| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * sgp40.c - Support for Sensirion SGP40 Gas Sensor |
| * |
| * Copyright (C) 2021 Andreas Klinger <ak@it-klinger.de> |
| * |
| * I2C slave address: 0x59 |
| * |
| * Datasheet can be found here: |
| * https://www.sensirion.com/file/datasheet_sgp40 |
| * |
| * There are two functionalities supported: |
| * |
| * 1) read raw logarithmic resistance value from sensor |
| * --> useful to pass it to the algorithm of the sensor vendor for |
| * measuring deteriorations and improvements of air quality. |
| * |
| * 2) calculate an estimated absolute voc index (0 - 500 index points) for |
| * measuring the air quality. |
| * For this purpose the value of the resistance for which the voc index |
| * will be 250 can be set up using calibbias. |
| * |
| * Compensation values of relative humidity and temperature can be set up |
| * by writing to the out values of temp and humidityrelative. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/crc8.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/i2c.h> |
| #include <linux/iio/iio.h> |
| |
| /* |
| * floating point calculation of voc is done as integer |
| * where numbers are multiplied by 1 << SGP40_CALC_POWER |
| */ |
| #define SGP40_CALC_POWER 14 |
| |
| #define SGP40_CRC8_POLYNOMIAL 0x31 |
| #define SGP40_CRC8_INIT 0xff |
| |
| DECLARE_CRC8_TABLE(sgp40_crc8_table); |
| |
| struct sgp40_data { |
| struct device *dev; |
| struct i2c_client *client; |
| int rht; |
| int temp; |
| int res_calibbias; |
| /* Prevent concurrent access to rht, tmp, calibbias */ |
| struct mutex lock; |
| }; |
| |
| struct sgp40_tg_measure { |
| u8 command[2]; |
| __be16 rht_ticks; |
| u8 rht_crc; |
| __be16 temp_ticks; |
| u8 temp_crc; |
| } __packed; |
| |
| struct sgp40_tg_result { |
| __be16 res_ticks; |
| u8 res_crc; |
| } __packed; |
| |
| static const struct iio_chan_spec sgp40_channels[] = { |
| { |
| .type = IIO_CONCENTRATION, |
| .channel2 = IIO_MOD_VOC, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), |
| }, |
| { |
| .type = IIO_RESISTANCE, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | |
| BIT(IIO_CHAN_INFO_CALIBBIAS), |
| }, |
| { |
| .type = IIO_TEMP, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), |
| .output = 1, |
| }, |
| { |
| .type = IIO_HUMIDITYRELATIVE, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), |
| .output = 1, |
| }, |
| }; |
| |
| /* |
| * taylor approximation of e^x: |
| * y = 1 + x + x^2 / 2 + x^3 / 6 + x^4 / 24 + ... + x^n / n! |
| * |
| * Because we are calculating x real value multiplied by 2^power we get |
| * an additional 2^power^n to divide for every element. For a reasonable |
| * precision this would overflow after a few iterations. Therefore we |
| * divide the x^n part whenever its about to overflow (xmax). |
| */ |
| |
| static u32 sgp40_exp(int exp, u32 power, u32 rounds) |
| { |
| u32 x, y, xp; |
| u32 factorial, divider, xmax; |
| int sign = 1; |
| int i; |
| |
| if (exp == 0) |
| return 1 << power; |
| else if (exp < 0) { |
| sign = -1; |
| exp *= -1; |
| } |
| |
| xmax = 0x7FFFFFFF / exp; |
| x = exp; |
| xp = 1; |
| factorial = 1; |
| y = 1 << power; |
| divider = 0; |
| |
| for (i = 1; i <= rounds; i++) { |
| xp *= x; |
| factorial *= i; |
| y += (xp >> divider) / factorial; |
| divider += power; |
| /* divide when next multiplication would overflow */ |
| if (xp >= xmax) { |
| xp >>= power; |
| divider -= power; |
| } |
| } |
| |
| if (sign == -1) |
| return (1 << (power * 2)) / y; |
| else |
| return y; |
| } |
| |
| static int sgp40_calc_voc(struct sgp40_data *data, u16 resistance_raw, int *voc) |
| { |
| int x; |
| u32 exp = 0; |
| |
| /* we calculate as a multiple of 16384 (2^14) */ |
| mutex_lock(&data->lock); |
| x = ((int)resistance_raw - data->res_calibbias) * 106; |
| mutex_unlock(&data->lock); |
| |
| /* voc = 500 / (1 + e^x) */ |
| exp = sgp40_exp(x, SGP40_CALC_POWER, 18); |
| *voc = 500 * ((1 << (SGP40_CALC_POWER * 2)) / ((1<<SGP40_CALC_POWER) + exp)); |
| |
| dev_dbg(data->dev, "raw: %d res_calibbias: %d x: %d exp: %d voc: %d\n", |
| resistance_raw, data->res_calibbias, x, exp, *voc); |
| |
| return 0; |
| } |
| |
| static int sgp40_measure_resistance_raw(struct sgp40_data *data, u16 *resistance_raw) |
| { |
| int ret; |
| struct i2c_client *client = data->client; |
| u32 ticks; |
| u16 ticks16; |
| u8 crc; |
| struct sgp40_tg_measure tg = {.command = {0x26, 0x0F}}; |
| struct sgp40_tg_result tgres; |
| |
| mutex_lock(&data->lock); |
| |
| ticks = (data->rht / 10) * 65535 / 10000; |
| ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between 0 .. 100 %rH */ |
| tg.rht_ticks = cpu_to_be16(ticks16); |
| tg.rht_crc = crc8(sgp40_crc8_table, (u8 *)&tg.rht_ticks, 2, SGP40_CRC8_INIT); |
| |
| ticks = ((data->temp + 45000) / 10 ) * 65535 / 17500; |
| ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between -45 .. +130 °C */ |
| tg.temp_ticks = cpu_to_be16(ticks16); |
| tg.temp_crc = crc8(sgp40_crc8_table, (u8 *)&tg.temp_ticks, 2, SGP40_CRC8_INIT); |
| |
| mutex_unlock(&data->lock); |
| |
| ret = i2c_master_send(client, (const char *)&tg, sizeof(tg)); |
| if (ret != sizeof(tg)) { |
| dev_warn(data->dev, "i2c_master_send ret: %d sizeof: %zu\n", ret, sizeof(tg)); |
| return -EIO; |
| } |
| msleep(30); |
| |
| ret = i2c_master_recv(client, (u8 *)&tgres, sizeof(tgres)); |
| if (ret < 0) |
| return ret; |
| if (ret != sizeof(tgres)) { |
| dev_warn(data->dev, "i2c_master_recv ret: %d sizeof: %zu\n", ret, sizeof(tgres)); |
| return -EIO; |
| } |
| |
| crc = crc8(sgp40_crc8_table, (u8 *)&tgres.res_ticks, 2, SGP40_CRC8_INIT); |
| if (crc != tgres.res_crc) { |
| dev_err(data->dev, "CRC error while measure-raw\n"); |
| return -EIO; |
| } |
| |
| *resistance_raw = be16_to_cpu(tgres.res_ticks); |
| |
| return 0; |
| } |
| |
| static int sgp40_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int *val, |
| int *val2, long mask) |
| { |
| struct sgp40_data *data = iio_priv(indio_dev); |
| int ret, voc; |
| u16 resistance_raw; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| switch (chan->type) { |
| case IIO_RESISTANCE: |
| ret = sgp40_measure_resistance_raw(data, &resistance_raw); |
| if (ret) |
| return ret; |
| |
| *val = resistance_raw; |
| return IIO_VAL_INT; |
| case IIO_TEMP: |
| mutex_lock(&data->lock); |
| *val = data->temp; |
| mutex_unlock(&data->lock); |
| return IIO_VAL_INT; |
| case IIO_HUMIDITYRELATIVE: |
| mutex_lock(&data->lock); |
| *val = data->rht; |
| mutex_unlock(&data->lock); |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| case IIO_CHAN_INFO_PROCESSED: |
| ret = sgp40_measure_resistance_raw(data, &resistance_raw); |
| if (ret) |
| return ret; |
| |
| ret = sgp40_calc_voc(data, resistance_raw, &voc); |
| if (ret) |
| return ret; |
| |
| *val = voc / (1 << SGP40_CALC_POWER); |
| /* |
| * calculation should fit into integer, where: |
| * voc <= (500 * 2^SGP40_CALC_POWER) = 8192000 |
| * (with SGP40_CALC_POWER = 14) |
| */ |
| *val2 = ((voc % (1 << SGP40_CALC_POWER)) * 244) / (1 << (SGP40_CALC_POWER - 12)); |
| dev_dbg(data->dev, "voc: %d val: %d.%06d\n", voc, *val, *val2); |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_CHAN_INFO_CALIBBIAS: |
| mutex_lock(&data->lock); |
| *val = data->res_calibbias; |
| mutex_unlock(&data->lock); |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int sgp40_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int val, |
| int val2, long mask) |
| { |
| struct sgp40_data *data = iio_priv(indio_dev); |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| switch (chan->type) { |
| case IIO_TEMP: |
| if ((val < -45000) || (val > 130000)) |
| return -EINVAL; |
| |
| mutex_lock(&data->lock); |
| data->temp = val; |
| mutex_unlock(&data->lock); |
| return 0; |
| case IIO_HUMIDITYRELATIVE: |
| if ((val < 0) || (val > 100000)) |
| return -EINVAL; |
| |
| mutex_lock(&data->lock); |
| data->rht = val; |
| mutex_unlock(&data->lock); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| case IIO_CHAN_INFO_CALIBBIAS: |
| if ((val < 20000) || (val > 52768)) |
| return -EINVAL; |
| |
| mutex_lock(&data->lock); |
| data->res_calibbias = val; |
| mutex_unlock(&data->lock); |
| return 0; |
| } |
| return -EINVAL; |
| } |
| |
| static const struct iio_info sgp40_info = { |
| .read_raw = sgp40_read_raw, |
| .write_raw = sgp40_write_raw, |
| }; |
| |
| static int sgp40_probe(struct i2c_client *client) |
| { |
| const struct i2c_device_id *id = i2c_client_get_device_id(client); |
| struct device *dev = &client->dev; |
| struct iio_dev *indio_dev; |
| struct sgp40_data *data; |
| int ret; |
| |
| indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| data = iio_priv(indio_dev); |
| data->client = client; |
| data->dev = dev; |
| |
| crc8_populate_msb(sgp40_crc8_table, SGP40_CRC8_POLYNOMIAL); |
| |
| mutex_init(&data->lock); |
| |
| /* set default values */ |
| data->rht = 50000; /* 50 % */ |
| data->temp = 25000; /* 25 °C */ |
| data->res_calibbias = 30000; /* resistance raw value for voc index of 250 */ |
| |
| indio_dev->info = &sgp40_info; |
| indio_dev->name = id->name; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| indio_dev->channels = sgp40_channels; |
| indio_dev->num_channels = ARRAY_SIZE(sgp40_channels); |
| |
| ret = devm_iio_device_register(dev, indio_dev); |
| if (ret) |
| dev_err(dev, "failed to register iio device\n"); |
| |
| return ret; |
| } |
| |
| static const struct i2c_device_id sgp40_id[] = { |
| { "sgp40" }, |
| { } |
| }; |
| |
| MODULE_DEVICE_TABLE(i2c, sgp40_id); |
| |
| static const struct of_device_id sgp40_dt_ids[] = { |
| { .compatible = "sensirion,sgp40" }, |
| { } |
| }; |
| |
| MODULE_DEVICE_TABLE(of, sgp40_dt_ids); |
| |
| static struct i2c_driver sgp40_driver = { |
| .driver = { |
| .name = "sgp40", |
| .of_match_table = sgp40_dt_ids, |
| }, |
| .probe_new = sgp40_probe, |
| .id_table = sgp40_id, |
| }; |
| module_i2c_driver(sgp40_driver); |
| |
| MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>"); |
| MODULE_DESCRIPTION("Sensirion SGP40 gas sensor"); |
| MODULE_LICENSE("GPL v2"); |