blob: be20a60047b1f2930a621409f97d7f668b1ae29a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/highmem.h>
#include <linux/hrtimer.h>
#include <linux/kernel.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/mm.h>
#include <linux/objtool.h>
#include <linux/sched.h>
#include <linux/sched/smt.h>
#include <linux/slab.h>
#include <linux/tboot.h>
#include <linux/trace_events.h>
#include <linux/entry-kvm.h>
#include <asm/apic.h>
#include <asm/asm.h>
#include <asm/cpu.h>
#include <asm/cpu_device_id.h>
#include <asm/debugreg.h>
#include <asm/desc.h>
#include <asm/fpu/api.h>
#include <asm/fpu/xstate.h>
#include <asm/idtentry.h>
#include <asm/io.h>
#include <asm/irq_remapping.h>
#include <asm/reboot.h>
#include <asm/perf_event.h>
#include <asm/mmu_context.h>
#include <asm/mshyperv.h>
#include <asm/mwait.h>
#include <asm/spec-ctrl.h>
#include <asm/vmx.h>
#include "capabilities.h"
#include "cpuid.h"
#include "hyperv.h"
#include "kvm_onhyperv.h"
#include "irq.h"
#include "kvm_cache_regs.h"
#include "lapic.h"
#include "mmu.h"
#include "nested.h"
#include "pmu.h"
#include "sgx.h"
#include "trace.h"
#include "vmcs.h"
#include "vmcs12.h"
#include "vmx.h"
#include "x86.h"
#include "smm.h"
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
#ifdef MODULE
static const struct x86_cpu_id vmx_cpu_id[] = {
X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
#endif
bool __read_mostly enable_vpid = 1;
module_param_named(vpid, enable_vpid, bool, 0444);
static bool __read_mostly enable_vnmi = 1;
module_param_named(vnmi, enable_vnmi, bool, 0444);
bool __read_mostly flexpriority_enabled = 1;
module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
bool __read_mostly enable_ept = 1;
module_param_named(ept, enable_ept, bool, 0444);
bool __read_mostly enable_unrestricted_guest = 1;
module_param_named(unrestricted_guest,
enable_unrestricted_guest, bool, 0444);
bool __read_mostly enable_ept_ad_bits = 1;
module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
static bool __read_mostly emulate_invalid_guest_state = true;
module_param(emulate_invalid_guest_state, bool, 0444);
static bool __read_mostly fasteoi = 1;
module_param(fasteoi, bool, 0444);
module_param(enable_apicv, bool, 0444);
bool __read_mostly enable_ipiv = true;
module_param(enable_ipiv, bool, 0444);
/*
* If nested=1, nested virtualization is supported, i.e., guests may use
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
* use VMX instructions.
*/
static bool __read_mostly nested = 1;
module_param(nested, bool, 0444);
bool __read_mostly enable_pml = 1;
module_param_named(pml, enable_pml, bool, 0444);
static bool __read_mostly error_on_inconsistent_vmcs_config = true;
module_param(error_on_inconsistent_vmcs_config, bool, 0444);
static bool __read_mostly dump_invalid_vmcs = 0;
module_param(dump_invalid_vmcs, bool, 0644);
#define MSR_BITMAP_MODE_X2APIC 1
#define MSR_BITMAP_MODE_X2APIC_APICV 2
#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
static int __read_mostly cpu_preemption_timer_multi;
static bool __read_mostly enable_preemption_timer = 1;
#ifdef CONFIG_X86_64
module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
#endif
extern bool __read_mostly allow_smaller_maxphyaddr;
module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
#define KVM_VM_CR0_ALWAYS_ON \
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
RTIT_STATUS_BYTECNT))
/*
* List of MSRs that can be directly passed to the guest.
* In addition to these x2apic and PT MSRs are handled specially.
*/
static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
MSR_IA32_SPEC_CTRL,
MSR_IA32_PRED_CMD,
MSR_IA32_FLUSH_CMD,
MSR_IA32_TSC,
#ifdef CONFIG_X86_64
MSR_FS_BASE,
MSR_GS_BASE,
MSR_KERNEL_GS_BASE,
MSR_IA32_XFD,
MSR_IA32_XFD_ERR,
#endif
MSR_IA32_SYSENTER_CS,
MSR_IA32_SYSENTER_ESP,
MSR_IA32_SYSENTER_EIP,
MSR_CORE_C1_RES,
MSR_CORE_C3_RESIDENCY,
MSR_CORE_C6_RESIDENCY,
MSR_CORE_C7_RESIDENCY,
};
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* ple_gap: upper bound on the amount of time between two successive
* executions of PAUSE in a loop. Also indicate if ple enabled.
* According to test, this time is usually smaller than 128 cycles.
* ple_window: upper bound on the amount of time a guest is allowed to execute
* in a PAUSE loop. Tests indicate that most spinlocks are held for
* less than 2^12 cycles
* Time is measured based on a counter that runs at the same rate as the TSC,
* refer SDM volume 3b section 21.6.13 & 22.1.3.
*/
static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
module_param(ple_gap, uint, 0444);
static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, uint, 0444);
/* Default doubles per-vcpu window every exit. */
static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
module_param(ple_window_grow, uint, 0444);
/* Default resets per-vcpu window every exit to ple_window. */
static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
module_param(ple_window_shrink, uint, 0444);
/* Default is to compute the maximum so we can never overflow. */
static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
module_param(ple_window_max, uint, 0444);
/* Default is SYSTEM mode, 1 for host-guest mode */
int __read_mostly pt_mode = PT_MODE_SYSTEM;
module_param(pt_mode, int, S_IRUGO);
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
static DEFINE_MUTEX(vmx_l1d_flush_mutex);
/* Storage for pre module init parameter parsing */
static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
static const struct {
const char *option;
bool for_parse;
} vmentry_l1d_param[] = {
[VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
[VMENTER_L1D_FLUSH_NEVER] = {"never", true},
[VMENTER_L1D_FLUSH_COND] = {"cond", true},
[VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
};
#define L1D_CACHE_ORDER 4
static void *vmx_l1d_flush_pages;
static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
{
struct page *page;
unsigned int i;
if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
return 0;
}
if (!enable_ept) {
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
return 0;
}
if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
return 0;
}
/* If set to auto use the default l1tf mitigation method */
if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
switch (l1tf_mitigation) {
case L1TF_MITIGATION_OFF:
l1tf = VMENTER_L1D_FLUSH_NEVER;
break;
case L1TF_MITIGATION_FLUSH_NOWARN:
case L1TF_MITIGATION_FLUSH:
case L1TF_MITIGATION_FLUSH_NOSMT:
l1tf = VMENTER_L1D_FLUSH_COND;
break;
case L1TF_MITIGATION_FULL:
case L1TF_MITIGATION_FULL_FORCE:
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
break;
}
} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
}
if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
!boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
/*
* This allocation for vmx_l1d_flush_pages is not tied to a VM
* lifetime and so should not be charged to a memcg.
*/
page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
if (!page)
return -ENOMEM;
vmx_l1d_flush_pages = page_address(page);
/*
* Initialize each page with a different pattern in
* order to protect against KSM in the nested
* virtualization case.
*/
for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
PAGE_SIZE);
}
}
l1tf_vmx_mitigation = l1tf;
if (l1tf != VMENTER_L1D_FLUSH_NEVER)
static_branch_enable(&vmx_l1d_should_flush);
else
static_branch_disable(&vmx_l1d_should_flush);
if (l1tf == VMENTER_L1D_FLUSH_COND)
static_branch_enable(&vmx_l1d_flush_cond);
else
static_branch_disable(&vmx_l1d_flush_cond);
return 0;
}
static int vmentry_l1d_flush_parse(const char *s)
{
unsigned int i;
if (s) {
for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
if (vmentry_l1d_param[i].for_parse &&
sysfs_streq(s, vmentry_l1d_param[i].option))
return i;
}
}
return -EINVAL;
}
static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
{
int l1tf, ret;
l1tf = vmentry_l1d_flush_parse(s);
if (l1tf < 0)
return l1tf;
if (!boot_cpu_has(X86_BUG_L1TF))
return 0;
/*
* Has vmx_init() run already? If not then this is the pre init
* parameter parsing. In that case just store the value and let
* vmx_init() do the proper setup after enable_ept has been
* established.
*/
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
vmentry_l1d_flush_param = l1tf;
return 0;
}
mutex_lock(&vmx_l1d_flush_mutex);
ret = vmx_setup_l1d_flush(l1tf);
mutex_unlock(&vmx_l1d_flush_mutex);
return ret;
}
static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
{
if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
return sysfs_emit(s, "???\n");
return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
}
static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
{
u64 msr;
if (!vmx->disable_fb_clear)
return;
msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
msr |= FB_CLEAR_DIS;
native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
/* Cache the MSR value to avoid reading it later */
vmx->msr_ia32_mcu_opt_ctrl = msr;
}
static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
{
if (!vmx->disable_fb_clear)
return;
vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
}
static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
{
vmx->disable_fb_clear = (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
!boot_cpu_has_bug(X86_BUG_MDS) &&
!boot_cpu_has_bug(X86_BUG_TAA);
/*
* If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
* at VMEntry. Skip the MSR read/write when a guest has no use case to
* execute VERW.
*/
if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
(vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
(vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
(vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
(vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
vmx->disable_fb_clear = false;
}
static const struct kernel_param_ops vmentry_l1d_flush_ops = {
.set = vmentry_l1d_flush_set,
.get = vmentry_l1d_flush_get,
};
module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
static u32 vmx_segment_access_rights(struct kvm_segment *var);
void vmx_vmexit(void);
#define vmx_insn_failed(fmt...) \
do { \
WARN_ONCE(1, fmt); \
pr_warn_ratelimited(fmt); \
} while (0)
noinline void vmread_error(unsigned long field)
{
vmx_insn_failed("vmread failed: field=%lx\n", field);
}
#ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
{
if (fault) {
kvm_spurious_fault();
} else {
instrumentation_begin();
vmread_error(field);
instrumentation_end();
}
}
#endif
noinline void vmwrite_error(unsigned long field, unsigned long value)
{
vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
}
noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
{
vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
}
noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
{
vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
}
noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
{
vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
ext, vpid, gva);
}
noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
{
vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
ext, eptp, gpa);
}
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
DEFINE_PER_CPU(struct vmcs *, current_vmcs);
/*
* We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
* when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
*/
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);
struct vmcs_config vmcs_config __ro_after_init;
struct vmx_capability vmx_capability __ro_after_init;
#define VMX_SEGMENT_FIELD(seg) \
[VCPU_SREG_##seg] = { \
.selector = GUEST_##seg##_SELECTOR, \
.base = GUEST_##seg##_BASE, \
.limit = GUEST_##seg##_LIMIT, \
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static const struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
VMX_SEGMENT_FIELD(CS),
VMX_SEGMENT_FIELD(DS),
VMX_SEGMENT_FIELD(ES),
VMX_SEGMENT_FIELD(FS),
VMX_SEGMENT_FIELD(GS),
VMX_SEGMENT_FIELD(SS),
VMX_SEGMENT_FIELD(TR),
VMX_SEGMENT_FIELD(LDTR),
};
static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
{
vmx->segment_cache.bitmask = 0;
}
static unsigned long host_idt_base;
#if IS_ENABLED(CONFIG_HYPERV)
static struct kvm_x86_ops vmx_x86_ops __initdata;
static bool __read_mostly enlightened_vmcs = true;
module_param(enlightened_vmcs, bool, 0444);
static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
{
struct hv_enlightened_vmcs *evmcs;
struct hv_partition_assist_pg **p_hv_pa_pg =
&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
/*
* Synthetic VM-Exit is not enabled in current code and so All
* evmcs in singe VM shares same assist page.
*/
if (!*p_hv_pa_pg)
*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
if (!*p_hv_pa_pg)
return -ENOMEM;
evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
evmcs->partition_assist_page =
__pa(*p_hv_pa_pg);
evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
return 0;
}
static __init void hv_init_evmcs(void)
{
int cpu;
if (!enlightened_vmcs)
return;
/*
* Enlightened VMCS usage should be recommended and the host needs
* to support eVMCS v1 or above.
*/
if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
(ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
KVM_EVMCS_VERSION) {
/* Check that we have assist pages on all online CPUs */
for_each_online_cpu(cpu) {
if (!hv_get_vp_assist_page(cpu)) {
enlightened_vmcs = false;
break;
}
}
if (enlightened_vmcs) {
pr_info("Using Hyper-V Enlightened VMCS\n");
static_branch_enable(&__kvm_is_using_evmcs);
}
if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
vmx_x86_ops.enable_l2_tlb_flush
= hv_enable_l2_tlb_flush;
} else {
enlightened_vmcs = false;
}
}
static void hv_reset_evmcs(void)
{
struct hv_vp_assist_page *vp_ap;
if (!kvm_is_using_evmcs())
return;
/*
* KVM should enable eVMCS if and only if all CPUs have a VP assist
* page, and should reject CPU onlining if eVMCS is enabled the CPU
* doesn't have a VP assist page allocated.
*/
vp_ap = hv_get_vp_assist_page(smp_processor_id());
if (WARN_ON_ONCE(!vp_ap))
return;
/*
* Reset everything to support using non-enlightened VMCS access later
* (e.g. when we reload the module with enlightened_vmcs=0)
*/
vp_ap->nested_control.features.directhypercall = 0;
vp_ap->current_nested_vmcs = 0;
vp_ap->enlighten_vmentry = 0;
}
#else /* IS_ENABLED(CONFIG_HYPERV) */
static void hv_init_evmcs(void) {}
static void hv_reset_evmcs(void) {}
#endif /* IS_ENABLED(CONFIG_HYPERV) */
/*
* Comment's format: document - errata name - stepping - processor name.
* Refer from
* https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
*/
static u32 vmx_preemption_cpu_tfms[] = {
/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
0x000206E6,
/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
0x00020652,
/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
0x00020655,
/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
/*
* 320767.pdf - AAP86 - B1 -
* i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
*/
0x000106E5,
/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
0x000106A0,
/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
0x000106A1,
/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
0x000106A4,
/* 321333.pdf - AAM126 - D0 - Xeon 3500 */
/* 321324.pdf - AAK139 - D0 - Xeon 5500 */
/* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
0x000106A5,
/* Xeon E3-1220 V2 */
0x000306A8,
};
static inline bool cpu_has_broken_vmx_preemption_timer(void)
{
u32 eax = cpuid_eax(0x00000001), i;
/* Clear the reserved bits */
eax &= ~(0x3U << 14 | 0xfU << 28);
for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
if (eax == vmx_preemption_cpu_tfms[i])
return true;
return false;
}
static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
{
return flexpriority_enabled && lapic_in_kernel(vcpu);
}
static int possible_passthrough_msr_slot(u32 msr)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
if (vmx_possible_passthrough_msrs[i] == msr)
return i;
return -ENOENT;
}
static bool is_valid_passthrough_msr(u32 msr)
{
bool r;
switch (msr) {
case 0x800 ... 0x8ff:
/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
return true;
case MSR_IA32_RTIT_STATUS:
case MSR_IA32_RTIT_OUTPUT_BASE:
case MSR_IA32_RTIT_OUTPUT_MASK:
case MSR_IA32_RTIT_CR3_MATCH:
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
case MSR_LBR_SELECT:
case MSR_LBR_TOS:
case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
return true;
}
r = possible_passthrough_msr_slot(msr) != -ENOENT;
WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
return r;
}
struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
{
int i;
i = kvm_find_user_return_msr(msr);
if (i >= 0)
return &vmx->guest_uret_msrs[i];
return NULL;
}
static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
struct vmx_uret_msr *msr, u64 data)
{
unsigned int slot = msr - vmx->guest_uret_msrs;
int ret = 0;
if (msr->load_into_hardware) {
preempt_disable();
ret = kvm_set_user_return_msr(slot, data, msr->mask);
preempt_enable();
}
if (!ret)
msr->data = data;
return ret;
}
/*
* Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
*
* Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
* atomically track post-VMXON state, e.g. this may be called in NMI context.
* Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
* faults are guaranteed to be due to the !post-VMXON check unless the CPU is
* magically in RM, VM86, compat mode, or at CPL>0.
*/
static int kvm_cpu_vmxoff(void)
{
asm_volatile_goto("1: vmxoff\n\t"
_ASM_EXTABLE(1b, %l[fault])
::: "cc", "memory" : fault);
cr4_clear_bits(X86_CR4_VMXE);
return 0;
fault:
cr4_clear_bits(X86_CR4_VMXE);
return -EIO;
}
static void vmx_emergency_disable(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v;
kvm_rebooting = true;
/*
* Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
* set in task context. If this races with VMX is disabled by an NMI,
* VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
* kvm_rebooting set.
*/
if (!(__read_cr4() & X86_CR4_VMXE))
return;
list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
vmcs_clear(v->vmcs);
kvm_cpu_vmxoff();
}
static void __loaded_vmcs_clear(void *arg)
{
struct loaded_vmcs *loaded_vmcs = arg;
int cpu = raw_smp_processor_id();
if (loaded_vmcs->cpu != cpu)
return; /* vcpu migration can race with cpu offline */
if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
vmcs_clear(loaded_vmcs->vmcs);
if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
vmcs_clear(loaded_vmcs->shadow_vmcs);
list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
/*
* Ensure all writes to loaded_vmcs, including deleting it from its
* current percpu list, complete before setting loaded_vmcs->cpu to
* -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
* and add loaded_vmcs to its percpu list before it's deleted from this
* cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
*/
smp_wmb();
loaded_vmcs->cpu = -1;
loaded_vmcs->launched = 0;
}
void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
{
int cpu = loaded_vmcs->cpu;
if (cpu != -1)
smp_call_function_single(cpu,
__loaded_vmcs_clear, loaded_vmcs, 1);
}
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
unsigned field)
{
bool ret;
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
vmx->segment_cache.bitmask = 0;
}
ret = vmx->segment_cache.bitmask & mask;
vmx->segment_cache.bitmask |= mask;
return ret;
}
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
{
u16 *p = &vmx->segment_cache.seg[seg].selector;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
return *p;
}
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
{
ulong *p = &vmx->segment_cache.seg[seg].base;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
return *p;
}
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].limit;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
return *p;
}
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].ar;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
return *p;
}
void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
{
u32 eb;
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
(1u << DB_VECTOR) | (1u << AC_VECTOR);
/*
* Guest access to VMware backdoor ports could legitimately
* trigger #GP because of TSS I/O permission bitmap.
* We intercept those #GP and allow access to them anyway
* as VMware does.
*/
if (enable_vmware_backdoor)
eb |= (1u << GP_VECTOR);
if ((vcpu->guest_debug &
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
eb |= 1u << BP_VECTOR;
if (to_vmx(vcpu)->rmode.vm86_active)
eb = ~0;
if (!vmx_need_pf_intercept(vcpu))
eb &= ~(1u << PF_VECTOR);
/* When we are running a nested L2 guest and L1 specified for it a
* certain exception bitmap, we must trap the same exceptions and pass
* them to L1. When running L2, we will only handle the exceptions
* specified above if L1 did not want them.
*/
if (is_guest_mode(vcpu))
eb |= get_vmcs12(vcpu)->exception_bitmap;
else {
int mask = 0, match = 0;
if (enable_ept && (eb & (1u << PF_VECTOR))) {
/*
* If EPT is enabled, #PF is currently only intercepted
* if MAXPHYADDR is smaller on the guest than on the
* host. In that case we only care about present,
* non-reserved faults. For vmcs02, however, PFEC_MASK
* and PFEC_MATCH are set in prepare_vmcs02_rare.
*/
mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
match = PFERR_PRESENT_MASK;
}
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
}
/*
* Disabling xfd interception indicates that dynamic xfeatures
* might be used in the guest. Always trap #NM in this case
* to save guest xfd_err timely.
*/
if (vcpu->arch.xfd_no_write_intercept)
eb |= (1u << NM_VECTOR);
vmcs_write32(EXCEPTION_BITMAP, eb);
}
/*
* Check if MSR is intercepted for currently loaded MSR bitmap.
*/
static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
{
if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
return true;
return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
}
unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
{
unsigned int flags = 0;
if (vmx->loaded_vmcs->launched)
flags |= VMX_RUN_VMRESUME;
/*
* If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
* to change it directly without causing a vmexit. In that case read
* it after vmexit and store it in vmx->spec_ctrl.
*/
if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
flags |= VMX_RUN_SAVE_SPEC_CTRL;
return flags;
}
static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
unsigned long entry, unsigned long exit)
{
vm_entry_controls_clearbit(vmx, entry);
vm_exit_controls_clearbit(vmx, exit);
}
int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
{
unsigned int i;
for (i = 0; i < m->nr; ++i) {
if (m->val[i].index == msr)
return i;
}
return -ENOENT;
}
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
{
int i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer()) {
clear_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl()) {
clear_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
return;
}
break;
}
i = vmx_find_loadstore_msr_slot(&m->guest, msr);
if (i < 0)
goto skip_guest;
--m->guest.nr;
m->guest.val[i] = m->guest.val[m->guest.nr];
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
skip_guest:
i = vmx_find_loadstore_msr_slot(&m->host, msr);
if (i < 0)
return;
--m->host.nr;
m->host.val[i] = m->host.val[m->host.nr];
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
}
static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
unsigned long entry, unsigned long exit,
unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
u64 guest_val, u64 host_val)
{
vmcs_write64(guest_val_vmcs, guest_val);
if (host_val_vmcs != HOST_IA32_EFER)
vmcs_write64(host_val_vmcs, host_val);
vm_entry_controls_setbit(vmx, entry);
vm_exit_controls_setbit(vmx, exit);
}
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
u64 guest_val, u64 host_val, bool entry_only)
{
int i, j = 0;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer()) {
add_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER,
GUEST_IA32_EFER,
HOST_IA32_EFER,
guest_val, host_val);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl()) {
add_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
GUEST_IA32_PERF_GLOBAL_CTRL,
HOST_IA32_PERF_GLOBAL_CTRL,
guest_val, host_val);
return;
}
break;
case MSR_IA32_PEBS_ENABLE:
/* PEBS needs a quiescent period after being disabled (to write
* a record). Disabling PEBS through VMX MSR swapping doesn't
* provide that period, so a CPU could write host's record into
* guest's memory.
*/
wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}
i = vmx_find_loadstore_msr_slot(&m->guest, msr);
if (!entry_only)
j = vmx_find_loadstore_msr_slot(&m->host, msr);
if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
(j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
printk_once(KERN_WARNING "Not enough msr switch entries. "
"Can't add msr %x\n", msr);
return;
}
if (i < 0) {
i = m->guest.nr++;
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
}
m->guest.val[i].index = msr;
m->guest.val[i].value = guest_val;
if (entry_only)
return;
if (j < 0) {
j = m->host.nr++;
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
}
m->host.val[j].index = msr;
m->host.val[j].value = host_val;
}
static bool update_transition_efer(struct vcpu_vmx *vmx)
{
u64 guest_efer = vmx->vcpu.arch.efer;
u64 ignore_bits = 0;
int i;
/* Shadow paging assumes NX to be available. */
if (!enable_ept)
guest_efer |= EFER_NX;
/*
* LMA and LME handled by hardware; SCE meaningless outside long mode.
*/
ignore_bits |= EFER_SCE;
#ifdef CONFIG_X86_64
ignore_bits |= EFER_LMA | EFER_LME;
/* SCE is meaningful only in long mode on Intel */
if (guest_efer & EFER_LMA)
ignore_bits &= ~(u64)EFER_SCE;
#endif
/*
* On EPT, we can't emulate NX, so we must switch EFER atomically.
* On CPUs that support "load IA32_EFER", always switch EFER
* atomically, since it's faster than switching it manually.
*/
if (cpu_has_load_ia32_efer() ||
(enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
if (!(guest_efer & EFER_LMA))
guest_efer &= ~EFER_LME;
if (guest_efer != host_efer)
add_atomic_switch_msr(vmx, MSR_EFER,
guest_efer, host_efer, false);
else
clear_atomic_switch_msr(vmx, MSR_EFER);
return false;
}
i = kvm_find_user_return_msr(MSR_EFER);
if (i < 0)
return false;
clear_atomic_switch_msr(vmx, MSR_EFER);
guest_efer &= ~ignore_bits;
guest_efer |= host_efer & ignore_bits;
vmx->guest_uret_msrs[i].data = guest_efer;
vmx->guest_uret_msrs[i].mask = ~ignore_bits;
return true;
}
#ifdef CONFIG_X86_32
/*
* On 32-bit kernels, VM exits still load the FS and GS bases from the
* VMCS rather than the segment table. KVM uses this helper to figure
* out the current bases to poke them into the VMCS before entry.
*/
static unsigned long segment_base(u16 selector)
{
struct desc_struct *table;
unsigned long v;
if (!(selector & ~SEGMENT_RPL_MASK))
return 0;
table = get_current_gdt_ro();
if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
u16 ldt_selector = kvm_read_ldt();
if (!(ldt_selector & ~SEGMENT_RPL_MASK))
return 0;
table = (struct desc_struct *)segment_base(ldt_selector);
}
v = get_desc_base(&table[selector >> 3]);
return v;
}
#endif
static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
{
return vmx_pt_mode_is_host_guest() &&
!(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
}
static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
{
/* The base must be 128-byte aligned and a legal physical address. */
return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
}
static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
{
u32 i;
wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
for (i = 0; i < addr_range; i++) {
wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
}
}
static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
{
u32 i;
rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
for (i = 0; i < addr_range; i++) {
rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
}
}
static void pt_guest_enter(struct vcpu_vmx *vmx)
{
if (vmx_pt_mode_is_system())
return;
/*
* GUEST_IA32_RTIT_CTL is already set in the VMCS.
* Save host state before VM entry.
*/
rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
wrmsrl(MSR_IA32_RTIT_CTL, 0);
pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
}
}
static void pt_guest_exit(struct vcpu_vmx *vmx)
{
if (vmx_pt_mode_is_system())
return;
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
}
/*
* KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
* i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
*/
if (vmx->pt_desc.host.ctl)
wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
}
void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
unsigned long fs_base, unsigned long gs_base)
{
if (unlikely(fs_sel != host->fs_sel)) {
if (!(fs_sel & 7))
vmcs_write16(HOST_FS_SELECTOR, fs_sel);
else
vmcs_write16(HOST_FS_SELECTOR, 0);
host->fs_sel = fs_sel;
}
if (unlikely(gs_sel != host->gs_sel)) {
if (!(gs_sel & 7))
vmcs_write16(HOST_GS_SELECTOR, gs_sel);
else
vmcs_write16(HOST_GS_SELECTOR, 0);
host->gs_sel = gs_sel;
}
if (unlikely(fs_base != host->fs_base)) {
vmcs_writel(HOST_FS_BASE, fs_base);
host->fs_base = fs_base;
}
if (unlikely(gs_base != host->gs_base)) {
vmcs_writel(HOST_GS_BASE, gs_base);
host->gs_base = gs_base;
}
}
void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs_host_state *host_state;
#ifdef CONFIG_X86_64
int cpu = raw_smp_processor_id();
#endif
unsigned long fs_base, gs_base;
u16 fs_sel, gs_sel;
int i;
vmx->req_immediate_exit = false;
/*
* Note that guest MSRs to be saved/restored can also be changed
* when guest state is loaded. This happens when guest transitions
* to/from long-mode by setting MSR_EFER.LMA.
*/
if (!vmx->guest_uret_msrs_loaded) {
vmx->guest_uret_msrs_loaded = true;
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
if (!vmx->guest_uret_msrs[i].load_into_hardware)
continue;
kvm_set_user_return_msr(i,
vmx->guest_uret_msrs[i].data,
vmx->guest_uret_msrs[i].mask);
}
}
if (vmx->nested.need_vmcs12_to_shadow_sync)
nested_sync_vmcs12_to_shadow(vcpu);
if (vmx->guest_state_loaded)
return;
host_state = &vmx->loaded_vmcs->host_state;
/*
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
* allow segment selectors with cpl > 0 or ti == 1.
*/
host_state->ldt_sel = kvm_read_ldt();
#ifdef CONFIG_X86_64
savesegment(ds, host_state->ds_sel);
savesegment(es, host_state->es_sel);
gs_base = cpu_kernelmode_gs_base(cpu);
if (likely(is_64bit_mm(current->mm))) {
current_save_fsgs();
fs_sel = current->thread.fsindex;
gs_sel = current->thread.gsindex;
fs_base = current->thread.fsbase;
vmx->msr_host_kernel_gs_base = current->thread.gsbase;
} else {
savesegment(fs, fs_sel);
savesegment(gs, gs_sel);
fs_base = read_msr(MSR_FS_BASE);
vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
}
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#else
savesegment(fs, fs_sel);
savesegment(gs, gs_sel);
fs_base = segment_base(fs_sel);
gs_base = segment_base(gs_sel);
#endif
vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
vmx->guest_state_loaded = true;
}
static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
{
struct vmcs_host_state *host_state;
if (!vmx->guest_state_loaded)
return;
host_state = &vmx->loaded_vmcs->host_state;
++vmx->vcpu.stat.host_state_reload;
#ifdef CONFIG_X86_64
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
kvm_load_ldt(host_state->ldt_sel);
#ifdef CONFIG_X86_64
load_gs_index(host_state->gs_sel);
#else
loadsegment(gs, host_state->gs_sel);
#endif
}
if (host_state->fs_sel & 7)
loadsegment(fs, host_state->fs_sel);
#ifdef CONFIG_X86_64
if (unlikely(host_state->ds_sel | host_state->es_sel)) {
loadsegment(ds, host_state->ds_sel);
loadsegment(es, host_state->es_sel);
}
#endif
invalidate_tss_limit();
#ifdef CONFIG_X86_64
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
#endif
load_fixmap_gdt(raw_smp_processor_id());
vmx->guest_state_loaded = false;
vmx->guest_uret_msrs_loaded = false;
}
#ifdef CONFIG_X86_64
static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
{
preempt_disable();
if (vmx->guest_state_loaded)
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
preempt_enable();
return vmx->msr_guest_kernel_gs_base;
}
static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
{
preempt_disable();
if (vmx->guest_state_loaded)
wrmsrl(MSR_KERNEL_GS_BASE, data);
preempt_enable();
vmx->msr_guest_kernel_gs_base = data;
}
#endif
void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
struct loaded_vmcs *buddy)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
struct vmcs *prev;
if (!already_loaded) {
loaded_vmcs_clear(vmx->loaded_vmcs);
local_irq_disable();
/*
* Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
* this cpu's percpu list, otherwise it may not yet be deleted
* from its previous cpu's percpu list. Pairs with the
* smb_wmb() in __loaded_vmcs_clear().
*/
smp_rmb();
list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
&per_cpu(loaded_vmcss_on_cpu, cpu));
local_irq_enable();
}
prev = per_cpu(current_vmcs, cpu);
if (prev != vmx->loaded_vmcs->vmcs) {
per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
vmcs_load(vmx->loaded_vmcs->vmcs);
/*
* No indirect branch prediction barrier needed when switching
* the active VMCS within a vCPU, unless IBRS is advertised to
* the vCPU. To minimize the number of IBPBs executed, KVM
* performs IBPB on nested VM-Exit (a single nested transition
* may switch the active VMCS multiple times).
*/
if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
indirect_branch_prediction_barrier();
}
if (!already_loaded) {
void *gdt = get_current_gdt_ro();
/*
* Flush all EPTP/VPID contexts, the new pCPU may have stale
* TLB entries from its previous association with the vCPU.
*/
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors. See 22.2.4.
*/
vmcs_writel(HOST_TR_BASE,
(unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
/* 22.2.3 */
vmcs_writel(HOST_IA32_SYSENTER_ESP,
(unsigned long)(cpu_entry_stack(cpu) + 1));
}
vmx->loaded_vmcs->cpu = cpu;
}
}
/*
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
* vcpu mutex is already taken.
*/
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
vmx_vcpu_pi_load(vcpu, cpu);
vmx->host_debugctlmsr = get_debugctlmsr();
}
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
vmx_vcpu_pi_put(vcpu);
vmx_prepare_switch_to_host(to_vmx(vcpu));
}
bool vmx_emulation_required(struct kvm_vcpu *vcpu)
{
return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
}
unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long rflags, save_rflags;
if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
rflags = vmcs_readl(GUEST_RFLAGS);
if (vmx->rmode.vm86_active) {
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
save_rflags = vmx->rmode.save_rflags;
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
}
vmx->rflags = rflags;
}
return vmx->rflags;
}
void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long old_rflags;
/*
* Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
* is an unrestricted guest in order to mark L2 as needing emulation
* if L1 runs L2 as a restricted guest.
*/
if (is_unrestricted_guest(vcpu)) {
kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
vmx->rflags = rflags;
vmcs_writel(GUEST_RFLAGS, rflags);
return;
}
old_rflags = vmx_get_rflags(vcpu);
vmx->rflags = rflags;
if (vmx->rmode.vm86_active) {
vmx->rmode.save_rflags = rflags;
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
}
vmcs_writel(GUEST_RFLAGS, rflags);
if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
vmx->emulation_required = vmx_emulation_required(vcpu);
}
static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
{
return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
}
u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
{
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
int ret = 0;
if (interruptibility & GUEST_INTR_STATE_STI)
ret |= KVM_X86_SHADOW_INT_STI;
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
ret |= KVM_X86_SHADOW_INT_MOV_SS;
return ret;
}
void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
u32 interruptibility = interruptibility_old;
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
interruptibility |= GUEST_INTR_STATE_MOV_SS;
else if (mask & KVM_X86_SHADOW_INT_STI)
interruptibility |= GUEST_INTR_STATE_STI;
if ((interruptibility != interruptibility_old))
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
}
static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long value;
/*
* Any MSR write that attempts to change bits marked reserved will
* case a #GP fault.
*/
if (data & vmx->pt_desc.ctl_bitmask)
return 1;
/*
* Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
* result in a #GP unless the same write also clears TraceEn.
*/
if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
return 1;
/*
* WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
* and FabricEn would cause #GP, if
* CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
*/
if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
!(data & RTIT_CTL_FABRIC_EN) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output))
return 1;
/*
* MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
* utilize encodings marked reserved will cause a #GP fault.
*/
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
!test_bit((data & RTIT_CTL_MTC_RANGE) >>
RTIT_CTL_MTC_RANGE_OFFSET, &value))
return 1;
value = intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_cycle_thresholds);
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
!test_bit((data & RTIT_CTL_CYC_THRESH) >>
RTIT_CTL_CYC_THRESH_OFFSET, &value))
return 1;
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
!test_bit((data & RTIT_CTL_PSB_FREQ) >>
RTIT_CTL_PSB_FREQ_OFFSET, &value))
return 1;
/*
* If ADDRx_CFG is reserved or the encodings is >2 will
* cause a #GP fault.
*/
value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
return 1;
value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
return 1;
value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
return 1;
value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
return 1;
return 0;
}
static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
void *insn, int insn_len)
{
/*
* Emulation of instructions in SGX enclaves is impossible as RIP does
* not point at the failing instruction, and even if it did, the code
* stream is inaccessible. Inject #UD instead of exiting to userspace
* so that guest userspace can't DoS the guest simply by triggering
* emulation (enclaves are CPL3 only).
*/
if (to_vmx(vcpu)->exit_reason.enclave_mode) {
kvm_queue_exception(vcpu, UD_VECTOR);
return X86EMUL_PROPAGATE_FAULT;
}
return X86EMUL_CONTINUE;
}
static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
unsigned long rip, orig_rip;
u32 instr_len;
/*
* Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
* undefined behavior: Intel's SDM doesn't mandate the VMCS field be
* set when EPT misconfig occurs. In practice, real hardware updates
* VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
* (namely Hyper-V) don't set it due to it being undefined behavior,
* i.e. we end up advancing IP with some random value.
*/
if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
/*
* Emulating an enclave's instructions isn't supported as KVM
* cannot access the enclave's memory or its true RIP, e.g. the
* vmcs.GUEST_RIP points at the exit point of the enclave, not
* the RIP that actually triggered the VM-Exit. But, because
* most instructions that cause VM-Exit will #UD in an enclave,
* most instruction-based VM-Exits simply do not occur.
*
* There are a few exceptions, notably the debug instructions
* INT1ICEBRK and INT3, as they are allowed in debug enclaves
* and generate #DB/#BP as expected, which KVM might intercept.
* But again, the CPU does the dirty work and saves an instr
* length of zero so VMMs don't shoot themselves in the foot.
* WARN if KVM tries to skip a non-zero length instruction on
* a VM-Exit from an enclave.
*/
if (!instr_len)
goto rip_updated;
WARN_ONCE(exit_reason.enclave_mode,
"skipping instruction after SGX enclave VM-Exit");
orig_rip = kvm_rip_read(vcpu);
rip = orig_rip + instr_len;
#ifdef CONFIG_X86_64
/*
* We need to mask out the high 32 bits of RIP if not in 64-bit
* mode, but just finding out that we are in 64-bit mode is
* quite expensive. Only do it if there was a carry.
*/
if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
rip = (u32)rip;
#endif
kvm_rip_write(vcpu, rip);
} else {
if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
return 0;
}
rip_updated:
/* skipping an emulated instruction also counts */
vmx_set_interrupt_shadow(vcpu, 0);
return 1;
}
/*
* Recognizes a pending MTF VM-exit and records the nested state for later
* delivery.
*/
static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!is_guest_mode(vcpu))
return;
/*
* Per the SDM, MTF takes priority over debug-trap exceptions besides
* TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
* or ICEBP (in the emulator proper), and skipping of ICEBP after an
* intercepted #DB deliberately avoids single-step #DB and MTF updates
* as ICEBP is higher priority than both. As instruction emulation is
* completed at this point (i.e. KVM is at the instruction boundary),
* any #DB exception pending delivery must be a debug-trap of lower
* priority than MTF. Record the pending MTF state to be delivered in
* vmx_check_nested_events().
*/
if (nested_cpu_has_mtf(vmcs12) &&
(!vcpu->arch.exception.pending ||
vcpu->arch.exception.vector == DB_VECTOR) &&
(!vcpu->arch.exception_vmexit.pending ||
vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
vmx->nested.mtf_pending = true;
kvm_make_request(KVM_REQ_EVENT, vcpu);
} else {
vmx->nested.mtf_pending = false;
}
}
static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
vmx_update_emulated_instruction(vcpu);
return skip_emulated_instruction(vcpu);
}
static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
{
/*
* Ensure that we clear the HLT state in the VMCS. We don't need to
* explicitly skip the instruction because if the HLT state is set,
* then the instruction is already executing and RIP has already been
* advanced.
*/
if (kvm_hlt_in_guest(vcpu->kvm) &&
vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
}
static void vmx_inject_exception(struct kvm_vcpu *vcpu)
{
struct kvm_queued_exception *ex = &vcpu->arch.exception;
u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
struct vcpu_vmx *vmx = to_vmx(vcpu);
kvm_deliver_exception_payload(vcpu, ex);
if (ex->has_error_code) {
/*
* Despite the error code being architecturally defined as 32
* bits, and the VMCS field being 32 bits, Intel CPUs and thus
* VMX don't actually supporting setting bits 31:16. Hardware
* will (should) never provide a bogus error code, but AMD CPUs
* do generate error codes with bits 31:16 set, and so KVM's
* ABI lets userspace shove in arbitrary 32-bit values. Drop
* the upper bits to avoid VM-Fail, losing information that
* does't really exist is preferable to killing the VM.
*/
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
}
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (kvm_exception_is_soft(ex->vector))
inc_eip = vcpu->arch.event_exit_inst_len;
kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
return;
}
WARN_ON_ONCE(vmx->emulation_required);
if (kvm_exception_is_soft(ex->vector)) {
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
} else
intr_info |= INTR_TYPE_HARD_EXCEPTION;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
vmx_clear_hlt(vcpu);
}
static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
bool load_into_hardware)
{
struct vmx_uret_msr *uret_msr;
uret_msr = vmx_find_uret_msr(vmx, msr);
if (!uret_msr)
return;
uret_msr->load_into_hardware = load_into_hardware;
}
/*
* Configuring user return MSRs to automatically save, load, and restore MSRs
* that need to be shoved into hardware when running the guest. Note, omitting
* an MSR here does _NOT_ mean it's not emulated, only that it will not be
* loaded into hardware when running the guest.
*/
static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
{
#ifdef CONFIG_X86_64
bool load_syscall_msrs;
/*
* The SYSCALL MSRs are only needed on long mode guests, and only
* when EFER.SCE is set.
*/
load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
(vmx->vcpu.arch.efer & EFER_SCE);
vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
#endif
vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
/*
* hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
* kernel and old userspace. If those guests run on a tsx=off host, do
* allow guests to use TSX_CTRL, but don't change the value in hardware
* so that TSX remains always disabled.
*/
vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
/*
* The set of MSRs to load may have changed, reload MSRs before the
* next VM-Enter.
*/
vmx->guest_uret_msrs_loaded = false;
}
u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
return vmcs12->tsc_offset;
return 0;
}
u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
return vmcs12->tsc_multiplier;
return kvm_caps.default_tsc_scaling_ratio;
}
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
{
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
}
static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
{
vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
}
/*
* Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
* guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
* backwards compatibility even though KVM doesn't support emulating SMX. And
* because userspace set "VMX in SMX", the guest must also be allowed to set it,
* e.g. if the MSR is left unlocked and the guest does a RMW operation.
*/
#define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
FEAT_CTL_SGX_LC_ENABLED | \
FEAT_CTL_SGX_ENABLED | \
FEAT_CTL_LMCE_ENABLED)
static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
struct msr_data *msr)
{
uint64_t valid_bits;
/*
* Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
* exposed to the guest.
*/
WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
~KVM_SUPPORTED_FEATURE_CONTROL);
if (!msr->host_initiated &&
(vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
return false;
if (msr->host_initiated)
valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
else
valid_bits = vmx->msr_ia32_feature_control_valid_bits;
return !(msr->data & ~valid_bits);
}
static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
{
switch (msr->index) {
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
if (!nested)
return 1;
return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
default:
return KVM_MSR_RET_INVALID;
}
}
/*
* Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmx_uret_msr *msr;
u32 index;
switch (msr_info->index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
msr_info->data = vmcs_readl(GUEST_FS_BASE);
break;
case MSR_GS_BASE:
msr_info->data = vmcs_readl(GUEST_GS_BASE);
break;
case MSR_KERNEL_GS_BASE:
msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
break;
#endif
case MSR_EFER:
return kvm_get_msr_common(vcpu, msr_info);
case MSR_IA32_TSX_CTRL:
if (!msr_info->host_initiated &&
!(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
return 1;
goto find_uret_msr;
case MSR_IA32_UMWAIT_CONTROL:
if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
return 1;
msr_info->data = vmx->msr_ia32_umwait_control;
break;
case MSR_IA32_SPEC_CTRL:
if (!msr_info->host_initiated &&
!guest_has_spec_ctrl_msr(vcpu))
return 1;
msr_info->data = to_vmx(vcpu)->spec_ctrl;
break;
case MSR_IA32_SYSENTER_CS:
msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
break;
case MSR_IA32_SYSENTER_EIP:
msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
break;
case MSR_IA32_SYSENTER_ESP:
msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
break;
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported() ||
(!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
return 1;
msr_info->data = vmcs_read64(GUEST_BNDCFGS);
break;
case MSR_IA32_MCG_EXT_CTL:
if (!msr_info->host_initiated &&
!(vmx->msr_ia32_feature_control &
FEAT_CTL_LMCE_ENABLED))
return 1;
msr_info->data = vcpu->arch.mcg_ext_ctl;
break;
case MSR_IA32_FEAT_CTL:
msr_info->data = vmx->msr_ia32_feature_control;
break;
case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
return 1;
msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
break;
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
if (!guest_can_use(vcpu, X86_FEATURE_VMX))
return 1;
if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
&msr_info->data))
return 1;
/*
* Enlightened VMCS v1 doesn't have certain VMCS fields but
* instead of just ignoring the features, different Hyper-V
* versions are either trying to use them and fail or do some
* sanity checking and refuse to boot. Filter all unsupported
* features out.
*/
if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
nested_evmcs_filter_control_msr(vcpu, msr_info->index,
&msr_info->data);
break;
case MSR_IA32_RTIT_CTL:
if (!vmx_pt_mode_is_host_guest())
return 1;
msr_info->data = vmx->pt_desc.guest.ctl;
break;
case MSR_IA32_RTIT_STATUS:
if (!vmx_pt_mode_is_host_guest())
return 1;
msr_info->data = vmx->pt_desc.guest.status;
break;
case MSR_IA32_RTIT_CR3_MATCH:
if (!vmx_pt_mode_is_host_guest() ||
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_cr3_filtering))
return 1;
msr_info->data = vmx->pt_desc.guest.cr3_match;
break;
case MSR_IA32_RTIT_OUTPUT_BASE:
if (!vmx_pt_mode_is_host_guest() ||
(!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_topa_output) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output)))
return 1;
msr_info->data = vmx->pt_desc.guest.output_base;
break;
case MSR_IA32_RTIT_OUTPUT_MASK:
if (!vmx_pt_mode_is_host_guest() ||
(!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_topa_output) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output)))
return 1;
msr_info->data = vmx->pt_desc.guest.output_mask;
break;
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
if (!vmx_pt_mode_is_host_guest() ||
(index >= 2 * vmx->pt_desc.num_address_ranges))
return 1;
if (index % 2)
msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
else
msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
break;
case MSR_IA32_DEBUGCTLMSR:
msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
break;
default:
find_uret_msr:
msr = vmx_find_uret_msr(vmx, msr_info->index);
if (msr) {
msr_info->data = msr->data;
break;
}
return kvm_get_msr_common(vcpu, msr_info);
}
return 0;
}
static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
u64 data)
{
#ifdef CONFIG_X86_64
if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
return (u32)data;
#endif
return (unsigned long)data;
}
static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
{
u64 debugctl = 0;
if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
(host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
(host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
return debugctl;
}
/*
* Writes msr value into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmx_uret_msr *msr;
int ret = 0;
u32 msr_index = msr_info->index;
u64 data = msr_info->data;
u32 index;
switch (msr_index) {
case MSR_EFER:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_FS_BASE, data);
break;
case MSR_GS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_GS_BASE, data);
break;
case MSR_KERNEL_GS_BASE:
vmx_write_guest_kernel_gs_base(vmx, data);
break;
case MSR_IA32_XFD:
ret = kvm_set_msr_common(vcpu, msr_info);
/*
* Always intercepting WRMSR could incur non-negligible
* overhead given xfd might be changed frequently in
* guest context switch. Disable write interception
* upon the first write with a non-zero value (indicating
* potential usage on dynamic xfeatures). Also update
* exception bitmap to trap #NM for proper virtualization
* of guest xfd_err.
*/
if (!ret && data) {
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
MSR_TYPE_RW);
vcpu->arch.xfd_no_write_intercept = true;
vmx_update_exception_bitmap(vcpu);
}
break;
#endif
case MSR_IA32_SYSENTER_CS:
if (is_guest_mode(vcpu))
get_vmcs12(vcpu)->guest_sysenter_cs = data;
vmcs_write32(GUEST_SYSENTER_CS, data);
break;
case MSR_IA32_SYSENTER_EIP:
if (is_guest_mode(vcpu)) {
data = nested_vmx_truncate_sysenter_addr(vcpu, data);
get_vmcs12(vcpu)->guest_sysenter_eip = data;
}
vmcs_writel(GUEST_SYSENTER_EIP, data);
break;
case MSR_IA32_SYSENTER_ESP:
if (is_guest_mode(vcpu)) {
data = nested_vmx_truncate_sysenter_addr(vcpu, data);
get_vmcs12(vcpu)->guest_sysenter_esp = data;
}
vmcs_writel(GUEST_SYSENTER_ESP, data);
break;
case MSR_IA32_DEBUGCTLMSR: {
u64 invalid;
invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
}
if (invalid)
return 1;
if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
VM_EXIT_SAVE_DEBUG_CONTROLS)
get_vmcs12(vcpu)->guest_ia32_debugctl = data;
vmcs_write64(GUEST_IA32_DEBUGCTL, data);
if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
(data & DEBUGCTLMSR_LBR))
intel_pmu_create_guest_lbr_event(vcpu);
return 0;
}
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported() ||
(!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
return 1;
if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
(data & MSR_IA32_BNDCFGS_RSVD))
return 1;
if (is_guest_mode(vcpu) &&
((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
(vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
get_vmcs12(vcpu)->guest_bndcfgs = data;
vmcs_write64(GUEST_BNDCFGS, data);
break;
case MSR_IA32_UMWAIT_CONTROL:
if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
return 1;
/* The reserved bit 1 and non-32 bit [63:32] should be zero */
if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
return 1;
vmx->msr_ia32_umwait_control = data;
break;
case MSR_IA32_SPEC_CTRL:
if (!msr_info->host_initiated &&
!guest_has_spec_ctrl_msr(vcpu))
return 1;
if (kvm_spec_ctrl_test_value(data))
return 1;
vmx->spec_ctrl = data;
if (!data)
break;
/*
* For non-nested:
* When it's written (to non-zero) for the first time, pass
* it through.
*
* For nested:
* The handling of the MSR bitmap for L2 guests is done in
* nested_vmx_prepare_msr_bitmap. We should not touch the
* vmcs02.msr_bitmap here since it gets completely overwritten
* in the merging. We update the vmcs01 here for L1 as well
* since it will end up touching the MSR anyway now.
*/
vmx_disable_intercept_for_msr(vcpu,
MSR_IA32_SPEC_CTRL,
MSR_TYPE_RW);
break;
case MSR_IA32_TSX_CTRL:
if (!msr_info->host_initiated &&
!(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
return 1;
if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
return 1;
goto find_uret_msr;
case MSR_IA32_CR_PAT:
ret = kvm_set_msr_common(vcpu, msr_info);
if (ret)
break;
if (is_guest_mode(vcpu) &&
get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
get_vmcs12(vcpu)->guest_ia32_pat = data;
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
vmcs_write64(GUEST_IA32_PAT, data);
break;
case MSR_IA32_MCG_EXT_CTL:
if ((!msr_info->host_initiated &&
!(to_vmx(vcpu)->msr_ia32_feature_control &
FEAT_CTL_LMCE_ENABLED)) ||
(data & ~MCG_EXT_CTL_LMCE_EN))
return 1;
vcpu->arch.mcg_ext_ctl = data;
break;
case MSR_IA32_FEAT_CTL:
if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
return 1;
vmx->msr_ia32_feature_control = data;
if (msr_info->host_initiated && data == 0)
vmx_leave_nested(vcpu);
/* SGX may be enabled/disabled by guest's firmware */
vmx_write_encls_bitmap(vcpu, NULL);
break;
case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
/*
* On real hardware, the LE hash MSRs are writable before
* the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
* at which point SGX related bits in IA32_FEATURE_CONTROL
* become writable.
*
* KVM does not emulate SGX activation for simplicity, so
* allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
* is unlocked. This is technically not architectural
* behavior, but it's close enough.
*/
if (!msr_info->host_initiated &&
(!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
!(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
return 1;
vmx->msr_ia32_sgxlepubkeyhash
[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
break;
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
if (!msr_info->host_initiated)
return 1; /* they are read-only */
if (!guest_can_use(vcpu, X86_FEATURE_VMX))
return 1;
return vmx_set_vmx_msr(vcpu, msr_index, data);
case MSR_IA32_RTIT_CTL:
if (!vmx_pt_mode_is_host_guest() ||
vmx_rtit_ctl_check(vcpu, data) ||
vmx->nested.vmxon)
return 1;
vmcs_write64(GUEST_IA32_RTIT_CTL, data);
vmx->pt_desc.guest.ctl = data;
pt_update_intercept_for_msr(vcpu);
break;
case MSR_IA32_RTIT_STATUS:
if (!pt_can_write_msr(vmx))
return 1;
if (data & MSR_IA32_RTIT_STATUS_MASK)
return 1;
vmx->pt_desc.guest.status = data;
break;
case MSR_IA32_RTIT_CR3_MATCH:
if (!pt_can_write_msr(vmx))
return 1;
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_cr3_filtering))
return 1;
vmx->pt_desc.guest.cr3_match = data;
break;
case MSR_IA32_RTIT_OUTPUT_BASE:
if (!pt_can_write_msr(vmx))
return 1;
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_topa_output) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output))
return 1;
if (!pt_output_base_valid(vcpu, data))
return 1;
vmx->pt_desc.guest.output_base = data;
break;
case MSR_IA32_RTIT_OUTPUT_MASK:
if (!pt_can_write_msr(vmx))
return 1;
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_topa_output) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output))
return 1;
vmx->pt_desc.guest.output_mask = data;
break;
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
if (!pt_can_write_msr(vmx))
return 1;
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
if (index >= 2 * vmx->pt_desc.num_address_ranges)
return 1;
if (is_noncanonical_address(data, vcpu))
return 1;
if (index % 2)
vmx->pt_desc.guest.addr_b[index / 2] = data;
else
vmx->pt_desc.guest.addr_a[index / 2] = data;
break;
case MSR_IA32_PERF_CAPABILITIES:
if (data && !vcpu_to_pmu(vcpu)->version)
return 1;
if (data & PMU_CAP_LBR_FMT) {
if ((data & PMU_CAP_LBR_FMT) !=
(kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
return 1;
if (!cpuid_model_is_consistent(vcpu))
return 1;
}
if (data & PERF_CAP_PEBS_FORMAT) {
if ((data & PERF_CAP_PEBS_MASK) !=
(kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
return 1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
return 1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
return 1;
if (!cpuid_model_is_consistent(vcpu))
return 1;
}
ret = kvm_set_msr_common(vcpu, msr_info);
break;
default:
find_uret_msr:
msr = vmx_find_uret_msr(vmx, msr_index);
if (msr)
ret = vmx_set_guest_uret_msr(vmx, msr, data);
else
ret = kvm_set_msr_common(vcpu, msr_info);
}
/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
vmx_update_fb_clear_dis(vcpu, vmx);
return ret;
}
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
unsigned long guest_owned_bits;
kvm_register_mark_available(vcpu, reg);
switch (reg) {
case VCPU_REGS_RSP:
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
break;
case VCPU_REGS_RIP:
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
break;
case VCPU_EXREG_PDPTR:
if (enable_ept)
ept_save_pdptrs(vcpu);
break;
case VCPU_EXREG_CR0:
guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
vcpu->arch.cr0 &= ~guest_owned_bits;
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
break;
case VCPU_EXREG_CR3:
/*
* When intercepting CR3 loads, e.g. for shadowing paging, KVM's
* CR3 is loaded into hardware, not the guest's CR3.
*/
if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
break;
case VCPU_EXREG_CR4:
guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
vcpu->arch.cr4 &= ~guest_owned_bits;
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
break;
default:
KVM_BUG_ON(1, vcpu->kvm);
break;
}
}
/*
* There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
* directly instead of going through cpu_has(), to ensure KVM is trapping
* ENCLS whenever it's supported in hardware. It does not matter whether
* the host OS supports or has enabled SGX.
*/
static bool cpu_has_sgx(void)
{
return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
}
/*
* Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
* can't be used due to errata where VM Exit may incorrectly clear
* IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
* MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
*/
static bool cpu_has_perf_global_ctrl_bug(void)
{
if (boot_cpu_data.x86 == 0x6) {
switch (boot_cpu_data.x86_model) {
case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
case INTEL_FAM6_NEHALEM: /* AAP115 */
case INTEL_FAM6_WESTMERE: /* AAT100 */
case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
case INTEL_FAM6_NEHALEM_EX: /* BA97 */
return true;
default:
break;
}
}
return false;
}
static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
{
u32 vmx_msr_low, vmx_msr_high;
u32 ctl = ctl_min | ctl_opt;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
/* Ensure minimum (required) set of control bits are supported. */
if (ctl_min & ~ctl)
return -EIO;
*result = ctl;
return 0;
}
static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
{
u64 allowed;
rdmsrl(msr, allowed);
return ctl_opt & allowed;
}
static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
struct vmx_capability *vmx_cap)
{
u32 vmx_msr_low, vmx_msr_high;
u32 _pin_based_exec_control = 0;
u32 _cpu_based_exec_control = 0;
u32 _cpu_based_2nd_exec_control = 0;
u64 _cpu_based_3rd_exec_control = 0;
u32 _vmexit_control = 0;
u32 _vmentry_control = 0;
u64 misc_msr;
int i;
/*
* LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
* SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
* intercepts writes to PAT and EFER, i.e. never enables those controls.
*/
struct {
u32 entry_control;
u32 exit_control;
} const vmcs_entry_exit_pairs[] = {
{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
{ VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
{ VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
{ VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
{ VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
};
memset(vmcs_conf, 0, sizeof(*vmcs_conf));
if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
MSR_IA32_VMX_PROCBASED_CTLS,
&_cpu_based_exec_control))
return -EIO;
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
MSR_IA32_VMX_PROCBASED_CTLS2,
&_cpu_based_2nd_exec_control))
return -EIO;
}
#ifndef CONFIG_X86_64
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
#endif
if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_2nd_exec_control &= ~(
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
&vmx_cap->ept, &vmx_cap->vpid);
if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
vmx_cap->ept) {
pr_warn_once("EPT CAP should not exist if not support "
"1-setting enable EPT VM-execution control\n");
if (error_on_inconsistent_vmcs_config)
return -EIO;
vmx_cap->ept = 0;
}
if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
vmx_cap->vpid) {
pr_warn_once("VPID CAP should not exist if not support "
"1-setting enable VPID VM-execution control\n");
if (error_on_inconsistent_vmcs_config)
return -EIO;
vmx_cap->vpid = 0;
}
if (!cpu_has_sgx())
_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
_cpu_based_3rd_exec_control =
adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
MSR_IA32_VMX_PROCBASED_CTLS3);
if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
MSR_IA32_VMX_EXIT_CTLS,
&_vmexit_control))
return -EIO;
if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
MSR_IA32_VMX_PINBASED_CTLS,
&_pin_based_exec_control))
return -EIO;
if (cpu_has_broken_vmx_preemption_timer())
_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
MSR_IA32_VMX_ENTRY_CTLS,
&_vmentry_control))
return -EIO;
for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
continue;
pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
_vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
if (error_on_inconsistent_vmcs_config)
return -EIO;
_vmentry_control &= ~n_ctrl;
_vmexit_control &= ~x_ctrl;
}
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
return -EIO;
#ifdef CONFIG_X86_64
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
if (vmx_msr_high & (1u<<16))
return -EIO;
#endif
/* Require Write-Back (WB) memory type for VMCS accesses. */
if (((vmx_msr_high >> 18) & 15) != 6)
return -EIO;
rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
vmcs_conf->size = vmx_msr_high & 0x1fff;
vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
vmcs_conf->revision_id = vmx_msr_low;
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
vmcs_conf->vmexit_ctrl = _vmexit_control;
vmcs_conf->vmentry_ctrl = _vmentry_control;
vmcs_conf->misc = misc_msr;
#if IS_ENABLED(CONFIG_HYPERV)
if (enlightened_vmcs)
evmcs_sanitize_exec_ctrls(vmcs_conf);
#endif
return 0;
}
static bool __kvm_is_vmx_supported(void)
{
int cpu = smp_processor_id();
if (!(cpuid_ecx(1) & feature_bit(VMX))) {
pr_err("VMX not supported by CPU %d\n", cpu);
return false;
}
if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
!this_cpu_has(X86_FEATURE_VMX)) {
pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
return false;
}
return true;
}
static bool kvm_is_vmx_supported(void)
{
bool supported;
migrate_disable();
supported = __kvm_is_vmx_supported();
migrate_enable();
return supported;
}
static int vmx_check_processor_compat(void)
{
int cpu = raw_smp_processor_id();
struct vmcs_config vmcs_conf;
struct vmx_capability vmx_cap;
if (!__kvm_is_vmx_supported())
return -EIO;
if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
return -EIO;
}
if (nested)
nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
return -EIO;
}
return 0;
}
static int kvm_cpu_vmxon(u64 vmxon_pointer)
{
u64 msr;
cr4_set_bits(X86_CR4_VMXE);
asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
_ASM_EXTABLE(1b, %l[fault])
: : [vmxon_pointer] "m"(vmxon_pointer)
: : fault);
return 0;
fault:
WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
cr4_clear_bits(X86_CR4_VMXE);
return -EFAULT;
}
static int vmx_hardware_enable(void)
{
int cpu = raw_smp_processor_id();
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
int r;
if (cr4_read_shadow() & X86_CR4_VMXE)
return -EBUSY;
/*
* This can happen if we hot-added a CPU but failed to allocate
* VP assist page for it.
*/
if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
return -EFAULT;
intel_pt_handle_vmx(1);
r = kvm_cpu_vmxon(phys_addr);
if (r) {
intel_pt_handle_vmx(0);
return r;
}
if (enable_ept)
ept_sync_global();
return 0;
}
static void vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v, *n;
list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
__loaded_vmcs_clear(v);
}
static void vmx_hardware_disable(void)
{
vmclear_local_loaded_vmcss();
if (kvm_cpu_vmxoff())
kvm_spurious_fault();
hv_reset_evmcs();
intel_pt_handle_vmx(0);
}
struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
{
int node = cpu_to_node(cpu);
struct page *pages;
struct vmcs *vmcs;
pages = __alloc_pages_node(node, flags, 0);
if (!pages)
return NULL;
vmcs = page_address(pages);
memset(vmcs, 0, vmcs_config.size);
/* KVM supports Enlightened VMCS v1 only */
if (kvm_is_using_evmcs())
vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
else
vmcs->hdr.revision_id = vmcs_config.revision_id;
if (shadow)
vmcs->hdr.shadow_vmcs = 1;
return vmcs;
}
void free_vmcs(struct vmcs *vmcs)
{
free_page((unsigned long)vmcs);
}
/*
* Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
*/
void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
if (!loaded_vmcs->vmcs)
return;
loaded_vmcs_clear(loaded_vmcs);
free_vmcs(loaded_vmcs->vmcs);
loaded_vmcs->vmcs = NULL;
if (loaded_vmcs->msr_bitmap)
free_page((unsigned long)loaded_vmcs->msr_bitmap);
WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
}
int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
loaded_vmcs->vmcs = alloc_vmcs(false);
if (!loaded_vmcs->vmcs)
return -ENOMEM;
vmcs_clear(loaded_vmcs->vmcs);
loaded_vmcs->shadow_vmcs = NULL;
loaded_vmcs->hv_timer_soft_disabled = false;
loaded_vmcs->cpu = -1;
loaded_vmcs->launched = 0;
if (cpu_has_vmx_msr_bitmap()) {
loaded_vmcs->msr_bitmap = (unsigned long *)
__get_free_page(GFP_KERNEL_ACCOUNT);
if (!loaded_vmcs->msr_bitmap)
goto out_vmcs;
memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
}
memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
memset(&loaded_vmcs->controls_shadow, 0,
sizeof(struct vmcs_controls_shadow));
return 0;
out_vmcs:
free_loaded_vmcs(loaded_vmcs);
return -ENOMEM;
}
static void free_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
free_vmcs(per_cpu(vmxarea, cpu));
per_cpu(vmxarea, cpu) = NULL;
}
}
static __init int alloc_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct vmcs *vmcs;
vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
if (!vmcs) {
free_kvm_area();
return -ENOMEM;
}
/*
* When eVMCS is enabled, alloc_vmcs_cpu() sets
* vmcs->revision_id to KVM_EVMCS_VERSION instead of
* revision_id reported by MSR_IA32_VMX_BASIC.
*
* However, even though not explicitly documented by
* TLFS, VMXArea passed as VMXON argument should
* still be marked with revision_id reported by
* physical CPU.
*/
if (kvm_is_using_evmcs())
vmcs->hdr.revision_id = vmcs_config.revision_id;
per_cpu(vmxarea, cpu) = vmcs;
}
return 0;
}
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
struct kvm_segment *save)
{
if (!emulate_invalid_guest_state) {
/*
* CS and SS RPL should be equal during guest entry according
* to VMX spec, but in reality it is not always so. Since vcpu
* is in the middle of the transition from real mode to
* protected mode it is safe to assume that RPL 0 is a good
* default value.
*/
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
save->selector &= ~SEGMENT_RPL_MASK;
save->dpl = save->selector & SEGMENT_RPL_MASK;
save->s = 1;
}
__vmx_set_segment(vcpu, save, seg);
}
static void enter_pmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Update real mode segment cache. It may be not up-to-date if segment
* register was written while vcpu was in a guest mode.
*/
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 0;
__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
vmx_update_exception_bitmap(vcpu);
fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
}
static void fix_rmode_seg(int seg, struct kvm_segment *save)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
struct kvm_segment var = *save;
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
if (!emulate_invalid_guest_state) {
var.selector = var.base >> 4;
var.base = var.base & 0xffff0;
var.limit = 0xffff;
var.g = 0;
var.db = 0;
var.present = 1;
var.s = 1;
var.l = 0;
var.unusable = 0;
var.type = 0x3;
var.avl = 0;
if (save->base & 0xf)
pr_warn_once("segment base is not paragraph aligned "
"when entering protected mode (seg=%d)", seg);
}
vmcs_write16(sf->selector, var.selector);
vmcs_writel(sf->base, var.base);
vmcs_write32(sf->limit, var.limit);
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
}
static void enter_rmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
/*
* KVM should never use VM86 to virtualize Real Mode when L2 is active,
* as using VM86 is unnecessary if unrestricted guest is enabled, and
* if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
* should VM-Fail and KVM should reject userspace attempts to stuff
* CR0.PG=0 when L2 is active.
*/
WARN_ON_ONCE(is_guest_mode(vcpu));
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 1;
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
vmx->rmode.save_rflags = flags;
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
vmx_update_exception_bitmap(vcpu);
fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
}
int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/* Nothing to do if hardware doesn't support EFER. */
if (!vmx_find_uret_msr(vmx, MSR_EFER))
return 0;
vcpu->arch.efer = efer;
#ifdef CONFIG_X86_64
if (efer & EFER_LMA)
vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
else
vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
#else
if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
return 1;
#endif
vmx_setup_uret_msrs(vmx);
return 0;
}
#ifdef CONFIG_X86_64
static void enter_lmode(struct kvm_vcpu *vcpu)
{
u32 guest_tr_ar;
vmx_segment_cache_clear(to_vmx(vcpu));
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
pr_debug_ratelimited("%s: tss fixup for long mode. \n",
__func__);
vmcs_write32(GUEST_TR_AR_BYTES,
(guest_tr_ar & ~VMX_AR_TYPE_MASK)
| VMX_AR_TYPE_BUSY_64_TSS);
}
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
}
static void exit_lmode(struct kvm_vcpu *vcpu)
{
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
}
#endif
static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* INVEPT must be issued when EPT is enabled, irrespective of VPID, as
* the CPU is not required to invalidate guest-physical mappings on
* VM-Entry, even if VPID is disabled. Guest-physical mappings are
* associated with the root EPT structure and not any particular VPID
* (INVVPID also isn't required to invalidate guest-physical mappings).
*/
if (enable_ept) {
ept_sync_global();
} else if (enable_vpid) {
if (cpu_has_vmx_invvpid_global()) {
vpid_sync_vcpu_global();
} else {
vpid_sync_vcpu_single(vmx->vpid);
vpid_sync_vcpu_single(vmx->nested.vpid02);
}
}
}
static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu))
return nested_get_vpid02(vcpu);
return to_vmx(vcpu)->vpid;
}
static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.mmu;
u64 root_hpa = mmu->root.hpa;
/* No flush required if the current context is invalid. */
if (!VALID_PAGE(root_hpa))
return;
if (enable_ept)
ept_sync_context(construct_eptp(vcpu, root_hpa,
mmu->root_role.level));
else
vpid_sync_context(vmx_get_current_vpid(vcpu));
}
static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
{
/*
* vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
* vmx_flush_tlb_guest() for an explanation of why this is ok.
*/
vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
}
static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
{
/*
* vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
* vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
* required to flush GVA->{G,H}PA mappings from the TLB if vpid is
* disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
* i.e. no explicit INVVPID is necessary.
*/
vpid_sync_context(vmx_get_current_vpid(vcpu));
}
void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
return;
if (is_pae_paging(vcpu)) {
vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
}
}
void ept_save_pdptrs(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
return;
mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
}
#define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
CPU_BASED_CR3_STORE_EXITING)
static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
if (is_guest_mode(vcpu))
return nested_guest_cr0_valid(vcpu, cr0);
if (to_vmx(vcpu)->nested.vmxon)
return nested_host_cr0_valid(vcpu, cr0);
return true;
}
void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long hw_cr0, old_cr0_pg;
u32 tmp;
old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
if (enable_unrestricted_guest)
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
else {
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
if (!enable_ept)
hw_cr0 |= X86_CR0_WP;
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
enter_pmode(vcpu);
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
enter_rmode(vcpu);
}
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0, hw_cr0);
vcpu->arch.cr0 = cr0;
kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
#ifdef CONFIG_X86_64
if (vcpu->arch.efer & EFER_LME) {
if (!old_cr0_pg && (cr0 & X86_CR0_PG))
enter_lmode(vcpu);
else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
exit_lmode(vcpu);
}
#endif
if (enable_ept && !enable_unrestricted_guest) {
/*
* Ensure KVM has an up-to-date snapshot of the guest's CR3. If
* the below code _enables_ CR3 exiting, vmx_cache_reg() will
* (correctly) stop reading vmcs.GUEST_CR3 because it thinks
* KVM's CR3 is installed.
*/
if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
/*
* When running with EPT but not unrestricted guest, KVM must
* intercept CR3 accesses when paging is _disabled_. This is
* necessary because restricted guests can't actually run with
* paging disabled, and so KVM stuffs its own CR3 in order to
* run the guest when identity mapped page tables.
*
* Do _NOT_ check the old CR0.PG, e.g. to optimize away the
* update, it may be stale with respect to CR3 interception,
* e.g. after nested VM-Enter.
*
* Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
* stores to forward them to L1, even if KVM does not need to
* intercept them to preserve its identity mapped page tables.
*/
if (!(cr0 & X86_CR0_PG)) {
exec_controls_setbit(vmx, CR3_EXITING_BITS);
} else if (!is_guest_mode(vcpu)) {
exec_controls_clearbit(vmx, CR3_EXITING_BITS);
} else {
tmp = exec_controls_get(vmx);
tmp &= ~CR3_EXITING_BITS;
tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
exec_controls_set(vmx, tmp);
}
/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
/*
* When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
* GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
*/
if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
}
/* depends on vcpu->arch.cr0 to be set to a new value */
vmx->emulation_required = vmx_emulation_required(vcpu);
}
static int vmx_get_max_ept_level(void)
{
if (cpu_has_vmx_ept_5levels())
return 5;
return 4;
}
u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
{
u64 eptp = VMX_EPTP_MT_WB;
eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
if (enable_ept_ad_bits &&
(!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
eptp |= VMX_EPTP_AD_ENABLE_BIT;
eptp |= root_hpa;
return eptp;
}
static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
int root_level)
{
struct kvm *kvm = vcpu->kvm;
bool update_guest_cr3 = true;
unsigned long guest_cr3;
u64 eptp;
if (enable_ept) {
eptp = construct_eptp(vcpu, root_hpa, root_level);
vmcs_write64(EPT_POINTER, eptp);
hv_track_root_tdp(vcpu, root_hpa);
if (!enable_unrestricted_guest && !is_paging(vcpu))
guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
guest_cr3 = vcpu->arch.cr3;
else /* vmcs.GUEST_CR3 is already up-to-date. */
update_guest_cr3 = false;
vmx_ept_load_pdptrs(vcpu);
} else {
guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
}
if (update_guest_cr3)
vmcs_writel(GUEST_CR3, guest_cr3);
}
static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
/*
* We operate under the default treatment of SMM, so VMX cannot be
* enabled under SMM. Note, whether or not VMXE is allowed at all,
* i.e. is a reserved bit, is handled by common x86 code.
*/
if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
return false;
if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
return false;
return true;
}
void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long old_cr4 = kvm_read_cr4(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long hw_cr4;
/*
* Pass through host's Machine Check Enable value to hw_cr4, which
* is in force while we are in guest mode. Do not let guests control
* this bit, even if host CR4.MCE == 0.
*/
hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
if (enable_unrestricted_guest)
hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
else if (vmx->rmode.vm86_active)
hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
else
hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
if (vmx_umip_emulated()) {
if (cr4 & X86_CR4_UMIP) {
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
hw_cr4 &= ~X86_CR4_UMIP;
} else if (!is_guest_mode(vcpu) ||
!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
}
}
vcpu->arch.cr4 = cr4;
kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
if (!enable_unrestricted_guest) {
if (enable_ept) {
if (!is_paging(vcpu)) {
hw_cr4 &= ~X86_CR4_PAE;
hw_cr4 |= X86_CR4_PSE;
} else if (!(cr4 & X86_CR4_PAE)) {
hw_cr4 &= ~X86_CR4_PAE;
}
}
/*
* SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
* hardware. To emulate this behavior, SMEP/SMAP/PKU needs
* to be manually disabled when guest switches to non-paging
* mode.
*
* If !enable_unrestricted_guest, the CPU is always running
* with CR0.PG=1 and CR4 needs to be modified.
* If enable_unrestricted_guest, the CPU automatically
* disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
*/
if (!is_paging(vcpu))
hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
}
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_CR4, hw_cr4);
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
kvm_update_cpuid_runtime(vcpu);
}
void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 ar;
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
*var = vmx->rmode.segs[seg];
if (seg == VCPU_SREG_TR
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
return;
var->base = vmx_read_guest_seg_base(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
return;
}
var->base = vmx_read_guest_seg_base(vmx, seg);
var->limit = vmx_read_guest_seg_limit(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
ar = vmx_read_guest_seg_ar(vmx, seg);
var->unusable = (ar >> 16) & 1;
var->type = ar & 15;
var->s = (ar >> 4) & 1;
var->dpl = (ar >> 5) & 3;
/*
* Some userspaces do not preserve unusable property. Since usable
* segment has to be present according to VMX spec we can use present
* property to amend userspace bug by making unusable segment always
* nonpresent. vmx_segment_access_rights() already marks nonpresent
* segment as unusable.
*/
var->present = !var->unusable;
var->avl = (ar >> 12) & 1;
var->l = (ar >> 13) & 1;
var->db = (ar >> 14) & 1;
var->g = (ar >> 15) & 1;
}
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment s;
if (to_vmx(vcpu)->rmode.vm86_active) {
vmx_get_segment(vcpu, &s, seg);
return s.base;
}
return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
}
int vmx_get_cpl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (unlikely(vmx->rmode.vm86_active))
return 0;
else {
int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
return VMX_AR_DPL(ar);
}
}
static u32 vmx_segment_access_rights(struct kvm_segment *var)
{
u32 ar;
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->present & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
ar |= (var->unusable || !var->present) << 16;
return ar;
}
void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
vmx_segment_cache_clear(vmx);
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
vmx->rmode.segs[seg] = *var;
if (seg == VCPU_SREG_TR)
vmcs_write16(sf->selector, var->selector);
else if (var->s)
fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
return;
}
vmcs_writel(sf->base, var->base);
vmcs_write32(sf->limit, var->limit);
vmcs_write16(sf->selector, var->selector);
/*
* Fix the "Accessed" bit in AR field of segment registers for older
* qemu binaries.
* IA32 arch specifies that at the time of processor reset the
* "Accessed" bit in the AR field of segment registers is 1. And qemu
* is setting it to 0 in the userland code. This causes invalid guest
* state vmexit when "unrestricted guest" mode is turned on.
* Fix for this setup issue in cpu_reset is being pushed in the qemu
* tree. Newer qemu binaries with that qemu fix would not need this
* kvm hack.
*/
if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
var->type |= 0x1; /* Accessed */
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
}
static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
{
__vmx_set_segment(vcpu, var, seg);
to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
}
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
*db = (ar >> 14) & 1;
*l = (ar >> 13) & 1;
}
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
dt->address = vmcs_readl(GUEST_IDTR_BASE);
}
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
vmcs_writel(GUEST_IDTR_BASE, dt->address);
}
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
dt->address = vmcs_readl(GUEST_GDTR_BASE);
}
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
vmcs_writel(GUEST_GDTR_BASE, dt->address);
}
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
u32 ar;
vmx_get_segment(vcpu, &var, seg);
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
ar = vmx_segment_access_rights(&var);
if (var.base != (var.selector << 4))
return false;
if (var.limit != 0xffff)
return false;
if (ar != 0xf3)
return false;
return true;
}
static bool code_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs;
unsigned int cs_rpl;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
cs_rpl = cs.selector & SEGMENT_RPL_MASK;
if (cs.unusable)
return false;
if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
return false;
if (!cs.s)
return false;
if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
if (cs.dpl > cs_rpl)
return false;
} else {
if (cs.dpl != cs_rpl)
return false;
}
if (!cs.present)
return false;
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
return true;
}
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ss;
unsigned int ss_rpl;
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
ss_rpl = ss.selector & SEGMENT_RPL_MASK;
if (ss.unusable)
return true;
if (ss.type != 3 && ss.type != 7)
return false;
if (!ss.s)
return false;
if (ss.dpl != ss_rpl) /* DPL != RPL */
return false;
if (!ss.present)
return false;
return true;
}
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
unsigned int rpl;
vmx_get_segment(vcpu, &var, seg);
rpl = var.selector & SEGMENT_RPL_MASK;
if (var.unusable)
return true;
if (!var.s)
return false;
if (!var.present)
return false;
if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
if (var.dpl < rpl) /* DPL < RPL */
return false;
}
/* TODO: Add other members to kvm_segment_field to allow checking for other access
* rights flags
*/
return true;
}
static bool tr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment tr;
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
if (tr.unusable)
return false;
if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
return false;
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
return false;
if (!tr.present)
return false;
return true;
}
static bool ldtr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ldtr;
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
if (ldtr.unusable)
return true;
if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
return false;
if (ldtr.type != 2)
return false;
if (!ldtr.present)
return false;
return true;
}
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs, ss;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
return ((cs.selector & SEGMENT_RPL_MASK) ==
(ss.selector & SEGMENT_RPL_MASK));
}
/*
* Check if guest state is valid. Returns true if valid, false if
* not.
* We assume that registers are always usable
*/
bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
{
/* real mode guest state checks */
if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
return false;
} else {
/* protected mode guest state checks */
if (!cs_ss_rpl_check(vcpu))
return false;
if (!code_segment_valid(vcpu))
return false;
if (!stack_segment_valid(vcpu))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
return false;
if (!tr_valid(vcpu))
return false;
if (!ldtr_valid(vcpu))
return false;
}
/* TODO:
* - Add checks on RIP
* - Add checks on RFLAGS
*/
return true;
}
static int init_rmode_tss(struct kvm *kvm, void __user *ua)
{
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
u16 data;
int i;
for (i = 0; i < 3; i++) {
if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
return -EFAULT;
}
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
return -EFAULT;
data = ~0;
if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
return -EFAULT;
return 0;
}
static int init_rmode_identity_map(struct kvm *kvm)
{
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
int i, r = 0;
void __user *uaddr;
u32 tmp;
/* Protect kvm_vmx->ept_identity_pagetable_done. */
mutex_lock(&kvm->slots_lock);
if (likely(kvm_vmx->ept_identity_pagetable_done))
goto out;
if (!kvm_vmx->ept_identity_map_addr)
kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
uaddr = __x86_set_memory_region(kvm,
IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
kvm_vmx->ept_identity_map_addr,
PAGE_SIZE);
if (IS_ERR(uaddr)) {
r = PTR_ERR(uaddr);
goto out;
}
/* Set up identity-mapping pagetable for EPT in real mode */
for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
r = -EFAULT;
goto out;
}
}
kvm_vmx->ept_identity_pagetable_done = true;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static void seg_setup(int seg)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
unsigned int ar;
vmcs_write16(sf->selector, 0);
vmcs_writel(sf->base, 0);
vmcs_write32(sf->limit, 0xffff);
ar = 0x93;
if (seg == VCPU_SREG_CS)
ar |= 0x08; /* code segment */
vmcs_write32(sf->ar_bytes, ar);
}
int allocate_vpid(void)
{
int vpid;
if (!enable_vpid)
return 0;
spin_lock(&vmx_vpid_lock);
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
if (vpid < VMX_NR_VPIDS)
__set_bit(vpid, vmx_vpid_bitmap);
else
vpid = 0;
spin_unlock(&vmx_vpid_lock);
return vpid;
}
void free_vpid(int vpid)
{
if (!enable_vpid || vpid == 0)
return;
spin_lock(&vmx_vpid_lock);
__clear_bit(vpid, vmx_vpid_bitmap);
spin_unlock(&vmx_vpid_lock);
}
static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
{
/*
* When KVM is a nested hypervisor on top of Hyper-V and uses
* 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
* bitmap has changed.
*/
if (kvm_is_using_evmcs()) {
struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
if (evmcs->hv_enlightenments_control.msr_bitmap)
evmcs->hv_clean_fields &=
~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
}
vmx->nested.force_msr_bitmap_recalc = true;
}
void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
if (!cpu_has_vmx_msr_bitmap())
return;
vmx_msr_bitmap_l01_changed(vmx);
/*
* Mark the desired intercept state in shadow bitmap, this is needed
* for resync when the MSR filters change.
*/
if (is_valid_passthrough_msr(msr)) {
int idx = possible_passthrough_msr_slot(msr);
if (idx != -ENOENT) {
if (type & MSR_TYPE_R)
clear_bit(idx, vmx->shadow_msr_intercept.read);
if (type & MSR_TYPE_W)
clear_bit(idx, vmx->shadow_msr_intercept.write);
}
}
if ((type & MSR_TYPE_R) &&
!kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
vmx_set_msr_bitmap_read(msr_bitmap, msr);
type &= ~MSR_TYPE_R;
}
if ((type & MSR_TYPE_W) &&
!kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
vmx_set_msr_bitmap_write(msr_bitmap, msr);
type &= ~MSR_TYPE_W;
}
if (type & MSR_TYPE_R)
vmx_clear_msr_bitmap_read(msr_bitmap, msr);
if (type & MSR_TYPE_W)
vmx_clear_msr_bitmap_write(msr_bitmap, msr);
}
void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
if (!cpu_has_vmx_msr_bitmap())
return;
vmx_msr_bitmap_l01_changed(vmx);
/*
* Mark the desired intercept state in shadow bitmap, this is needed
* for resync when the MSR filter changes.
*/
if (is_valid_passthrough_msr(msr)) {
int idx = possible_passthrough_msr_slot(msr);
if (idx != -ENOENT) {
if (type & MSR_TYPE_R)
set_bit(idx, vmx->shadow_msr_intercept.read);
if (type & MSR_TYPE_W)
set_bit(idx, vmx->shadow_msr_intercept.write);
}
}
if (type & MSR_TYPE_R)
vmx_set_msr_bitmap_read(msr_bitmap, msr);
if (type & MSR_TYPE_W)
vmx_set_msr_bitmap_write(msr_bitmap, msr);
}
static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
{
/*
* x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
* of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
* i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
*/
const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
const int write_idx = read_idx + (0x800 / sizeof(u64));
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
u8 mode;
if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
return;
if (cpu_has_secondary_exec_ctrls() &&
(secondary_exec_controls_get(vmx) &
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
mode = MSR_BITMAP_MODE_X2APIC;
if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
mode |= MSR_BITMAP_MODE_X2APIC_APICV;
} else {
mode = 0;
}
if (mode == vmx->x2apic_msr_bitmap_mode)
return;
vmx->x2apic_msr_bitmap_mode = mode;
/*
* Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
* registers (0x840 and above) intercepted, KVM doesn't support them.
* Intercept all writes by default and poke holes as needed. Pass
* through reads for all valid registers by default in x2APIC+APICv
* mode, only the current timer count needs on-demand emulation by KVM.
*/
if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
else
msr_bitmap[read_idx] = ~0ull;
msr_bitmap[write_idx] = ~0ull;
/*
* TPR reads and writes can be virtualized even if virtual interrupt
* delivery is not in use.
*/
vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
!(mode & MSR_BITMAP_MODE_X2APIC));
if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
if (enable_ipiv)
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
}
}
void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
u32 i;
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
}
}
static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
void *vapic_page;
u32 vppr;
int rvi;
if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
return false;
rvi = vmx_get_rvi();
vapic_page = vmx->nested.virtual_apic_map.hva;
vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
return ((rvi & 0xf0) > (vppr & 0xf0));
}
static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 i;
/*
* Redo intercept permissions for MSRs that KVM is passing through to
* the guest. Disabling interception will check the new MSR filter and
* ensure that KVM enables interception if usersepace wants to filter
* the MSR. MSRs that KVM is already intercepting don't need to be
* refreshed since KVM is going to intercept them regardless of what
* userspace wants.
*/
for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
u32 msr = vmx_possible_passthrough_msrs[i];
if (!test_bit(i, vmx->shadow_msr_intercept.read))
vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
if (!test_bit(i, vmx->shadow_msr_intercept.write))
vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
}
/* PT MSRs can be passed through iff PT is exposed to the guest. */
if (vmx_pt_mode_is_host_guest())
pt_update_intercept_for_msr(vcpu);
}
static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
int pi_vec)
{
#ifdef CONFIG_SMP
if (vcpu->mode == IN_GUEST_MODE) {
/*
* The vector of the virtual has already been set in the PIR.
* Send a notification event to deliver the virtual interrupt
* unless the vCPU is the currently running vCPU, i.e. the
* event is being sent from a fastpath VM-Exit handler, in
* which case the PIR will be synced to the vIRR before
* re-entering the guest.
*
* When the target is not the running vCPU, the following
* possibilities emerge:
*
* Case 1: vCPU stays in non-root mode. Sending a notification
* event posts the interrupt to the vCPU.
*
* Case 2: vCPU exits to root mode and is still runnable. The
* PIR will be synced to the vIRR before re-entering the guest.
* Sending a notification event is ok as the host IRQ handler
* will ignore the spurious event.
*
* Case 3: vCPU exits to root mode and is blocked. vcpu_block()
* has already synced PIR to vIRR and never blocks the vCPU if
* the vIRR is not empty. Therefore, a blocked vCPU here does
* not wait for any requested interrupts in PIR, and sending a
* notification event also results in a benign, spurious event.
*/
if (vcpu != kvm_get_running_vcpu())
__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
return;
}
#endif
/*
* The vCPU isn't in the guest; wake the vCPU in case it is blocking,
* otherwise do nothing as KVM will grab the highest priority pending
* IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
*/
kvm_vcpu_wake_up(vcpu);
}
static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
int vector)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (is_guest_mode(vcpu) &&
vector == vmx->nested.posted_intr_nv) {
/*
* If a posted intr is not recognized by hardware,
* we will accomplish it in the next vmentry.
*/
vmx->nested.pi_pending = true;
kvm_make_request(KVM_REQ_EVENT, vcpu);
/*
* This pairs with the smp_mb_*() after setting vcpu->mode in
* vcpu_enter_guest() to guarantee the vCPU sees the event
* request if triggering a posted interrupt "fails" because
* vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
* the smb_wmb() in kvm_make_request() only ensures everything
* done before making the request is visible when the request
* is visible, it doesn't ensure ordering between the store to
* vcpu->requests and the load from vcpu->mode.
*/
smp_mb__after_atomic();
/* the PIR and ON have been set by L1. */
kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
return 0;
}
return -1;
}
/*
* Send interrupt to vcpu via posted interrupt way.
* 1. If target vcpu is running(non-root mode), send posted interrupt
* notification to vcpu and hardware will sync PIR to vIRR atomically.
* 2. If target vcpu isn't running(root mode), kick it to pick up the
* interrupt from PIR in next vmentry.
*/
static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int r;
r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
if (!r)
return 0;
/* Note, this is called iff the local APIC is in-kernel. */
if (!vcpu->arch.apic->apicv_active)
return -1;
if (pi_test_and_set_pir(vector, &vmx->pi_desc))
return 0;
/* If a previous notification has sent the IPI, nothing to do. */
if (pi_test_and_set_on(&vmx->pi_desc))
return 0;
/*
* The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
* after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
* guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
* posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
*/
kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
return 0;
}
static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
int trig_mode, int vector)
{
struct kvm_vcpu *vcpu = apic->vcpu;
if (vmx_deliver_posted_interrupt(vcpu, vector)) {
kvm_lapic_set_irr(vector, apic);
kvm_make_request(KVM_REQ_EVENT, vcpu);
kvm_vcpu_kick(vcpu);
} else {
trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
trig_mode, vector);
}
}
/*
* Set up the vmcs's constant host-state fields, i.e., host-state fields that
* will not change in the lifetime of the guest.
* Note that host-state that does change is set elsewhere. E.g., host-state
* that is set differently for each CPU is set in vmx_vcpu_load(), not here.
*/
void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
{
u32 low32, high32;
unsigned long tmpl;
unsigned long cr0, cr3, cr4;
cr0 = read_cr0();
WARN_ON(cr0 & X86_CR0_TS);
vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
/*
* Save the most likely value for this task's CR3 in the VMCS.
* We can't use __get_current_cr3_fast() because we're not atomic.
*/
cr3 = __read_cr3();
vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
vmx->loaded_vmcs->host_state.cr3 = cr3;
/* Save the most likely value for this task's CR4 in the VMCS. */
cr4 = cr4_read_shadow();
vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
vmx->loaded_vmcs->host_state.cr4 = cr4;
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
#ifdef CONFIG_X86_64
/*
* Load null selectors, so we can avoid reloading them in
* vmx_prepare_switch_to_host(), in case userspace uses
* the null selectors too (the expected case).
*/
vmcs_write16(HOST_DS_SELECTOR, 0);
vmcs_write16(HOST_ES_SELECTOR, 0);
#else
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
#endif
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
/*
* SYSENTER is used for 32-bit system calls on either 32-bit or
* 64-bit kernels. It is always zero If neither is allowed, otherwise
* vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
* have already done so!).
*/
if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
rdmsr(MSR_IA32_CR_PAT, low32, high32);
vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
}
if (cpu_has_load_ia32_efer())
vmcs_write64(HOST_IA32_EFER, host_efer);
}
void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
{
struct kvm_vcpu *vcpu = &vmx->vcpu;
vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
~vcpu->arch.cr4_guest_rsvd_bits;
if (!enable_ept) {
vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
}
if (is_guest_mode(&vmx->vcpu))
vcpu->arch.cr4_guest_owned_bits &=
~get_vmcs12(vcpu)->cr4_guest_host_mask;
vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
}
static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
{
u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
if (!kvm_vcpu_apicv_active(&vmx->vcpu))
pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
if (!enable_vnmi)
pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
if (!enable_preemption_timer)
pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
return pin_based_exec_ctrl;
}
static u32 vmx_vmentry_ctrl(void)
{
u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
if (vmx_pt_mode_is_system())
vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
VM_ENTRY_LOAD_IA32_RTIT_CTL);
/*
* IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
*/
vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
VM_ENTRY_LOAD_IA32_EFER |
VM_ENTRY_IA32E_MODE);
if (cpu_has_perf_global_ctrl_bug())
vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
return vmentry_ctrl;
}
static u32 vmx_vmexit_ctrl(void)
{
u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
/*
* Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
* nested virtualization and thus allowed to be set in vmcs12.
*/
vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
if (vmx_pt_mode_is_system())
vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
VM_EXIT_CLEAR_IA32_RTIT_CTL);
if (cpu_has_perf_global_ctrl_bug())
vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
return vmexit_ctrl &
~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
}
static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (is_guest_mode(vcpu)) {
vmx->nested.update_vmcs01_apicv_status = true;
return;
}
pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
if (kvm_vcpu_apicv_active(vcpu)) {
secondary_exec_controls_setbit(vmx,
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
if (enable_ipiv)
tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
} else {
secondary_exec_controls_clearbit(vmx,
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
if (enable_ipiv)
tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
}
vmx_update_msr_bitmap_x2apic(vcpu);
}
static u32 vmx_exec_control(struct vcpu_vmx *vmx)
{
u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
/*
* Not used by KVM, but fully supported for nesting, i.e. are allowed in
* vmcs12 and propagated to vmcs02 when set in vmcs12.
*/
exec_control &= ~(CPU_BASED_RDTSC_EXITING |
CPU_BASED_USE_IO_BITMAPS |
CPU_BASED_MONITOR_TRAP_FLAG |
CPU_BASED_PAUSE_EXITING);
/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
CPU_BASED_NMI_WINDOW_EXITING);
if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
exec_control &= ~CPU_BASED_MOV_DR_EXITING;
if (!cpu_need_tpr_shadow(&vmx->vcpu))
exec_control &= ~CPU_BASED_TPR_SHADOW;
#ifdef CONFIG_X86_64
if (exec_control & CPU_BASED_TPR_SHADOW)
exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING);
else
exec_control |= CPU_BASED_CR8_STORE_EXITING |
CPU_BASED_CR8_LOAD_EXITING;
#endif
/* No need to intercept CR3 access or INVPLG when using EPT. */
if (enable_ept)
exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_INVLPG_EXITING);
if (kvm_mwait_in_guest(vmx->vcpu.kvm))
exec_control &= ~(CPU_BASED_MWAIT_EXITING |
CPU_BASED_MONITOR_EXITING);
if (kvm_hlt_in_guest(vmx->vcpu.kvm))
exec_control &= ~CPU_BASED_HLT_EXITING;
return exec_control;
}
static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
{
u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
/*
* IPI virtualization relies on APICv. Disable IPI virtualization if
* APICv is inhibited.
*/
if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
return exec_control;
}
/*
* Adjust a single secondary execution control bit to intercept/allow an
* instruction in the guest. This is usually done based on whether or not a
* feature has been exposed to the guest in order to correctly emulate faults.
*/
static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
u32 control, bool enabled, bool exiting)
{
/*
* If the control is for an opt-in feature, clear the control if the
* feature is not exposed to the guest, i.e. not enabled. If the
* control is opt-out, i.e. an exiting control, clear the control if
* the feature _is_ exposed to the guest, i.e. exiting/interception is
* disabled for the associated instruction. Note, the caller is
* responsible presetting exec_control to set all supported bits.
*/
if (enabled == exiting)
*exec_control &= ~control;
/*
* Update the nested MSR settings so that a nested VMM can/can't set
* controls for features that are/aren't exposed to the guest.
*/
if (nested) {
/*
* All features that can be added or removed to VMX MSRs must
* be supported in the first place for nested virtualization.
*/
if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
enabled = false;
if (enabled)
vmx->nested.msrs.secondary_ctls_high |= control;
else
vmx->nested.msrs.secondary_ctls_high &= ~control;
}
}
/*
* Wrapper macro for the common case of adjusting a secondary execution control
* based on a single guest CPUID bit, with a dedicated feature bit. This also
* verifies that the control is actually supported by KVM and hardware.
*/
#define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
({ \
struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
bool __enabled; \
\
if (cpu_has_vmx_##name()) { \
if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
else \
__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
__enabled, exiting); \
} \
})
/* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
#define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
#define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
{
struct kvm_vcpu *vcpu = &vmx->vcpu;
u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
if (vmx_pt_mode_is_system())
exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
if (!cpu_need_virtualize_apic_accesses(vcpu))
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
if (vmx->vpid == 0)
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
if (!enable_ept) {
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
enable_unrestricted_guest = 0;
}
if (!enable_unrestricted_guest)
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
if (kvm_pause_in_guest(vmx->vcpu.kvm))
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
if (!kvm_vcpu_apicv_active(vcpu))
exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
/*
* KVM doesn't support VMFUNC for L1, but the control is set in KVM's
* base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
*/
exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
* in vmx_set_cr4. */
exec_control &= ~SECONDARY_EXEC_DESC;
/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
(handle_vmptrld).
We can NOT enable shadow_vmcs here because we don't have yet
a current VMCS12
*/
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
/*
* PML is enabled/disabled when dirty logging of memsmlots changes, but
* it needs to be set here when dirty logging is already active, e.g.
* if this vCPU was created after dirty logging was enabled.
*/
if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
/*
* RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
* feature is exposed to the guest. This creates a virtualization hole
* if both are supported in hardware but only one is exposed to the
* guest, but letting the guest execute RDTSCP or RDPID when either one
* is advertised is preferable to emulating the advertised instruction
* in KVM on #UD, and obviously better than incorrectly injecting #UD.
*/
if (cpu_has_vmx_rdtscp()) {
bool rdpid_or_rdtscp_enabled =
guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
vmx_adjust_secondary_exec_control(vmx, &exec_control,
SECONDARY_EXEC_ENABLE_RDTSCP,
rdpid_or_rdtscp_enabled, false);
}
vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
ENABLE_USR_WAIT_PAUSE, false);
if (!vcpu->kvm->arch.bus_lock_detection_enabled)
exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
if (!kvm_notify_vmexit_enabled(vcpu->kvm))
exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
return exec_control;
}
static inline int vmx_get_pid_table_order(struct kvm *kvm)
{
return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
}
static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
{
struct page *pages;
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
if (!irqchip_in_kernel(kvm) || !enable_ipiv)
return 0;
if (kvm_vmx->pid_table)
return 0;
pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
vmx_get_pid_table_order(kvm));
if (!pages)
return -ENOMEM;
kvm_vmx->pid_table = (void *)page_address(pages);
return 0;
}
static int vmx_vcpu_precreate(struct kvm *kvm)
{
return vmx_alloc_ipiv_pid_table(kvm);
}
#define VMX_XSS_EXIT_BITMAP 0
static void init_vmcs(struct vcpu_vmx *vmx)
{
struct kvm *kvm = vmx->vcpu.kvm;
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
if (nested)
nested_vmx_set_vmcs_shadowing_bitmap();
if (cpu_has_vmx_msr_bitmap())
vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
/* Control */
pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
exec_controls_set(vmx, vmx_exec_control(vmx));
if (cpu_has_secondary_exec_ctrls())
secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
if (cpu_has_tertiary_exec_ctrls())
tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
vmcs_write64(EOI_EXIT_BITMAP0, 0);
vmcs_write64(EOI_EXIT_BITMAP1, 0);
vmcs_write64(EOI_EXIT_BITMAP2, 0);
vmcs_write64(EOI_EXIT_BITMAP3, 0);
vmcs_write16(GUEST_INTR_STATUS, 0);
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
}
if (vmx_can_use_ipiv(&vmx->vcpu)) {
vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
}
if (!kvm_pause_in_guest(kvm)) {
vmcs_write32(PLE_GAP, ple_gap);
vmx->ple_window = ple_window;
vmx->ple_window_dirty = true;
}
if (kvm_notify_vmexit_enabled(kvm))
vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
vmx_set_constant_host_state(vmx);
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
if (cpu_has_vmx_vmfunc())
vmcs_write64(VM_FUNCTION_CONTROL, 0);
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
/* 22.2.1, 20.8.1 */
vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
set_cr4_guest_host_mask(vmx);
if (vmx->vpid != 0)
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
if (cpu_has_vmx_xsaves())
vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
if (enable_pml) {
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
vmx_write_encls_bitmap(&vmx->vcpu, NULL);
if (vmx_pt_mode_is_host_guest()) {
memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
/* Bit[6~0] are forced to 1, writes are ignored. */
vmx->pt_desc.guest.output_mask = 0x7F;
vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
}
vmcs_write32(GUEST_SYSENTER_CS, 0);
vmcs_writel(GUEST_SYSENTER_ESP, 0);
vmcs_writel(GUEST_SYSENTER_EIP, 0);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
if (cpu_has_vmx_tpr_shadow()) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
if (cpu_need_tpr_shadow(&vmx->vcpu))
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
__pa(vmx->vcpu.arch.apic->regs));
vmcs_write32(TPR_THRESHOLD, 0);
}
vmx_setup_uret_msrs(vmx);
}
static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
init_vmcs(vmx);
if (nested)
memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
vcpu_setup_sgx_lepubkeyhash(vcpu);
vmx->nested.posted_intr_nv = -1;
vmx->nested.vmxon_ptr = INVALID_GPA;
vmx->nested.current_vmptr = INVALID_GPA;
vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
vcpu->arch.microcode_version = 0x100000000ULL;
vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
/*
* Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
* or POSTED_INTR_WAKEUP_VECTOR.
*/
vmx->pi_desc.nv = POSTED_INTR_VECTOR;
vmx->pi_desc.sn = 1;
}
static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!init_event)
__vmx_vcpu_reset(vcpu);
vmx->rmode.vm86_active = 0;
vmx->spec_ctrl = 0;
vmx->msr_ia32_umwait_control = 0;
vmx->hv_deadline_tsc = -1;
kvm_set_cr8(vcpu, 0);
vmx_segment_cache_clear(vmx);
kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
seg_setup(VCPU_SREG_CS);
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
seg_setup(VCPU_SREG_DS);
seg_setup(VCPU_SREG_ES);
seg_setup(VCPU_SREG_FS);
seg_setup(VCPU_SREG_GS);
seg_setup(VCPU_SREG_SS);
vmcs_write16(GUEST_TR_SELECTOR, 0);
vmcs_writel(GUEST_TR_BASE, 0);
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
vmcs_writel(GUEST_LDTR_BASE, 0);
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
vmcs_writel(GUEST_IDTR_BASE, 0);
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
if (kvm_mpx_supported())
vmcs_write64(GUEST_BNDCFGS, 0);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
vpid_sync_context(vmx->vpid);
vmx_update_fb_clear_dis(vcpu, vmx);
}
static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
{
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
}
static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
{
if (!enable_vnmi ||
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
vmx_enable_irq_window(vcpu);
return;
}
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
}
static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
uint32_t intr;
int irq = vcpu->arch.interrupt.nr;
trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
++vcpu->stat.irq_injections;
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (vcpu->arch.interrupt.soft)
inc_eip = vcpu->arch.event_exit_inst_len;
kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
return;
}
intr = irq | INTR_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
intr |= INTR_TYPE_SOFT_INTR;
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
} else
intr |= INTR_TYPE_EXT_INTR;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
vmx_clear_hlt(vcpu);
}
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!enable_vnmi) {
/*
* Tracking the NMI-blocked state in software is built upon
* finding the next open IRQ window. This, in turn, depends on
* well-behaving guests: They have to keep IRQs disabled at
* least as long as the NMI handler runs. Otherwise we may
* cause NMI nesting, maybe breaking the guest. But as this is
* highly unlikely, we can live with the residual risk.
*/
vmx->loaded_vmcs->soft_vnmi_blocked = 1;
vmx->loaded_vmcs->vnmi_blocked_time = 0;
}
++vcpu->stat.nmi_injections;
vmx->loaded_vmcs->nmi_known_unmasked = false;
if (vmx->rmode.vm86_active) {
kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
vmx_clear_hlt(vcpu);
}
bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
bool masked;
if (!enable_vnmi)
return vmx->loaded_vmcs->soft_vnmi_blocked;
if (vmx->loaded_vmcs->nmi_known_unmasked)
return false;
masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
return masked;
}
void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!enable_vnmi) {
if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
vmx->loaded_vmcs->soft_vnmi_blocked = masked;
vmx->loaded_vmcs->vnmi_blocked_time = 0;
}
} else {
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
if (masked)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
}
}
bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
return false;
if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
return true;
return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
GUEST_INTR_STATE_NMI));
}
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
if (to_vmx(vcpu)->nested.nested_run_pending)
return -EBUSY;
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
return -EBUSY;
return !vmx_nmi_blocked(vcpu);
}
bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
return false;
return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
}
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
if (to_vmx(vcpu)->nested.nested_run_pending)
return -EBUSY;
/*
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
* e.g. if the IRQ arrived asynchronously after checking nested events.
*/
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
return -EBUSY;
return !vmx_interrupt_blocked(vcpu);
}
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
void __user *ret;
if (enable_unrestricted_guest)
return 0;
mutex_lock(&kvm->slots_lock);
ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
PAGE_SIZE * 3);
mutex_unlock(&kvm->slots_lock);
if (IS_ERR(ret))
return PTR_ERR(ret);
to_kvm_vmx(kvm)->tss_addr = addr;
return init_rmode_tss(kvm, ret);
}
static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
{
to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
return 0;
}
static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
{
switch (vec) {
case BP_VECTOR:
/*
* Update instruction length as we may reinject the exception
* from user space while in guest debugging mode.
*/
to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
return false;
fallthrough;
case DB_VECTOR:
return !(vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
case DE_VECTOR:
case OF_VECTOR:
case BR_VECTOR:
case UD_VECTOR:
case DF_VECTOR:
case SS_VECTOR:
case GP_VECTOR:
case MF_VECTOR:
return true;
}
return false;
}
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
int vec, u32 err_code)
{
/*
* Instruction with address size override prefix opcode 0x67
* Cause the #SS fault with 0 error code in VM86 mode.
*/
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
if (kvm_emulate_instruction(vcpu, 0)) {
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
return kvm_emulate_halt_noskip(vcpu);
}
return 1;
}
return 0;
}
/*
* Forward all other exceptions that are valid in real mode.
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
* the required debugging infrastructure rework.
*/
kvm_queue_exception(vcpu, vec);
return 1;
}
static int handle_machine_check(struct kvm_vcpu *vcpu)
{
/* handled by vmx_vcpu_run() */
return 1;
}
/*
* If the host has split lock detection disabled, then #AC is
* unconditionally injected into the guest, which is the pre split lock
* detection behaviour.
*
* If the host has split lock detection enabled then #AC is
* only injected into the guest when:
* - Guest CPL == 3 (user mode)
* - Guest has #AC detection enabled in CR0
* - Guest EFLAGS has AC bit set
*/
bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
{
if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
return true;
return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
(kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
}
static int handle_exception_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_run *kvm_run = vcpu->run;
u32 intr_info, ex_no, error_code;
unsigned long cr2, dr6;
u32 vect_info;
vect_info = vmx->idt_vectoring_info;
intr_info = vmx_get_intr_info(vcpu);
/*
* Machine checks are handled by handle_exception_irqoff(), or by
* vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
* vmx_vcpu_enter_exit().
*/
if (is_machine_check(intr_info) || is_nmi(intr_info))
return 1;
/*
* Queue the exception here instead of in handle_nm_fault_irqoff().
* This ensures the nested_vmx check is not skipped so vmexit can
* be reflected to L1 (when it intercepts #NM) before reaching this
* point.
*/
if (is_nm_fault(intr_info)) {
kvm_queue_exception(vcpu, NM_VECTOR);
return 1;
}
if (is_invalid_opcode(intr_info))
return handle_ud(vcpu);
error_code = 0;
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
WARN_ON_ONCE(!enable_vmware_backdoor);
/*
* VMware backdoor emulation on #GP interception only handles
* IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
* error code on #GP.
*/
if (error_code) {
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
return 1;
}
return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
}
/*
* The #PF with PFEC.RSVD = 1 indicates the guest is accessing
* MMIO, it is better to report an internal error.
* See the comments in vmx_handle_exit.
*/
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
!(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
vcpu->run->internal.ndata = 4;
vcpu->run->internal.data[0] = vect_info;
vcpu->run->internal.data[1] = intr_info;
vcpu->run->internal.data[2] = error_code;
vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
return 0;
}
if (is_page_fault(intr_info)) {
cr2 = vmx_get_exit_qual(vcpu);
if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
/*
* EPT will cause page fault only if we need to
* detect illegal GPAs.
*/
WARN_ON_ONCE(!allow_smaller_maxphyaddr);
kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
return 1;
} else
return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
}
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
return handle_rmode_exception(vcpu, ex_no, error_code);
switch (ex_no) {
case DB_VECTOR:
dr6 = vmx_get_exit_qual(vcpu);
if (!(vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
/*
* If the #DB was due to ICEBP, a.k.a. INT1, skip the
* instruction. ICEBP generates a trap-like #DB, but
* despite its interception control being tied to #DB,
* is an instruction intercept, i.e. the VM-Exit occurs
* on the ICEBP itself. Use the inner "skip" helper to
* avoid single-step #DB and MTF updates, as ICEBP is
* higher priority. Note, skipping ICEBP still clears
* STI and MOVSS blocking.
*
* For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
* if single-step is enabled in RFLAGS and STI or MOVSS
* blocking is active, as the CPU doesn't set the bit
* on VM-Exit due to #DB interception. VM-Entry has a
* consistency check that a single-step #DB is pending
* in this scenario as the previous instruction cannot
* have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
* don't modify RFLAGS), therefore the one instruction
* delay when activating single-step breakpoints must
* have already expired. Note, the CPU sets/clears BS
* as appropriate for all other VM-Exits types.
*/
if (is_icebp(intr_info))
WARN_ON(!skip_emulated_instruction(vcpu));
else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
return 1;
}
kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
fallthrough;
case BP_VECTOR:
/*
* Update instruction length as we may reinject #BP from
* user space while in guest debugging mode. Reading it for
* #DB as well causes no harm, it is not used in that case.
*/
vmx->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
kvm_run->debug.arch.exception = ex_no;
break;
case AC_VECTOR:
if (vmx_guest_inject_ac(vcpu)) {
kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
return 1;
}
/*
* Handle split lock. Depending on detection mode this will
* either warn and disable split lock detection for this
* task or force SIGBUS on it.
*/
if (handle_guest_split_lock(kvm_rip_read(vcpu)))
return 1;
fallthrough;
default:
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
kvm_run->ex.exception = ex_no;
kvm_run->ex.error_code = error_code;
break;
}
return 0;
}
static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
{
++vcpu->stat.irq_exits;
return 1;
}
static int handle_triple_fault(struct kvm_vcpu *vcpu)
{
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
vcpu->mmio_needed = 0;
return 0;
}
static int handle_io(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int size, in, string;
unsigned port;
exit_qualification = vmx_get_exit_qual(vcpu);
string = (exit_qualification & 16) != 0;
++vcpu->stat.io_exits;
if (string)
return kvm_emulate_instruction(vcpu, 0);
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
in = (exit_qualification & 8) != 0;
return kvm_fast_pio(vcpu, size, port, in);
}
static void
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xc1;
}
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/*
* We get here when L2 changed cr0 in a way that did not change
* any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
* but did change L0 shadowed bits. So we first calculate the
* effective cr0 value that L1 would like to write into the
* hardware. It consists of the L2-owned bits from the new
* value combined with the L1-owned bits from L1's guest_cr0.
*/
val = (val & ~vmcs12->cr0_guest_host_mask) |
(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
if (kvm_set_cr0(vcpu, val))
return 1;
vmcs_writel(CR0_READ_SHADOW, orig_val);
return 0;
} else {
return kvm_set_cr0(vcpu, val);
}
}
static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/* analogously to handle_set_cr0 */
val = (val & ~vmcs12->cr4_guest_host_mask) |
(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
if (kvm_set_cr4(vcpu, val))
return 1;
vmcs_writel(CR4_READ_SHADOW, orig_val);
return 0;
} else
return kvm_set_cr4(vcpu, val);
}
static int handle_desc(struct kvm_vcpu *vcpu)
{
/*
* UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
* and other code needs to be updated if UMIP can be guest owned.
*/
BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
return kvm_emulate_instruction(vcpu, 0);
}
static int handle_cr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification, val;
int cr;
int reg;
int err;
int ret;
exit_qualification = vmx_get_exit_qual(vcpu);
cr = exit_qualification & 15;
reg = (exit_qualification >> 8) & 15;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
val = kvm_register_read(vcpu, reg);
trace_kvm_cr_write(cr, val);
switch (cr) {
case 0:
err = handle_set_cr0(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 3:
WARN_ON_ONCE(enable_unrestricted_guest);
err = kvm_set_cr3(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 4:
err = handle_set_cr4(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 8: {
u8 cr8_prev = kvm_get_cr8(vcpu);
u8 cr8 = (u8)val;
err = kvm_set_cr8(vcpu, cr8);
ret = kvm_complete_insn_gp(vcpu, err);
if (lapic_in_kernel(vcpu))
return ret;
if (cr8_prev <= cr8)
return ret;
/*
* TODO: we might be squashing a
* KVM_GUESTDBG_SINGLESTEP-triggered
* KVM_EXIT_DEBUG here.
*/
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
}
}
break;
case 2: /* clts */
KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
return -EIO;
case 1: /*mov from cr*/
switch (cr) {
case 3:
WARN_ON_ONCE(enable_unrestricted_guest);
val = kvm_read_cr3(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
return kvm_skip_emulated_instruction(vcpu);
case 8:
val = kvm_get_cr8(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
return kvm_skip_emulated_instruction(vcpu);
}
break;
case 3: /* lmsw */
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
kvm_lmsw(vcpu, val);
return kvm_skip_emulated_instruction(vcpu);
default:
break;
}
vcpu->run->exit_reason = 0;
vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
(int)(exit_qualification >> 4) & 3, cr);
return 0;
}
static int handle_dr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int dr, dr7, reg;
int err = 1;
exit_qualification = vmx_get_exit_qual(vcpu);
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
/* First, if DR does not exist, trigger UD */
if (!kvm_require_dr(vcpu, dr))
return 1;
if (vmx_get_cpl(vcpu) > 0)
goto out;
dr7 = vmcs_readl(GUEST_DR7);
if (dr7 & DR7_GD) {
/*
* As the vm-exit takes precedence over the debug trap, we
* need to emulate the latter, either for the host or the
* guest debugging itself.
*/
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
vcpu->run->debug.arch.dr7 = dr7;
vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
vcpu->run->debug.arch.exception = DB_VECTOR;
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
return 0;
} else {
kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
return 1;
}
}
if (vcpu->guest_debug == 0) {
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
/*
* No more DR vmexits; force a reload of the debug registers
* and reenter on this instruction. The next vmexit will
* retrieve the full state of the debug registers.
*/
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
return 1;
}
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
if (exit_qualification & TYPE_MOV_FROM_DR) {
unsigned long val;
kvm_get_dr(vcpu, dr, &val);
kvm_register_write(vcpu, reg, val);
err = 0;
} else {
err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
}
out:
return kvm_complete_insn_gp(vcpu, err);
}
static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
get_debugreg(vcpu->arch.db[0], 0);
get_debugreg(vcpu->arch.db[1], 1);
get_debugreg(vcpu->arch.db[2], 2);
get_debugreg(vcpu->arch.db[3], 3);
get_debugreg(vcpu->arch.dr6, 6);
vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
/*
* exc_debug expects dr6 to be cleared after it runs, avoid that it sees
* a stale dr6 from the guest.
*/
set_debugreg(DR6_RESERVED, 6);
}
static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
{
vmcs_writel(GUEST_DR7, val);
}
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
{
kvm_apic_update_ppr(vcpu);
return 1;
}
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
{
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
kvm_make_request(KVM_REQ_EVENT, vcpu);
++vcpu->stat.irq_window_exits;
return 1;
}
static int handle_invlpg(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
kvm_mmu_invlpg(vcpu, exit_qualification);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_apic_access(struct kvm_vcpu *vcpu)
{
if (likely(fasteoi)) {
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
int access_type, offset;
access_type = exit_qualification & APIC_ACCESS_TYPE;
offset = exit_qualification & APIC_ACCESS_OFFSET;
/*
* Sane guest uses MOV to write EOI, with written value
* not cared. So make a short-circuit here by avoiding
* heavy instruction emulation.
*/
if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
(offset == APIC_EOI)) {
kvm_lapic_set_eoi(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
}
return kvm_emulate_instruction(vcpu, 0);
}
static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
int vector = exit_qualification & 0xff;
/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
kvm_apic_set_eoi_accelerated(vcpu, vector);
return 1;
}
static int handle_apic_write(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
/*
* APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
* hardware has done any necessary aliasing, offset adjustments, etc...
* for the access. I.e. the correct value has already been written to
* the vAPIC page for the correct 16-byte chunk. KVM needs only to
* retrieve the register value and emulate the access.
*/
u32 offset = exit_qualification & 0xff0;
kvm_apic_write_nodecode(vcpu, offset);
return 1;
}
static int handle_task_switch(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long exit_qualification;
bool has_error_code = false;
u32 error_code = 0;
u16 tss_selector;
int reason, type, idt_v, idt_index;
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
exit_qualification = vmx_get_exit_qual(vcpu);
reason = (u32)exit_qualification >> 30;
if (reason == TASK_SWITCH_GATE && idt_v) {
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = false;
vmx_set_nmi_mask(vcpu, true);
break;
case INTR_TYPE_EXT_INTR:
case INTR_TYPE_SOFT_INTR:
kvm_clear_interrupt_queue(vcpu);
break;
case INTR_TYPE_HARD_EXCEPTION:
if (vmx->idt_vectoring_info &
VECTORING_INFO_DELIVER_CODE_MASK) {
has_error_code = true;
error_code =
vmcs_read32(IDT_VECTORING_ERROR_CODE);
}
fallthrough;
case INTR_TYPE_SOFT_EXCEPTION:
kvm_clear_exception_queue(vcpu);
break;
default:
break;
}
}
tss_selector = exit_qualification;
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
type != INTR_TYPE_EXT_INTR &&
type != INTR_TYPE_NMI_INTR))
WARN_ON(!skip_emulated_instruction(vcpu));
/*
* TODO: What about debug traps on tss switch?
* Are we supposed to inject them and update dr6?
*/
return kvm_task_switch(vcpu, tss_selector,
type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
reason, has_error_code, error_code);
}
static int handle_ept_violation(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
gpa_t gpa;
u64 error_code;
exit_qualification = vmx_get_exit_qual(vcpu);
/*
* EPT violation happened while executing iret from NMI,
* "blocked by NMI" bit has to be set before next VM entry.
* There are errata that may cause this bit to not be set:
* AAK134, BY25.
*/
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
enable_vnmi &&
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
trace_kvm_page_fault(vcpu, gpa, exit_qualification);
/* Is it a read fault? */
error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
? PFERR_USER_MASK : 0;
/* Is it a write fault? */
error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
? PFERR_WRITE_MASK : 0;
/* Is it a fetch fault? */
error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
? PFERR_FETCH_MASK : 0;
/* ept page table entry is present? */
error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
? PFERR_PRESENT_MASK : 0;
error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
vcpu->arch.exit_qualification = exit_qualification;
/*
* Check that the GPA doesn't exceed physical memory limits, as that is
* a guest page fault. We have to emulate the instruction here, because
* if the illegal address is that of a paging structure, then
* EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
* would also use advanced VM-exit information for EPT violations to
* reconstruct the page fault error code.
*/
if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
return kvm_emulate_instruction(vcpu, 0);
return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
}
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
{
gpa_t gpa;
if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
return 1;
/*
* A nested guest cannot optimize MMIO vmexits, because we have an
* nGPA here instead of the required GPA.
*/
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
if (!is_guest_mode(vcpu) &&
!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
trace_kvm_fast_mmio(gpa);
return kvm_skip_emulated_instruction(vcpu);
}
return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
}
static int handle_nmi_window(struct kvm_vcpu *vcpu)
{
if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
return -EIO;
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
++vcpu->stat.nmi_window_exits;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 1;
}
static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
return vmx->emulation_required && !vmx->rmode.vm86_active &&
(kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
}
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
bool intr_window_requested;
unsigned count = 130;
intr_window_requested = exec_controls_get(vmx) &
CPU_BASED_INTR_WINDOW_EXITING;
while (vmx->emulation_required && count-- != 0) {
if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
return handle_interrupt_window(&vmx->vcpu);
if (kvm_test_request(KVM_REQ_EVENT, vcpu))
return 1;
if (!kvm_emulate_instruction(vcpu, 0))
return 0;
if (vmx_emulation_required_with_pending_exception(vcpu)) {
kvm_prepare_emulation_failure_exit(vcpu);
return 0;
}
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
return kvm_emulate_halt_noskip(vcpu);
}
/*
* Note, return 1 and not 0, vcpu_run() will invoke
* xfer_to_guest_mode() which will create a proper return
* code.
*/
if (__xfer_to_guest_mode_work_pending())
return 1;
}
return 1;
}
static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
{
if (vmx_emulation_required_with_pending_exception(vcpu)) {
kvm_prepare_emulation_failure_exit(vcpu);
return 0;
}
return 1;
}
static void grow_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned int old = vmx->ple_window;
vmx->ple_window = __grow_ple_window(old, ple_window,
ple_window_grow,
ple_window_max);
if (vmx->ple_window != old) {
vmx->ple_window_dirty = true;
trace_kvm_ple_window_update(vcpu->vcpu_id,
vmx->ple_window, old);
}
}
static void shrink_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned int old = vmx->ple_window;
vmx->ple_window = __shrink_ple_window(old, ple_window,
ple_window_shrink,
ple_window);
if (vmx->ple_window != old) {
vmx->ple_window_dirty = true;
trace_kvm_ple_window_update(vcpu->vcpu_id,
vmx->ple_window, old);
}
}
/*
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
*/
static int handle_pause(struct kvm_vcpu *vcpu)
{
if (!kvm_pause_in_guest(vcpu->kvm))
grow_ple_window(vcpu);
/*
* Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
* VM-execution control is ignored if CPL > 0. OTOH, KVM
* never set PAUSE_EXITING and just set PLE if supported,
* so the vcpu must be CPL=0 if it gets a PAUSE exit.
*/
kvm_vcpu_on_spin(vcpu, true);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_monitor_trap(struct kvm_vcpu *vcpu)
{
return 1;
}
static int handle_invpcid(struct kvm_vcpu *vcpu)
{
u32 vmx_instruction_info;
unsigned long type;
gva_t gva;
struct {
u64 pcid;
u64 gla;
} operand;
int gpr_index;
if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
type = kvm_register_read(vcpu, gpr_index);
/* According to the Intel instruction reference, the memory operand
* is read even if it isn't needed (e.g., for type==all)
*/
if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
vmx_instruction_info, false,
sizeof(operand), &gva))
return 1;
return kvm_handle_invpcid(vcpu, type, gva);
}
static int handle_pml_full(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
trace_kvm_pml_full(vcpu->vcpu_id);
exit_qualification = vmx_get_exit_qual(vcpu);
/*
* PML buffer FULL happened while executing iret from NMI,
* "blocked by NMI" bit has to be set before next VM entry.
*/
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
enable_vnmi &&
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
/*
* PML buffer already flushed at beginning of VMEXIT. Nothing to do
* here.., and there's no userspace involvement needed for PML.
*/
return 1;
}
static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!vmx->req_immediate_exit &&
!unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
kvm_lapic_expired_hv_timer(vcpu);
return EXIT_FASTPATH_REENTER_GUEST;
}
return EXIT_FASTPATH_NONE;
}
static int handle_preemption_timer(struct kvm_vcpu *vcpu)
{
handle_fastpath_preemption_timer(vcpu);
return 1;
}
/*
* When nested=0, all VMX instruction VM Exits filter here. The handlers
* are overwritten by nested_vmx_setup() when nested=1.
*/
static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
{
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
#ifndef CONFIG_X86_SGX_KVM
static int handle_encls(struct kvm_vcpu *vcpu)
{
/*
* SGX virtualization is disabled. There is no software enable bit for
* SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
* the guest from executing ENCLS (when SGX is supported by hardware).
*/
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
#endif /* CONFIG_X86_SGX_KVM */
static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
{
/*
* Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
* VM-Exits. Unconditionally set the flag here and leave the handling to
* vmx_handle_exit().
*/
to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
return 1;
}
static int handle_notify(struct kvm_vcpu *vcpu)
{
unsigned long exit_qual = vmx_get_exit_qual(vcpu);
bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
++vcpu->stat.notify_window_exits;
/*
* Notify VM exit happened while executing iret from NMI,
* "blocked by NMI" bit has to be set before next VM entry.
*/
if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
context_invalid) {
vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
vcpu->run->notify.flags = context_invalid ?
KVM_NOTIFY_CONTEXT_INVALID : 0;
return 0;
}
return 1;
}
/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
*/
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
[EXIT_REASON_CR_ACCESS] = handle_cr,
[EXIT_REASON_DR_ACCESS] = handle_dr,
[EXIT_REASON_CPUID] = kvm_emulate_cpuid,
[EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
[EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
[EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
[EXIT_REASON_HLT] = kvm_emulate_halt,
[EXIT_REASON_INVD] = kvm_emulate_invd,
[EXIT_REASON_INVLPG] = handle_invlpg,
[EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
[EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
[EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
[EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
[EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
[EXIT_REASON_VMPTRST] = handle_vmx_instruction,
[EXIT_REASON_VMREAD] = handle_vmx_instruction,
[EXIT_REASON_VMRESUME] = handle_vmx_instruction,
[EXIT_REASON_VMWRITE] = handle_vmx_instruction,
[EXIT_REASON_VMOFF] = handle_vmx_instruction,
[EXIT_REASON_VMON] = handle_vmx_instruction,
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
[EXIT_REASON_APIC_WRITE] = handle_apic_write,
[EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
[EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
[EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
[EXIT_REASON_GDTR_IDTR] = handle_desc,
[EXIT_REASON_LDTR_TR] = handle_desc,
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
[EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
[EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
[EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
[EXIT_REASON_INVEPT] = handle_vmx_instruction,
[EXIT_REASON_INVVPID] = handle_vmx_instruction,
[EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
[EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
[EXIT_REASON_PML_FULL] = handle_pml_full,
[EXIT_REASON_INVPCID] = handle_invpcid,
[EXIT_REASON_VMFUNC] = handle_vmx_instruction,
[EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
[EXIT_REASON_ENCLS] = handle_encls,
[EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
[EXIT_REASON_NOTIFY] = handle_notify,
};
static const int kvm_vmx_max_exit_handlers =
ARRAY_SIZE(kvm_vmx_exit_handlers);
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
u64 *info1, u64 *info2,
u32 *intr_info, u32 *error_code)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
*reason = vmx->exit_reason.full;
*info1 = vmx_get_exit_qual(vcpu);
if (!(vmx->exit_reason.failed_vmentry)) {
*info2 = vmx->idt_vectoring_info;
*intr_info = vmx_get_intr_info(vcpu);
if (is_exception_with_error_code(*intr_info))
*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
else
*error_code = 0;
} else {
*info2 = 0;
*intr_info = 0;
*error_code = 0;
}
}
static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
{
if (vmx->pml_pg) {
__free_page(vmx->pml_pg);
vmx->pml_pg = NULL;
}
}
static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 *pml_buf;
u16 pml_idx;
pml_idx = vmcs_read16(GUEST_PML_INDEX);
/* Do nothing if PML buffer is empty */
if (pml_idx == (PML_ENTITY_NUM - 1))
return;
/* PML index always points to next available PML buffer entity */
if (pml_idx >= PML_ENTITY_NUM)
pml_idx = 0;
else
pml_idx++;
pml_buf = page_address(vmx->pml_pg);
for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
u64 gpa;
gpa = pml_buf[pml_idx];
WARN_ON(gpa & (PAGE_SIZE - 1));
kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
}
/* reset PML index */
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
static void vmx_dump_sel(char *name, uint32_t sel)
{
pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
name, vmcs_read16(sel),
vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
}
static void vmx_dump_dtsel(char *name, uint32_t limit)
{
pr_err("%s limit=0x%08x, base=0x%016lx\n",
name, vmcs_read32(limit),
vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
}
static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
{
unsigned int i;
struct vmx_msr_entry *e;
pr_err("MSR %s:\n", name);
for (i = 0, e = m->val; i < m->nr; ++i, ++e)
pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
}
void dump_vmcs(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vmentry_ctl, vmexit_ctl;
u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
u64 tertiary_exec_control;
unsigned long cr4;
int efer_slot;
if (!dump_invalid_vmcs) {
pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
return;
}
vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
cr4 = vmcs_readl(GUEST_CR4);
if (cpu_has_secondary_exec_ctrls())
secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
else
secondary_exec_control = 0;
if (cpu_has_tertiary_exec_ctrls())
tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
else
tertiary_exec_control = 0;
pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
pr_err("*** Guest State ***\n");
pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
vmcs_readl(CR0_GUEST_HOST_MASK));
pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
if (cpu_has_vmx_ept()) {
pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
}
pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
vmcs_readl(GUEST_SYSENTER_ESP),
vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
else if (efer_slot >= 0)
pr_err("EFER= 0x%016llx (autoload)\n",
vmx->msr_autoload.guest.val[efer_slot].value);
else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
pr_err("EFER= 0x%016llx (effective)\n",
vcpu->arch.efer | (EFER_LMA | EFER_LME));
else
pr_err("EFER= 0x%016llx (effective)\n",
vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
vmcs_read64(GUEST_IA32_DEBUGCTL),
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
if (cpu_has_load_perf_global_ctrl() &&
vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
pr_err("PerfGlobCtl = 0x%016llx\n",
vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
pr_err("Interruptibility = %08x ActivityState = %08x\n",
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
vmcs_read32(GUEST_ACTIVITY_STATE));
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
pr_err("InterruptStatus = %04x\n",
vmcs_read16(GUEST_INTR_STATUS));
if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
pr_err("*** Host State ***\n");
pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
vmcs_read16(HOST_TR_SELECTOR));
pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
vmcs_readl(HOST_TR_BASE));
pr_err("GDTBase=%016lx IDTBase=%016lx\n",
vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
vmcs_readl(HOST_CR4));
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
vmcs_readl(HOST_IA32_SYSENTER_ESP),
vmcs_read32(HOST_IA32_SYSENTER_CS),
vmcs_readl(HOST_IA32_SYSENTER_EIP));
if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
if (cpu_has_load_perf_global_ctrl() &&
vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
pr_err("PerfGlobCtl = 0x%016llx\n",
vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
pr_err("*** Control State ***\n");
pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
vmcs_read32(EXCEPTION_BITMAP),
vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
pr_err(" reason=%08x qualification=%016lx\n",
vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
pr_err("IDTVectoring: info=%08x errcode=%08x\n",
vmcs_read32(IDT_VECTORING_INFO_FIELD),
vmcs_read32(IDT_VECTORING_ERROR_CODE));
pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
pr_err("TSC Multiplier = 0x%016llx\n",
vmcs_read64(TSC_MULTIPLIER));
if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
u16 status = vmcs_read16(GUEST_INTR_STATUS);
pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
}
pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
}
if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
pr_err("PLE Gap=%08x Window=%08x\n",
vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
pr_err("Virtual processor ID = 0x%04x\n",
vmcs_read16(VIRTUAL_PROCESSOR_ID));
}
/*
* The guest has exited. See if we can fix it or if we need userspace
* assistance.
*/
static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
union vmx_exit_reason exit_reason = vmx->exit_reason;
u32 vectoring_info = vmx->idt_vectoring_info;
u16 exit_handler_index;
/*
* Flush logged GPAs PML buffer, this will make dirty_bitmap more
* updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
* querying dirty_bitmap, we only need to kick all vcpus out of guest
* mode as if vcpus is in root mode, the PML buffer must has been
* flushed already. Note, PML is never enabled in hardware while
* running L2.
*/
if (enable_pml && !is_guest_mode(vcpu))
vmx_flush_pml_buffer(vcpu);
/*
* KVM should never reach this point with a pending nested VM-Enter.
* More specifically, short-circuiting VM-Entry to emulate L2 due to
* invalid guest state should never happen as that means KVM knowingly
* allowed a nested VM-Enter with an invalid vmcs12. More below.
*/
if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
return -EIO;
if (is_guest_mode(vcpu)) {
/*
* PML is never enabled when running L2, bail immediately if a
* PML full exit occurs as something is horribly wrong.
*/
if (exit_reason.basic == EXIT_REASON_PML_FULL)
goto unexpected_vmexit;
/*
* The host physical addresses of some pages of guest memory
* are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
* Page). The CPU may write to these pages via their host
* physical address while L2 is running, bypassing any
* address-translation-based dirty tracking (e.g. EPT write
* protection).
*
* Mark them dirty on every exit from L2 to prevent them from
* getting out of sync with dirty tracking.
*/
nested_mark_vmcs12_pages_dirty(vcpu);
/*
* Synthesize a triple fault if L2 state is invalid. In normal
* operation, nested VM-Enter rejects any attempt to enter L2
* with invalid state. However, those checks are skipped if
* state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
* L2 state is invalid, it means either L1 modified SMRAM state
* or userspace provided bad state. Synthesize TRIPLE_FAULT as
* doing so is architecturally allowed in the RSM case, and is
* the least awful solution for the userspace case without
* risking false positives.
*/
if (vmx->emulation_required) {
nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
return 1;
}
if (nested_vmx_reflect_vmexit(vcpu))
return 1;
}
/* If guest state is invalid, start emulating. L2 is handled above. */
if (vmx->emulation_required)
return handle_invalid_guest_state(vcpu);
if (exit_reason.failed_vmentry) {
dump_vmcs(vcpu);
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= exit_reason.full;
vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
return 0;
}
if (unlikely(vmx->fail)) {
dump_vmcs(vcpu);
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= vmcs_read32(VM_INSTRUCTION_ERROR);
vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
return 0;
}
/*
* Note:
* Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
* delivery event since it indicates guest is accessing MMIO.
* The vm-exit can be triggered again after return to guest that
* will cause infinite loop.
*/
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
(exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
exit_reason.basic != EXIT_REASON_PML_FULL &&
exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
exit_reason.basic != EXIT_REASON_NOTIFY)) {
int ndata = 3;
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
vcpu->run->internal.data[0] = vectoring_info;
vcpu->run->internal.data[1] = exit_reason.full;
vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
vcpu->run->internal.data[ndata++] =
vmcs_read64(GUEST_PHYSICAL_ADDRESS);
}
vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
vcpu->run->internal.ndata = ndata;
return 0;
}
if (unlikely(!enable_vnmi &&
vmx->loaded_vmcs->soft_vnmi_blocked)) {
if (!vmx_interrupt_blocked(vcpu)) {
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
vcpu->arch.nmi_pending) {
/*
* This CPU don't support us in finding the end of an
* NMI-blocked window if the guest runs with IRQs
* disabled. So we pull the trigger after 1 s of
* futile waiting, but inform the user about this.
*/
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
"state on VCPU %d after 1 s timeout\n",
__func__, vcpu->vcpu_id);
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
}
}
if (exit_fastpath != EXIT_FASTPATH_NONE)
return 1;
if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
goto unexpected_vmexit;
#ifdef CONFIG_RETPOLINE
if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
return kvm_emulate_wrmsr(vcpu);
else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
return handle_preemption_timer(vcpu);
else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
return handle_interrupt_window(vcpu);
else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
return handle_external_interrupt(vcpu);
else if (exit_reason.basic == EXIT_REASON_HLT)
return kvm_emulate_halt(vcpu);
else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
return handle_ept_misconfig(vcpu);
#endif
exit_handler_index = array_index_nospec((u16)exit_reason.basic,
kvm_vmx_max_exit_handlers);
if (!kvm_vmx_exit_handlers[exit_handler_index])
goto unexpected_vmexit;
return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
unexpected_vmexit:
vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
exit_reason.full);
dump_vmcs(vcpu);
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror =
KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
vcpu->run->internal.ndata = 2;
vcpu->run->internal.data[0] = exit_reason.full;
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
return 0;
}
static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
{
int ret = __vmx_handle_exit(vcpu, exit_fastpath);
/*
* Exit to user space when bus lock detected to inform that there is
* a bus lock in guest.
*/
if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
if (ret > 0)
vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
return 0;
}
return ret;
}
/*
* Software based L1D cache flush which is used when microcode providing
* the cache control MSR is not loaded.
*
* The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
* flush it is required to read in 64 KiB because the replacement algorithm
* is not exactly LRU. This could be sized at runtime via topology
* information but as all relevant affected CPUs have 32KiB L1D cache size
* there is no point in doing so.
*/
static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
{
int size = PAGE_SIZE << L1D_CACHE_ORDER;
/*
* This code is only executed when the flush mode is 'cond' or
* 'always'
*/
if (static_branch_likely(&vmx_l1d_flush_cond)) {
bool flush_l1d;
/*
* Clear the per-vcpu flush bit, it gets set again
* either from vcpu_run() or from one of the unsafe
* VMEXIT handlers.
*/
flush_l1d = vcpu->arch.l1tf_flush_l1d;
vcpu->arch.l1tf_flush_l1d = false;
/*
* Clear the per-cpu flush bit, it gets set again from
* the interrupt handlers.
