR203); |
| } |
| |
| static int uw2453_switch_radio_on(struct zd_rf *rf) |
| { |
| int r; |
| struct zd_chip *chip = zd_rf_to_chip(rf); |
| struct zd_ioreq16 ioreqs[] = { |
| { ZD_CR11, 0x00 }, { ZD_CR251, 0x3f }, |
| }; |
| |
| /* enter RXTX mode */ |
| r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS); |
| if (r) |
| return r; |
| |
| if (zd_chip_is_zd1211b(chip)) |
| ioreqs[1].value = 0x7f; |
| |
| return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| } |
| |
| static int uw2453_switch_radio_off(struct zd_rf *rf) |
| { |
| int r; |
| struct zd_chip *chip = zd_rf_to_chip(rf); |
| static const struct zd_ioreq16 ioreqs[] = { |
| { ZD_CR11, 0x04 }, { ZD_CR251, 0x2f }, |
| }; |
| |
| /* enter IDLE mode */ |
| /* FIXME: shouldn't we go to SLEEP? sent email to zydas */ |
| r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS); |
| if (r) |
| return r; |
| |
| return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| } |
| |
| static void uw2453_clear(struct zd_rf *rf) |
| { |
| kfree(rf->priv); |
| } |
| |
| int zd_rf_init_uw2453(struct zd_rf *rf) |
| { |
| rf->init_hw = uw2453_init_hw; |
| rf->set_channel = uw2453_set_channel; |
| rf->switch_radio_on = uw2453_switch_radio_on; |
| rf->switch_radio_off = uw2453_switch_radio_off; |
| rf->patch_6m_band_edge = zd_rf_generic_patch_6m; |
| rf->clear = uw2453_clear; |
| /* we have our own TX integration code */ |
| rf->update_channel_int = 0; |
| |
| rf->priv = kmalloc(sizeof(struct uw2453_priv), GFP_KERNEL); |
| if (rf->priv == NULL) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |