| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * udc.c - Core UDC Framework |
| * |
| * Copyright (C) 2010 Texas Instruments |
| * Author: Felipe Balbi <balbi@ti.com> |
| */ |
| |
| #define pr_fmt(fmt) "UDC core: " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/list.h> |
| #include <linux/idr.h> |
| #include <linux/err.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/workqueue.h> |
| |
| #include <linux/usb/ch9.h> |
| #include <linux/usb/gadget.h> |
| #include <linux/usb.h> |
| |
| #include "trace.h" |
| |
| static DEFINE_IDA(gadget_id_numbers); |
| |
| static const struct bus_type gadget_bus_type; |
| |
| /** |
| * struct usb_udc - describes one usb device controller |
| * @driver: the gadget driver pointer. For use by the class code |
| * @dev: the child device to the actual controller |
| * @gadget: the gadget. For use by the class code |
| * @list: for use by the udc class driver |
| * @vbus: for udcs who care about vbus status, this value is real vbus status; |
| * for udcs who do not care about vbus status, this value is always true |
| * @started: the UDC's started state. True if the UDC had started. |
| * @allow_connect: Indicates whether UDC is allowed to be pulled up. |
| * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or |
| * unbound. |
| * @connect_lock: protects udc->started, gadget->connect, |
| * gadget->allow_connect and gadget->deactivate. The routines |
| * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(), |
| * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and |
| * usb_gadget_udc_stop_locked() are called with this lock held. |
| * |
| * This represents the internal data structure which is used by the UDC-class |
| * to hold information about udc driver and gadget together. |
| */ |
| struct usb_udc { |
| struct usb_gadget_driver *driver; |
| struct usb_gadget *gadget; |
| struct device dev; |
| struct list_head list; |
| bool vbus; |
| bool started; |
| bool allow_connect; |
| struct work_struct vbus_work; |
| struct mutex connect_lock; |
| }; |
| |
| static struct class *udc_class; |
| static LIST_HEAD(udc_list); |
| |
| /* Protects udc_list, udc->driver, driver->is_bound, and related calls */ |
| static DEFINE_MUTEX(udc_lock); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /** |
| * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint |
| * @ep:the endpoint being configured |
| * @maxpacket_limit:value of maximum packet size limit |
| * |
| * This function should be used only in UDC drivers to initialize endpoint |
| * (usually in probe function). |
| */ |
| void usb_ep_set_maxpacket_limit(struct usb_ep *ep, |
| unsigned maxpacket_limit) |
| { |
| ep->maxpacket_limit = maxpacket_limit; |
| ep->maxpacket = maxpacket_limit; |
| |
| trace_usb_ep_set_maxpacket_limit(ep, 0); |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); |
| |
| /** |
| * usb_ep_enable - configure endpoint, making it usable |
| * @ep:the endpoint being configured. may not be the endpoint named "ep0". |
| * drivers discover endpoints through the ep_list of a usb_gadget. |
| * |
| * When configurations are set, or when interface settings change, the driver |
| * will enable or disable the relevant endpoints. while it is enabled, an |
| * endpoint may be used for i/o until the driver receives a disconnect() from |
| * the host or until the endpoint is disabled. |
| * |
| * the ep0 implementation (which calls this routine) must ensure that the |
| * hardware capabilities of each endpoint match the descriptor provided |
| * for it. for example, an endpoint named "ep2in-bulk" would be usable |
| * for interrupt transfers as well as bulk, but it likely couldn't be used |
| * for iso transfers or for endpoint 14. some endpoints are fully |
| * configurable, with more generic names like "ep-a". (remember that for |
| * USB, "in" means "towards the USB host".) |
| * |
| * This routine may be called in an atomic (interrupt) context. |
| * |
| * returns zero, or a negative error code. |
| */ |
| int usb_ep_enable(struct usb_ep *ep) |
| { |
| int ret = 0; |
| |
| if (ep->enabled) |
| goto out; |
| |
| /* UDC drivers can't handle endpoints with maxpacket size 0 */ |
| if (usb_endpoint_maxp(ep->desc) == 0) { |
| /* |
| * We should log an error message here, but we can't call |
| * dev_err() because there's no way to find the gadget |
| * given only ep. |
| */ |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = ep->ops->enable(ep, ep->desc); |
| if (ret) |
| goto out; |
| |
| ep->enabled = true; |
| |
| out: |
| trace_usb_ep_enable(ep, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_enable); |
| |
| /** |
| * usb_ep_disable - endpoint is no longer usable |
| * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". |
| * |
| * no other task may be using this endpoint when this is called. |
| * any pending and uncompleted requests will complete with status |
| * indicating disconnect (-ESHUTDOWN) before this call returns. |
| * gadget drivers must call usb_ep_enable() again before queueing |
| * requests to the endpoint. |
| * |
| * This routine may be called in an atomic (interrupt) context. |
| * |
| * returns zero, or a negative error code. |
| */ |
| int usb_ep_disable(struct usb_ep *ep) |
| { |
| int ret = 0; |
| |
| if (!ep->enabled) |
| goto out; |
| |
| ret = ep->ops->disable(ep); |
| if (ret) |
| goto out; |
| |
| ep->enabled = false; |
| |
| out: |
| trace_usb_ep_disable(ep, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_disable); |
| |
| /** |
| * usb_ep_alloc_request - allocate a request object to use with this endpoint |
| * @ep:the endpoint to be used with with the request |
| * @gfp_flags:GFP_* flags to use |
| * |
| * Request objects must be allocated with this call, since they normally |