*/
flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
kvm_clear_cpu_l1tf_flush_l1d();
if (!flush_l1d)
return;
}
vcpu->stat.l1d_flush++;
if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
return;
}
asm volatile(
/* First ensure the pages are in the TLB */
"xorl %%eax, %%eax\n"
".Lpopulate_tlb:\n\t"
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
"addl $4096, %%eax\n\t"
"cmpl %%eax, %[size]\n\t"
"jne .Lpopulate_tlb\n\t"
"xorl %%eax, %%eax\n\t"
"cpuid\n\t"
/* Now fill the cache */
"xorl %%eax, %%eax\n"
".Lfill_cache:\n"
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
"addl $64, %%eax\n\t"
"cmpl %%eax, %[size]\n\t"
"jne .Lfill_cache\n\t"
"lfence\n"
:: [flush_pages] "r" (vmx_l1d_flush_pages),
[size] "r" (size)
: "eax", "ebx", "ecx", "edx");
}
static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
int tpr_threshold;
if (is_guest_mode(vcpu) &&
nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
return;
tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
if (is_guest_mode(vcpu))
to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
else
vmcs_write32(TPR_THRESHOLD, tpr_threshold);
}
void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 sec_exec_control;
if (!lapic_in_kernel(vcpu))
return;
if (!flexpriority_enabled &&
!cpu_has_vmx_virtualize_x2apic_mode())
return;
/* Postpone execution until vmcs01 is the current VMCS. */
if (is_guest_mode(vcpu)) {
vmx->nested.change_vmcs01_virtual_apic_mode = true;
return;
}
sec_exec_control = secondary_exec_controls_get(vmx);
sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
switch (kvm_get_apic_mode(vcpu)) {
case LAPIC_MODE_INVALID:
WARN_ONCE(true, "Invalid local APIC state");
break;
case LAPIC_MODE_DISABLED:
break;
case LAPIC_MODE_XAPIC:
if (flexpriority_enabled) {
sec_exec_control |=
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
/*
* Flush the TLB, reloading the APIC access page will
* only do so if its physical address has changed, but
* the guest may have inserted a non-APIC mapping into
* the TLB while the APIC access page was disabled.
*/
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
}
break;
case LAPIC_MODE_X2APIC:
if (cpu_has_vmx_virtualize_x2apic_mode())
sec_exec_control |=
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
break;
}
secondary_exec_controls_set(vmx, sec_exec_control);
vmx_update_msr_bitmap_x2apic(vcpu);
}
static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
{
const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
struct kvm *kvm = vcpu->kvm;
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *slot;
unsigned long mmu_seq;
kvm_pfn_t pfn;
/* Defer reload until vmcs01 is the current VMCS. */
if (is_guest_mode(vcpu)) {
to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
return;
}
if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
return;
/*
* Grab the memslot so that the hva lookup for the mmu_notifier retry
* is guaranteed to use the same memslot as the pfn lookup, i.e. rely
* on the pfn lookup's validation of the memslot to ensure a valid hva
* is used for the retry check.
*/
slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
return;
/*
* Ensure that the mmu_notifier sequence count is read before KVM
* retrieves the pfn from the primary MMU. Note, the memslot is
* protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
* in kvm_mmu_invalidate_end().
*/
mmu_seq = kvm->mmu_invalidate_seq;
smp_rmb();
/*
* No need to retry if the memslot does not exist or is invalid. KVM
* controls the APIC-access page memslot, and only deletes the memslot
* if APICv is permanently inhibited, i.e. the memslot won't reappear.
*/
pfn = gfn_to_pfn_memslot(slot, gfn);
if (is_error_noslot_pfn(pfn))
return;
read_lock(&vcpu->kvm->mmu_lock);
if (mmu_invalidate_retry_hva(kvm, mmu_seq,
gfn_to_hva_memslot(slot, gfn))) {
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
read_unlock(&vcpu->kvm->mmu_lock);
goto out;
}
vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
read_unlock(&vcpu->kvm->mmu_lock);
/*
* No need for a manual TLB flush at this point, KVM has already done a
* flush if there were SPTEs pointing at the previous page.
*/
out:
/*
* Do not pin apic access page in memory, the MMU notifier
* will call us again if it is migrated or swapped out.
*/
kvm_release_pfn_clean(pfn);
}
static void vmx_hwapic_isr_update(int max_isr)
{
u16 status;
u8 old;
if (max_isr == -1)
max_isr = 0;
status = vmcs_read16(GUEST_INTR_STATUS);
old = status >> 8;
if (max_isr != old) {
status &= 0xff;
status |= max_isr << 8;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_set_rvi(int vector)
{
u16 status;
u8 old;
if (vector == -1)
vector = 0;
status = vmcs_read16(GUEST_INTR_STATUS);
old = (u8)status & 0xff;
if ((u8)vector != old) {
status &= ~0xff;
status |= (u8)vector;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
{
/*
* When running L2, updating RVI is only relevant when
* vmcs12 virtual-interrupt-delivery enabled.
* However, it can be enabled only when L1 also
* intercepts external-interrupts and in that case
* we should not update vmcs02 RVI but instead intercept
* interrupt. Therefore, do nothing when running L2.
*/
if (!is_guest_mode(vcpu))
vmx_set_rvi(max_irr);
}
static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int max_irr;
bool got_posted_interrupt;
if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
return -EIO;
if (pi_test_on(&vmx->pi_desc)) {
pi_clear_on(&vmx->pi_desc);
/*
* IOMMU can write to PID.ON, so the barrier matters even on UP.
* But on x86 this is just a compiler barrier anyway.
*/
smp_mb__after_atomic();
got_posted_interrupt =
kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
} else {
max_irr = kvm_lapic_find_highest_irr(vcpu);
got_posted_interrupt = false;
}
/*
* Newly recognized interrupts are injected via either virtual interrupt
* delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
* disabled in two cases:
*
* 1) If L2 is running and the vCPU has a new pending interrupt. If L1
* wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
* VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
* into L2, but KVM doesn't use virtual interrupt delivery to inject
* interrupts into L2, and so KVM_REQ_EVENT is again needed.
*
* 2) If APICv is disabled for this vCPU, assigned devices may still
* attempt to post interrupts. The posted interrupt vector will cause
* a VM-Exit and the subsequent entry will call sync_pir_to_irr.
*/
if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
vmx_set_rvi(max_irr);
else if (got_posted_interrupt)
kvm_make_request(KVM_REQ_EVENT, vcpu);
return max_irr;
}
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
{
if (!kvm_vcpu_apicv_active(vcpu))
return;
vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
}
static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
pi_clear_on(&vmx->pi_desc);
memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
}
void vmx_do_interrupt_irqoff(unsigned long entry);
void vmx_do_nmi_irqoff(void);
static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
{
/*
* Save xfd_err to guest_fpu before interrupt is enabled, so the
* MSR value is not clobbered by the host activity before the guest
* has chance to consume it.
*
* Do not blindly read xfd_err here, since this exception might
* be caused by L1 interception on a platform which doesn't
* support xfd at all.
*
* Do it conditionally upon guest_fpu::xfd. xfd_err matters
* only when xfd contains a non-zero value.
*
* Queuing exception is done in vmx_handle_exit. See comment there.
*/
if (vcpu->arch.guest_fpu.fpstate->xfd)
rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
}
static void handle_exception_irqoff(struct vcpu_vmx *vmx)
{
u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
/* if exit due to PF check for async PF */
if (is_page_fault(intr_info))
vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
/* if exit due to NM, handle before interrupts are enabled */
else if (is_nm_fault(intr_info))
handle_nm_fault_irqoff(&vmx->vcpu);
/* Handle machine checks before interrupts are enabled */
else if (is_machine_check(intr_info))
kvm_machine_check();
}
static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
{
u32 intr_info = vmx_get_intr_info(vcpu);
unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
gate_desc *desc = (gate_desc *)host_idt_base + vector;
if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
"unexpected VM-Exit interrupt info: 0x%x", intr_info))
return;
kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
vmx_do_interrupt_irqoff(gate_offset(desc));
kvm_after_interrupt(vcpu);
vcpu->arch.at_instruction_boundary = true;
}
static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->emulation_required)
return;
if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
handle_external_interrupt_irqoff(vcpu);
else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
handle_exception_irqoff(vmx);
}
/*
* The kvm parameter can be NULL (module initialization, or invocation before
* VM creation). Be sure to check the kvm parameter before using it.
*/
static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
{
switch (index) {
case MSR_IA32_SMBASE:
if (!IS_ENABLED(CONFIG_KVM_SMM))
return false;
/*
* We cannot do SMM unless we can run the guest in big
* real mode.
*/
return enable_unrestricted_guest || emulate_invalid_guest_state;
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
return nested;
case MSR_AMD64_VIRT_SPEC_CTRL:
case MSR_AMD64_TSC_RATIO:
/* This is AMD only. */
return false;
default:
return true;
}
}
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
{
u32 exit_intr_info;
bool unblock_nmi;
u8 vector;
bool idtv_info_valid;
idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
if (enable_vnmi) {
if (vmx->loaded_vmcs->nmi_known_unmasked)
return;
exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Re-set bit "block by NMI" before VM entry if vmexit caused by
* a guest IRET fault.
* SDM 3: 23.2.2 (September 2008)
* Bit 12 is undefined in any of the following cases:
* If the VM exit sets the valid bit in the IDT-vectoring
* information field.
* If the VM exit is due to a double fault.
*/
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
vector != DF_VECTOR && !idtv_info_valid)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmx->loaded_vmcs->nmi_known_unmasked =
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
& GUEST_INTR_STATE_NMI);
} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
vmx->loaded_vmcs->vnmi_blocked_time +=
ktime_to_ns(ktime_sub(ktime_get(),
vmx->loaded_vmcs->entry_time));
}
static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
u32 idt_vectoring_info,
int instr_len_field,
int error_code_field)
{
u8 vector;
int type;
bool idtv_info_valid;
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
if (!idtv_info_valid)
return;
kvm_make_request(KVM_REQ_EVENT, vcpu);
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = true;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Clear bit "block by NMI" before VM entry if a NMI
* delivery faulted.
*/
vmx_set_nmi_mask(vcpu, false);
break;
case INTR_TYPE_SOFT_EXCEPTION:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
fallthrough;
case INTR_TYPE_HARD_EXCEPTION:
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
u32 err = vmcs_read32(error_code_field);
kvm_requeue_exception_e(vcpu, vector, err);
} else
kvm_requeue_exception(vcpu, vector);
break;
case INTR_TYPE_SOFT_INTR:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
fallthrough;
case INTR_TYPE_EXT_INTR:
kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
break;
default:
break;
}
}
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
{
__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_ERROR_CODE);
}
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
{
__vmx_complete_interrupts(vcpu,
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
VM_ENTRY_INSTRUCTION_LEN,
VM_ENTRY_EXCEPTION_ERROR_CODE);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
{
int i, nr_msrs;
struct perf_guest_switch_msr *msrs;
struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
pmu->host_cross_mapped_mask = 0;
if (pmu->pebs_enable & pmu->global_ctrl)
intel_pmu_cross_mapped_check(pmu);
/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
if (!msrs)
return;
for (i = 0; i < nr_msrs; i++)
if (msrs[i].host == msrs[i].guest)
clear_atomic_switch_msr(vmx, msrs[i].msr);
else
add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
msrs[i].host, false);
}
static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 tscl;
u32 delta_tsc;
if (vmx->req_immediate_exit) {
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
vmx->loaded_vmcs->hv_timer_soft_disabled = false;
} else if (vmx->hv_deadline_tsc != -1) {
tscl = rdtsc();
if (vmx->hv_deadline_tsc > tscl)
/* set_hv_timer ensures the delta fits in 32-bits */
delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
cpu_preemption_timer_multi);
else
delta_tsc = 0;
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
vmx->loaded_vmcs->hv_timer_soft_disabled = false;
} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
vmx->loaded_vmcs->hv_timer_soft_disabled = true;
}
}
void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
{
if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
vmx->loaded_vmcs->host_state.rsp = host_rsp;
vmcs_writel(HOST_RSP, host_rsp);
}
}
void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
unsigned int flags)
{
u64 hostval = this_cpu_read(x86_spec_ctrl_current);
if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
return;
if (flags & VMX_RUN_SAVE_SPEC_CTRL)
vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
/*
* If the guest/host SPEC_CTRL values differ, restore the host value.
*
* For legacy IBRS, the IBRS bit always needs to be written after
* transitioning from a less privileged predictor mode, regardless of
* whether the guest/host values differ.
*/
if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
vmx->spec_ctrl != hostval)
native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
barrier_nospec();
}
static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
{
switch (to_vmx(vcpu)->exit_reason.basic) {
case EXIT_REASON_MSR_WRITE:
return handle_fastpath_set_msr_irqoff(vcpu);
case EXIT_REASON_PREEMPTION_TIMER:
return handle_fastpath_preemption_timer(vcpu);
default:
return EXIT_FASTPATH_NONE;
}
}
static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
unsigned int flags)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
guest_state_enter_irqoff();
/* L1D Flush includes CPU buffer clear to mitigate MDS */
if (static_branch_unlikely(&vmx_l1d_should_flush))
vmx_l1d_flush(vcpu);
else if (static_branch_unlikely(&mds_user_clear))
mds_clear_cpu_buffers();
else if (static_branch_unlikely(&mmio_stale_data_clear) &&
kvm_arch_has_assigned_device(vcpu->kvm))
mds_clear_cpu_buffers();
vmx_disable_fb_clear(vmx);
if (vcpu->arch.cr2 != native_read_cr2())
native_write_cr2(vcpu->arch.cr2);
vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
flags);
vcpu->arch.cr2 = native_read_cr2();
vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
vmx->idt_vectoring_info = 0;
vmx_enable_fb_clear(vmx);
if (unlikely(vmx->fail)) {
vmx->exit_reason.full = 0xdead;
goto out;
}
vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
if (likely(!vmx->exit_reason.failed_vmentry))
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
is_nmi(vmx_get_intr_info(vcpu))) {
kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
vmx_do_nmi_irqoff();
kvm_after_interrupt(vcpu);
}
out:
guest_state_exit_irqoff();
}
static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long cr3, cr4;
/* Record the guest's net vcpu time for enforced NMI injections. */
if (unlikely(!enable_vnmi &&
vmx->loaded_vmcs->soft_vnmi_blocked))
vmx->loaded_vmcs->entry_time = ktime_get();
/*
* Don't enter VMX if guest state is invalid, let the exit handler
* start emulation until we arrive back to a valid state. Synthesize a
* consistency check VM-Exit due to invalid guest state and bail.
*/
if (unlikely(vmx->emulation_required)) {
vmx->fail = 0;
vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
vmx->exit_reason.failed_vmentry = 1;
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
vmx->exit_intr_info = 0;
return EXIT_FASTPATH_NONE;
}
trace_kvm_entry(vcpu);
if (vmx->ple_window_dirty) {
vmx->ple_window_dirty = false;
vmcs_write32(PLE_WINDOW, vmx->ple_window);
}
/*
* We did this in prepare_switch_to_guest, because it needs to
* be within srcu_read_lock.
*/
WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
vcpu->arch.regs_dirty = 0;
/*
* Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
* prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
* it switches back to the current->mm, which can occur in KVM context
* when switching to a temporary mm to patch kernel code, e.g. if KVM
* toggles a static key while handling a VM-Exit.
*/
cr3 = __get_current_cr3_fast();
if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
vmcs_writel(HOST_CR3, cr3);
vmx->loaded_vmcs->host_state.cr3 = cr3;
}
cr4 = cr4_read_shadow();
if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
vmcs_writel(HOST_CR4, cr4);
vmx->loaded_vmcs->host_state.cr4 = cr4;
}
/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
set_debugreg(vcpu->arch.dr6, 6);
/* When single-stepping over STI and MOV SS, we must clear the
* corresponding interruptibility bits in the guest state. Otherwise
* vmentry fails as it then expects bit 14 (BS) in pending debug
* exceptions being set, but that's not correct for the guest debugging
* case. */
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vmx_set_interrupt_shadow(vcpu, 0);
kvm_load_guest_xsave_state(vcpu);
pt_guest_enter(vmx);
atomic_switch_perf_msrs(vmx);
if (intel_pmu_lbr_is_enabled(vcpu))
vmx_passthrough_lbr_msrs(vcpu);
if (enable_preemption_timer)
vmx_update_hv_timer(vcpu);
kvm_wait_lapic_expire(vcpu);
/* The actual VMENTER/EXIT is in the .noinstr.text section. */
vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
/* All fields are clean at this point */
if (kvm_is_using_evmcs()) {
current_evmcs->hv_clean_fields |=
HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
}
/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
if (vmx->host_debugctlmsr)
update_debugctlmsr(vmx->host_debugctlmsr);
#ifndef CONFIG_X86_64
/*
* The sysexit path does not restore ds/es, so we must set them to
* a reasonable value ourselves.
*
* We can't defer this to vmx_prepare_switch_to_host() since that
* function may be executed in interrupt context, which saves and
* restore segments around it, nullifying its effect.
*/
loadsegment(ds, __USER_DS);
loadsegment(es, __USER_DS);
#endif
pt_guest_exit(vmx);
kvm_load_host_xsave_state(vcpu);
if (is_guest_mode(vcpu)) {
/*
* Track VMLAUNCH/VMRESUME that have made past guest state
* checking.
*/
if (vmx->nested.nested_run_pending &&
!vmx->exit_reason.failed_vmentry)
++vcpu->stat.nested_run;
vmx->nested.nested_run_pending = 0;
}
if (unlikely(vmx->fail))
return EXIT_FASTPATH_NONE;
if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
kvm_machine_check();
trace_kvm_exit(vcpu, KVM_ISA_VMX);
if (unlikely(vmx->exit_reason.failed_vmentry))
return EXIT_FASTPATH_NONE;
vmx->loaded_vmcs->launched = 1;
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);
if (is_guest_mode(vcpu))
return EXIT_FASTPATH_NONE;
return vmx_exit_handlers_fastpath(vcpu);
}
static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (enable_pml)
vmx_destroy_pml_buffer(vmx);
free_vpid(vmx->vpid);
nested_vmx_free_vcpu(vcpu);
free_loaded_vmcs(vmx->loaded_vmcs);
}
static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
{
struct vmx_uret_msr *tsx_ctrl;
struct vcpu_vmx *vmx;
int i, err;
BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
vmx = to_vmx(vcpu);
INIT_LIST_HEAD(&vmx->pi_wakeup_list);
err = -ENOMEM;
vmx->vpid = allocate_vpid();
/*
* If PML is turned on, failure on enabling PML just results in failure
* of creating the vcpu, therefore we can simplify PML logic (by
* avoiding dealing with cases, such as enabling PML partially on vcpus
* for the guest), etc.
*/
if (enable_pml) {
vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!vmx->pml_pg)
goto free_vpid;
}
for (i = 0; i < kvm_nr_uret_msrs; ++i)
vmx->guest_uret_msrs[i].mask = -1ull;
if (boot_cpu_has(X86_FEATURE_RTM)) {
/*
* TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
* Keep the host value unchanged to avoid changing CPUID bits
* under the host kernel's feet.
*/
tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
if (tsx_ctrl)
tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
}
err = alloc_loaded_vmcs(&vmx->vmcs01);
if (err < 0)
goto free_pml;
/*
* Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
* nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
* feature only for vmcs01, KVM currently isn't equipped to realize any
* performance benefits from enabling it for vmcs02.
*/
if (kvm_is_using_evmcs() &&
(ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
evmcs->hv_enlightenments_control.msr_bitmap = 1;
}
/* The MSR bitmap starts with all ones */
bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
#ifdef CONFIG_X86_64
vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
#endif
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
if (kvm_cstate_in_guest(vcpu->kvm)) {
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
}
vmx->loaded_vmcs = &vmx->vmcs01;
if (cpu_need_virtualize_apic_accesses(vcpu)) {
err = kvm_alloc_apic_access_page(vcpu->kvm);
if (err)
goto free_vmcs;
}
if (enable_ept && !enable_unrestricted_guest) {
err = init_rmode_identity_map(vcpu->kvm);
if (err)
goto free_vmcs;
}
if (vmx_can_use_ipiv(vcpu))
WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
__pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
return 0;
free_vmcs:
free_loaded_vmcs(vmx->loaded_vmcs);
free_pml:
vmx_destroy_pml_buffer(vmx);
free_vpid:
free_vpid(vmx->vpid);
return err;
}
#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
static int vmx_vm_init(struct kvm *kvm)
{
if (!ple_gap)
kvm->arch.pause_in_guest = true;
if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
switch (l1tf_mitigation) {
case L1TF_MITIGATION_OFF:
case L1TF_MITIGATION_FLUSH_NOWARN:
/* 'I explicitly don't care' is set */
break;
case L1TF_MITIGATION_FLUSH:
case L1TF_MITIGATION_FLUSH_NOSMT:
case L1TF_MITIGATION_FULL:
/*
* Warn upon starting the first VM in a potentially
* insecure environment.
*/
if (sched_smt_active())
pr_warn_once(L1TF_MSG_SMT);
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
pr_warn_once(L1TF_MSG_L1D);
break;
case L1TF_MITIGATION_FULL_FORCE:
/* Flush is enforced */
break;
}
}
return 0;
}
static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
{
/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
* memory aliases with conflicting memory types and sometimes MCEs.
* We have to be careful as to what are honored and when.
*
* For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
* UC. The effective memory type is UC or WC depending on guest PAT.
* This was historically the source of MCEs and we want to be
* conservative.
*
* When there is no need to deal with noncoherent DMA (e.g., no VT-d
* or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
* EPT memory type is set to WB. The effective memory type is forced
* WB.
*
* Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
* EPT memory type is used to emulate guest CD/MTRR.
*/
if (is_mmio)
return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
else
return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
VMX_EPT_IPAT_BIT;
}
return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
}
static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
{
/*
* These bits in the secondary execution controls field
* are dynamic, the others are mostly based on the hypervisor
* architecture and the guest's CPUID. Do not touch the
* dynamic bits.
*/
u32 mask =
SECONDARY_EXEC_SHADOW_VMCS |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_DESC;
u32 cur_ctl = secondary_exec_controls_get(vmx);
secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
}
/*
* Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
* (indicating "allowed-1") if they are supported in the guest's CPUID.
*/
static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_cpuid_entry2 *entry;
vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
if (entry && (entry->_reg & (_cpuid_mask))) \
vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
} while (0)
entry = kvm_find_cpuid_entry(vcpu, 0x1);
cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
#undef cr4_fixed1_update
}
static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_cpuid_entry2 *best = NULL;
int i;
for (i = 0; i < PT_CPUID_LEAVES; i++) {
best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
if (!best)
return;
vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
}
/* Get the number of configurable Address Ranges for filtering */
vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_num_address_ranges);
/* Initialize and clear the no dependency bits */
vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
RTIT_CTL_BRANCH_EN);
/*
* If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
* will inject an #GP
*/
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
/*
* If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
* PSBFreq can be set
*/
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
/*
* If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
*/
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
RTIT_CTL_MTC_RANGE);
/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
RTIT_CTL_PTW_EN);
/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
/* unmask address range configure area */
for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
}
static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* XSAVES is effectively enabled if and only if XSAVE is also exposed
* to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
* set if and only if XSAVE is supported.
*/
if (boot_cpu_has(X86_FEATURE_XSAVE) &&
guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
vmx_setup_uret_msrs(vmx);
if (cpu_has_secondary_exec_ctrls())
vmcs_set_secondary_exec_control(vmx,
vmx_secondary_exec_control(vmx));
if (guest_can_use(vcpu, X86_FEATURE_VMX))
vmx->msr_ia32_feature_control_valid_bits |=
FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
else
vmx->msr_ia32_feature_control_valid_bits &=
~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
if (guest_can_use(vcpu, X86_FEATURE_VMX))
nested_vmx_cr_fixed1_bits_update(vcpu);
if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
update_intel_pt_cfg(vcpu);
if (boot_cpu_has(X86_FEATURE_RTM)) {
struct vmx_uret_msr *msr;
msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
if (msr) {
bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
}
}
if (kvm_cpu_cap_has(X86_FEATURE_XFD))
vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
!guest_cpuid_has(vcpu, X86_FEATURE_XFD));
if (boot_cpu_has(X86_FEATURE_IBPB))
vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
!guest_has_pred_cmd_msr(vcpu));
if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
set_cr4_guest_host_mask(vmx);
vmx_write_encls_bitmap(vcpu, NULL);
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
else
vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
vmx->msr_ia32_feature_control_valid_bits |=
FEAT_CTL_SGX_LC_ENABLED;
else
vmx->msr_ia32_feature_control_valid_bits &=
~FEAT_CTL_SGX_LC_ENABLED;
/* Refresh #PF interception to account for MAXPHYADDR changes. */
vmx_update_exception_bitmap(vcpu);
}
static u64 vmx_get_perf_capabilities(void)
{
u64 perf_cap = PMU_CAP_FW_WRITES;
struct x86_pmu_lbr lbr;
u64 host_perf_cap = 0;
if (!enable_pmu)
return 0;
if (boot_cpu_has(X86_FEATURE_PDCM))
rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
x86_perf_get_lbr(&lbr);
if (lbr.nr)
perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
}
if (vmx_pebs_supported()) {
perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
perf_cap &= ~PERF_CAP_PEBS_BASELINE;
}
return perf_cap;
}
static __init void vmx_set_cpu_caps(void)
{
kvm_set_cpu_caps();
/* CPUID 0x1 */
if (nested)
kvm_cpu_cap_set(X86_FEATURE_VMX);
/* CPUID 0x7 */
if (kvm_mpx_supported())
kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
if (!cpu_has_vmx_invpcid())
kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
if (vmx_pt_mode_is_host_guest())
kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
if (vmx_pebs_supported()) {
kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
}
if (!enable_pmu)
kvm_cpu_cap_clear(X86_FEATURE_PDCM);
kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
if (!enable_sgx) {
kvm_cpu_cap_clear(X86_FEATURE_SGX);
kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
kvm_cpu_cap_clear(X86_FEATURE_SGX1);
kvm_cpu_cap_clear(X86_FEATURE_SGX2);
}
if (vmx_umip_emulated())
kvm_cpu_cap_set(X86_FEATURE_UMIP);
/* CPUID 0xD.1 */
kvm_caps.supported_xss = 0;
if (!cpu_has_vmx_xsaves())
kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
/* CPUID 0x80000001 and 0x7 (RDPID) */
if (!cpu_has_vmx_rdtscp()) {
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
}
if (cpu_has_vmx_waitpkg())
kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
}
static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
{
to_vmx(vcpu)->req_immediate_exit = true;
}
static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned short port;
bool intercept;
int size;
if (info->intercept == x86_intercept_in ||
info->intercept == x86_intercept_ins) {
port = info->src_val;
size = info->dst_bytes;
} else {
port = info->dst_val;
size = info->src_bytes;
}
/*
* If the 'use IO bitmaps' VM-execution control is 0, IO instruction
* VM-exits depend on the 'unconditional IO exiting' VM-execution
* control.
*
* Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
*/
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
intercept = nested_cpu_has(vmcs12,
CPU_BASED_UNCOND_IO_EXITING);
else
intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
}
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage,
struct x86_exception *exception)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
switch (info->intercept) {
/*
* RDPID causes #UD if disabled through secondary execution controls.
* Because it is marked as EmulateOnUD, we need to intercept it here.
* Note, RDPID is hidden behind ENABLE_RDTSCP.
*/
case x86_intercept_rdpid:
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
exception->vector = UD_VECTOR;
exception->error_code_valid = false;
return X86EMUL_PROPAGATE_FAULT;
}
break;
case x86_intercept_in:
case x86_intercept_ins:
case x86_intercept_out:
case x86_intercept_outs:
return vmx_check_intercept_io(vcpu, info);
case x86_intercept_lgdt:
case x86_intercept_lidt:
case x86_intercept_lldt:
case x86_intercept_ltr:
case x86_intercept_sgdt:
case x86_intercept_sidt:
case x86_intercept_sldt:
case x86_intercept_str:
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
return X86EMUL_CONTINUE;
/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
break;
case x86_intercept_pause:
/*
* PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
* with vanilla NOPs in the emulator. Apply the interception
* check only to actual PAUSE instructions. Don't check
* PAUSE-loop-exiting, software can't expect a given PAUSE to
* exit, i.e. KVM is within its rights to allow L2 to execute
* the PAUSE.
*/
if ((info->rep_prefix != REPE_PREFIX) ||
!nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
return X86EMUL_CONTINUE;
break;
/* TODO: check more intercepts... */
default:
break;
}
return X86EMUL_UNHANDLEABLE;
}
#ifdef CONFIG_X86_64
/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
static inline int u64_shl_div_u64(u64 a, unsigned int shift,
u64 divisor, u64 *result)
{
u64 low = a << shift, high = a >> (64 - shift);
/* To avoid the overflow on divq */
if (high >= divisor)
return 1;
/* Low hold the result, high hold rem which is discarded */
asm("divq %2\n\t" : "=a" (low), "=d" (high) :
"rm" (divisor), "0" (low), "1" (high));
*result = low;
return 0;
}
static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
bool *expired)
{
struct vcpu_vmx *vmx;
u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
vmx = to_vmx(vcpu);
tscl = rdtsc();
guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
ktimer->timer_advance_ns);
if (delta_tsc > lapic_timer_advance_cycles)
delta_tsc -= lapic_timer_advance_cycles;
else
delta_tsc = 0;
/* Convert to host delta tsc if tsc scaling is enabled */
if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
delta_tsc && u64_shl_div_u64(delta_tsc,
kvm_caps.tsc_scaling_ratio_frac_bits,
vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
return -ERANGE;
/*
* If the delta tsc can't fit in the 32 bit after the multi shift,
* we can't use the preemption timer.
* It's possible that it fits on later vmentries, but checking
* on every vmentry is costly so we just use an hrtimer.
*/
if (delta_tsc >> (cpu_preemption_timer_multi + 32))
return -ERANGE;
vmx->hv_deadline_tsc = tscl + delta_tsc;
*expired = !delta_tsc;
return 0;
}
static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
{
to_vmx(vcpu)->hv_deadline_tsc = -1;
}
#endif
static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
{
if (!kvm_pause_in_guest(vcpu->kvm))
shrink_ple_window(vcpu);
}
void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (WARN_ON_ONCE(!enable_pml))
return;
if (is_guest_mode(vcpu)) {
vmx->nested.update_vmcs01_cpu_dirty_logging = true;
return;
}
/*
* Note, nr_memslots_dirty_logging can be changed concurrent with this
* code, but in that case another update request will be made and so
* the guest will never run with a stale PML value.
*/
if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
else
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
}
static void vmx_setup_mce(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.mcg_cap & MCG_LMCE_P)
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
FEAT_CTL_LMCE_ENABLED;
else
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
~FEAT_CTL_LMCE_ENABLED;
}
#ifdef CONFIG_KVM_SMM
static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
/* we need a nested vmexit to enter SMM, postpone if run is pending */
if (to_vmx(vcpu)->nested.nested_run_pending)
return -EBUSY;
return !is_smm(vcpu);
}
static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* TODO: Implement custom flows for forcing the vCPU out/in of L2 on
* SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
* SMI and RSM only modify state that is saved and restored via SMRAM.
* E.g. most MSRs are left untouched, but many are modified by VM-Exit
* and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
*/
vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
if (vmx->nested.smm.guest_mode)
nested_vmx_vmexit(vcpu, -1, 0, 0);
vmx->nested.smm.vmxon = vmx->nested.vmxon;
vmx->nested.vmxon = false;
vmx_clear_hlt(vcpu);
return 0;
}
static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int ret;
if (vmx->nested.smm.vmxon) {
vmx->nested.vmxon = true;
vmx->nested.smm.vmxon = false;
}
if (vmx->nested.smm.guest_mode) {
ret = nested_vmx_enter_non_root_mode(vcpu, false);
if (ret)
return ret;
vmx->nested.nested_run_pending = 1;
vmx->nested.smm.guest_mode = false;
}
return 0;
}
static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
{
/* RSM will cause a vmexit anyway. */
}
#endif
static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
{
return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
}
static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu)) {
struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
if (hrtimer_try_to_cancel(timer) == 1)
hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
}
}
static void vmx_hardware_unsetup(void)
{
kvm_set_posted_intr_wakeup_handler(NULL);
if (nested)
nested_vmx_hardware_unsetup();
free_kvm_area();
}
#define VMX_REQUIRED_APICV_INHIBITS \
( \
BIT(APICV_INHIBIT_REASON_DISABLE)| \
BIT(APICV_INHIBIT_REASON_ABSENT) | \
BIT(APICV_INHIBIT_REASON_HYPERV) | \
BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \
)
static void vmx_vm_destroy(struct kvm *kvm)
{
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
}
static struct kvm_x86_ops vmx_x86_ops __initdata = {
.name = KBUILD_MODNAME,
.check_processor_compatibility = vmx_check_processor_compat,
.hardware_unsetup = vmx_hardware_unsetup,
.hardware_enable = vmx_hardware_enable,
.hardware_disable = vmx_hardware_disable,
.has_emulated_msr = vmx_has_emulated_msr,
.vm_size = sizeof(struct kvm_vmx),
.vm_init = vmx_vm_init,
.vm_destroy = vmx_vm_destroy,
.vcpu_precreate = vmx_vcpu_precreate,
.vcpu_create = vmx_vcpu_create,
.vcpu_free = vmx_vcpu_free,
.vcpu_reset = vmx_vcpu_reset,
.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
.vcpu_load = vmx_vcpu_load,
.vcpu_put = vmx_vcpu_put,
.update_exception_bitmap = vmx_update_exception_bitmap,
.get_msr_feature = vmx_get_msr_feature,
.get_msr = vmx_get_msr,
.set_msr = vmx_set_msr,
.get_segment_base = vmx_get_segment_base,
.get_segment = vmx_get_segment,
.set_segment = vmx_set_segment,
.get_cpl = vmx_get_cpl,
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
.is_valid_cr0 = vmx_is_valid_cr0,
.set_cr0 = vmx_set_cr0,
.is_valid_cr4 = vmx_is_valid_cr4,
.set_cr4 = vmx_set_cr4,
.set_efer = vmx_set_efer,
.get_idt = vmx_get_idt,
.set_idt = vmx_set_idt,
.get_gdt = vmx_get_gdt,
.set_gdt = vmx_set_gdt,
.set_dr7 = vmx_set_dr7,
.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
.cache_reg = vmx_cache_reg,
.get_rflags = vmx_get_rflags,
.set_rflags = vmx_set_rflags,
.get_if_flag = vmx_get_if_flag,
.flush_tlb_all = vmx_flush_tlb_all,
.flush_tlb_current = vmx_flush_tlb_current,
.flush_tlb_gva = vmx_flush_tlb_gva,
.flush_tlb_guest = vmx_flush_tlb_guest,
.vcpu_pre_run = vmx_vcpu_pre_run,
.vcpu_run = vmx_vcpu_run,
.handle_exit = vmx_handle_exit,
.skip_emulated_instruction = vmx_skip_emulated_instruction,
.update_emulated_instruction = vmx_update_emulated_instruction,
.set_interrupt_shadow = vmx_set_interrupt_shadow,
.get_interrupt_shadow = vmx_get_interrupt_shadow,
.patch_hypercall = vmx_patch_hypercall,
.inject_irq = vmx_inject_irq,
.inject_nmi = vmx_inject_nmi,
.inject_exception = vmx_inject_exception,
.cancel_injection = vmx_cancel_injection,
.interrupt_allowed = vmx_interrupt_allowed,
.nmi_allowed = vmx_nmi_allowed,
.get_nmi_mask = vmx_get_nmi_mask,
.set_nmi_mask = vmx_set_nmi_mask,
.enable_nmi_window = vmx_enable_nmi_window,
.enable_irq_window = vmx_enable_irq_window,
.update_cr8_intercept = vmx_update_cr8_intercept,
.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
.load_eoi_exitmap = vmx_load_eoi_exitmap,
.apicv_pre_state_restore = vmx_apicv_pre_state_restore,
.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
.hwapic_irr_update = vmx_hwapic_irr_update,
.hwapic_isr_update = vmx_hwapic_isr_update,
.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
.sync_pir_to_irr = vmx_sync_pir_to_irr,
.deliver_interrupt = vmx_deliver_interrupt,
.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
.set_tss_addr = vmx_set_tss_addr,
.set_identity_map_addr = vmx_set_identity_map_addr,
.get_mt_mask = vmx_get_mt_mask,
.get_exit_info = vmx_get_exit_info,
.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
.write_tsc_offset = vmx_write_tsc_offset,
.write_tsc_multiplier = vmx_write_tsc_multiplier,
.load_mmu_pgd = vmx_load_mmu_pgd,
.check_intercept = vmx_check_intercept,
.handle_exit_irqoff = vmx_handle_exit_irqoff,
.request_immediate_exit = vmx_request_immediate_exit,
.sched_in = vmx_sched_in,
.cpu_dirty_log_size = PML_ENTITY_NUM,
.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
.nested_ops = &vmx_nested_ops,
.pi_update_irte = vmx_pi_update_irte,
.pi_start_assignment = vmx_pi_start_assignment,
#ifdef CONFIG_X86_64
.set_hv_timer = vmx_set_hv_timer,
.cancel_hv_timer = vmx_cancel_hv_timer,
#endif
.setup_mce = vmx_setup_mce,
#ifdef CONFIG_KVM_SMM
.smi_allowed = vmx_smi_allowed,
.enter_smm = vmx_enter_smm,
.leave_smm = vmx_leave_smm,
.enable_smi_window = vmx_enable_smi_window,
#endif
.check_emulate_instruction = vmx_check_emulate_instruction,
.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
.migrate_timers = vmx_migrate_timers,
.msr_filter_changed = vmx_msr_filter_changed,
.complete_emulated_msr = kvm_complete_insn_gp,
.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
};
static unsigned int vmx_handle_intel_pt_intr(void)
{
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
/* '0' on failure so that the !PT case can use a RET0 static call. */
if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
return 0;
kvm_make_request(KVM_REQ_PMI, vcpu);
__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
(unsigned long *)&vcpu->arch.pmu.global_status);
return 1;
}
static __init void vmx_setup_user_return_msrs(void)
{
/*
* Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
* will emulate SYSCALL in legacy mode if the vendor string in guest
* CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
* support this emulation, MSR_STAR is included in the list for i386,
* but is never loaded into hardware. MSR_CSTAR is also never loaded
* into hardware and is here purely for emulation purposes.
*/
const u32 vmx_uret_msrs_list[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
#endif
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
MSR_IA32_TSX_CTRL,
};
int i;
BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
}
static void __init vmx_setup_me_spte_mask(void)
{
u64 me_mask = 0;
/*
* kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
* the former to avoid exposing shadow_phys_bits.
*
* On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
* shadow_phys_bits. On MKTME and/or TDX capable systems,
* boot_cpu_data.x86_phys_bits holds the actual physical address
* w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
* reported by CPUID. Those bits between are KeyID bits.
*/
if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
kvm_get_shadow_phys_bits() - 1);
/*
* Unlike SME, host kernel doesn't support setting up any
* MKTME KeyID on Intel platforms. No memory encryption
* bits should be included into the SPTE.
*/
kvm_mmu_set_me_spte_mask(0, me_mask);
}
static struct kvm_x86_init_ops vmx_init_ops __initdata;
static __init int hardware_setup(void)
{
unsigned long host_bndcfgs;
struct desc_ptr dt;
int r;
store_idt(&dt);
host_idt_base = dt.address;
vmx_setup_user_return_msrs();
if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
return -EIO;
if (cpu_has_perf_global_ctrl_bug())
pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
"does not work properly. Using workaround\n");
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
if (boot_cpu_has(X86_FEATURE_MPX)) {
rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
}
if (!cpu_has_vmx_mpx())
kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
XFEATURE_MASK_BNDCSR);
if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
enable_vpid = 0;
if (!cpu_has_vmx_ept() ||
!cpu_has_vmx_ept_4levels() ||
!cpu_has_vmx_ept_mt_wb() ||
!cpu_has_vmx_invept_global())
enable_ept = 0;
/* NX support is required for shadow paging. */
if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
pr_err_ratelimited("NX (Execute Disable) not supported\n");
return -EOPNOTSUPP;
}
if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
enable_ept_ad_bits = 0;
if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
enable_unrestricted_guest = 0;
if (!cpu_has_vmx_flexpriority())
flexpriority_enabled = 0;
if (!cpu_has_virtual_nmis())
enable_vnmi = 0;
#ifdef CONFIG_X86_SGX_KVM
if (!cpu_has_vmx_encls_vmexit())
enable_sgx = false;
#endif
/*
* set_apic_access_page_addr() is used to reload apic access
* page upon invalidation. No need to do anything if not
* using the APIC_ACCESS_ADDR VMCS field.
*/
if (!flexpriority_enabled)
vmx_x86_ops.set_apic_access_page_addr = NULL;
if (!cpu_has_vmx_tpr_shadow())
vmx_x86_ops.update_cr8_intercept = NULL;
#if IS_ENABLED(CONFIG_HYPERV)
if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
&& enable_ept) {
vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
}
#endif
if (!cpu_has_vmx_ple()) {
ple_gap = 0;
ple_window = 0;
ple_window_grow = 0;
ple_window_max = 0;
ple_window_shrink = 0;
}
if (!cpu_has_vmx_apicv())
enable_apicv = 0;
if (!enable_apicv)
vmx_x86_ops.sync_pir_to_irr = NULL;
if (!enable_apicv || !cpu_has_vmx_ipiv())
enable_ipiv = false;
if (cpu_has_vmx_tsc_scaling())
kvm_caps.has_tsc_control = true;
kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
kvm_caps.tsc_scaling_ratio_frac_bits = 48;
kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
if (enable_ept)
kvm_mmu_set_ept_masks(enable_ept_ad_bits,
cpu_has_vmx_ept_execute_only());
/*
* Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
* bits to shadow_zero_check.
*/
vmx_setup_me_spte_mask();
kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
ept_caps_to_lpage_level(vmx_capability.ept));
/*
* Only enable PML when hardware supports PML feature, and both EPT
* and EPT A/D bit features are enabled -- PML depends on them to work.
*/
if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
enable_pml = 0;
if (!enable_pml)
vmx_x86_ops.cpu_dirty_log_size = 0;
if (!cpu_has_vmx_preemption_timer())
enable_preemption_timer = false;
if (enable_preemption_timer) {
u64 use_timer_freq = 5000ULL * 1000 * 1000;
cpu_preemption_timer_multi =
vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
if (tsc_khz)
use_timer_freq = (u64)tsc_khz * 1000;
use_timer_freq >>= cpu_preemption_timer_multi;
/*
* KVM "disables" the preemption timer by setting it to its max
* value. Don't use the timer if it might cause spurious exits
* at a rate faster than 0.1 Hz (of uninterrupted guest time).
*/
if (use_timer_freq > 0xffffffffu / 10)
enable_preemption_timer = false;
}
if (!enable_preemption_timer) {
vmx_x86_ops.set_hv_timer = NULL;
vmx_x86_ops.cancel_hv_timer = NULL;
vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
}
kvm_caps.supported_mce_cap |= MCG_LMCE_P;
kvm_caps.supported_mce_cap |= MCG_CMCI_P;
if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
return -EINVAL;
if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
pt_mode = PT_MODE_SYSTEM;
if (pt_mode == PT_MODE_HOST_GUEST)
vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
else
vmx_init_ops.handle_intel_pt_intr = NULL;
setup_default_sgx_lepubkeyhash();
if (nested) {
nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
if (r)
return r;
}
vmx_set_cpu_caps();
r = alloc_kvm_area();
if (r && nested)
nested_vmx_hardware_unsetup();
kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
return r;
}
static struct kvm_x86_init_ops vmx_init_ops __initdata = {
.hardware_setup = hardware_setup,
.handle_intel_pt_intr = NULL,
.runtime_ops = &vmx_x86_ops,
.pmu_ops = &intel_pmu_ops,
};
static void vmx_cleanup_l1d_flush(void)
{
if (vmx_l1d_flush_pages) {
free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
vmx_l1d_flush_pages = NULL;
}
/* Restore state so sysfs ignores VMX */
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
}
static void __vmx_exit(void)
{
allow_smaller_maxphyaddr = false;
cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
vmx_cleanup_l1d_flush();
}
static void vmx_exit(void)
{
kvm_exit();
kvm_x86_vendor_exit();
__vmx_exit();
}
module_exit(vmx_exit);
static int __init vmx_init(void)
{
int r, cpu;
if (!kvm_is_vmx_supported())
return -EOPNOTSUPP;
/*
* Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
* to unwind if a later step fails.
*/
hv_init_evmcs();
r = kvm_x86_vendor_init(&vmx_init_ops);
if (r)
return r;
/*
* Must be called after common x86 init so enable_ept is properly set
* up. Hand the parameter mitigation value in which was stored in
* the pre module init parser. If no parameter was given, it will
* contain 'auto' which will be turned into the default 'cond'
* mitigation mode.
*/
r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
if (r)
goto err_l1d_flush;
for_each_possible_cpu(cpu) {
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
pi_init_cpu(cpu);
}
cpu_emergency_register_virt_callback(vmx_emergency_disable);
vmx_check_vmcs12_offsets();
/*
* Shadow paging doesn't have a (further) performance penalty
* from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
* by default
*/
if (!enable_ept)
allow_smaller_maxphyaddr = true;
/*
* Common KVM initialization _must_ come last, after this, /dev/kvm is
* exposed to userspace!
*/
r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
THIS_MODULE);
if (r)
goto err_kvm_init;
return 0;
err_kvm_init:
__vmx_exit();
err_l1d_flush:
kvm_x86_vendor_exit();
return r;
}
module_init(vmx_init);