| * need controller-specific setup and may even need endpoint-specific |
| * resources such as allocation of DMA descriptors. |
| * Requests may be submitted with usb_ep_queue(), and receive a single |
| * completion callback. Free requests with usb_ep_free_request(), when |
| * they are no longer needed. |
| * |
| * Returns the request, or null if one could not be allocated. |
| */ |
| struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, |
| gfp_t gfp_flags) |
| { |
| struct usb_request *req = NULL; |
| |
| req = ep->ops->alloc_request(ep, gfp_flags); |
| |
| trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); |
| |
| return req; |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_alloc_request); |
| |
| /** |
| * usb_ep_free_request - frees a request object |
| * @ep:the endpoint associated with the request |
| * @req:the request being freed |
| * |
| * Reverses the effect of usb_ep_alloc_request(). |
| * Caller guarantees the request is not queued, and that it will |
| * no longer be requeued (or otherwise used). |
| */ |
| void usb_ep_free_request(struct usb_ep *ep, |
| struct usb_request *req) |
| { |
| trace_usb_ep_free_request(ep, req, 0); |
| ep->ops->free_request(ep, req); |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_free_request); |
| |
| /** |
| * usb_ep_queue - queues (submits) an I/O request to an endpoint. |
| * @ep:the endpoint associated with the request |
| * @req:the request being submitted |
| * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't |
| * pre-allocate all necessary memory with the request. |
| * |
| * This tells the device controller to perform the specified request through |
| * that endpoint (reading or writing a buffer). When the request completes, |
| * including being canceled by usb_ep_dequeue(), the request's completion |
| * routine is called to return the request to the driver. Any endpoint |
| * (except control endpoints like ep0) may have more than one transfer |
| * request queued; they complete in FIFO order. Once a gadget driver |
| * submits a request, that request may not be examined or modified until it |
| * is given back to that driver through the completion callback. |
| * |
| * Each request is turned into one or more packets. The controller driver |
| * never merges adjacent requests into the same packet. OUT transfers |
| * will sometimes use data that's already buffered in the hardware. |
| * Drivers can rely on the fact that the first byte of the request's buffer |
| * always corresponds to the first byte of some USB packet, for both |
| * IN and OUT transfers. |
| * |
| * Bulk endpoints can queue any amount of data; the transfer is packetized |
| * automatically. The last packet will be short if the request doesn't fill it |
| * out completely. Zero length packets (ZLPs) should be avoided in portable |
| * protocols since not all usb hardware can successfully handle zero length |
| * packets. (ZLPs may be explicitly written, and may be implicitly written if |
| * the request 'zero' flag is set.) Bulk endpoints may also be used |
| * for interrupt transfers; but the reverse is not true, and some endpoints |
| * won't support every interrupt transfer. (Such as 768 byte packets.) |
| * |
| * Interrupt-only endpoints are less functional than bulk endpoints, for |
| * example by not supporting queueing or not handling buffers that are |
| * larger than the endpoint's maxpacket size. They may also treat data |
| * toggle differently. |
| * |
| * Control endpoints ... after getting a setup() callback, the driver queues |
| * one response (even if it would be zero length). That enables the |
| * status ack, after transferring data as specified in the response. Setup |
| * functions may return negative error codes to generate protocol stalls. |
| * (Note that some USB device controllers disallow protocol stall responses |
| * in some cases.) When control responses are deferred (the response is |
| * written after the setup callback returns), then usb_ep_set_halt() may be |
| * used on ep0 to trigger protocol stalls. Depending on the controller, |
| * it may not be possible to trigger a status-stage protocol stall when the |
| * data stage is over, that is, from within the response's completion |
| * routine. |
| * |
| * For periodic endpoints, like interrupt or isochronous ones, the usb host |
| * arranges to poll once per interval, and the gadget driver usually will |
| * have queued some data to transfer at that time. |
| * |
| * Note that @req's ->complete() callback must never be called from |
| * within usb_ep_queue() as that can create deadlock situations. |
| * |
| * This routine may be called in interrupt context. |
| * |
| * Returns zero, or a negative error code. Endpoints that are not enabled |
| * report errors; errors will also be |
| * reported when the usb peripheral is disconnected. |
| * |
| * If and only if @req is successfully queued (the return value is zero), |
| * @req->complete() will be called exactly once, when the Gadget core and |
| * UDC are finished with the request. When the completion function is called, |
| * control of the request is returned to the device driver which submitted it. |
| * The completion handler may then immediately free or reuse @req. |
| */ |
| int usb_ep_queue(struct usb_ep *ep, |
| struct usb_request *req, gfp_t gfp_flags) |
| { |
| int ret = 0; |
| |
| if (WARN_ON_ONCE(!ep->enabled && ep->address)) { |
| ret = -ESHUTDOWN; |
| goto out; |
| } |
| |
| ret = ep->ops->queue(ep, req, gfp_flags); |
| |
| out: |
| trace_usb_ep_queue(ep, req, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_queue); |
| |
| /** |
| * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint |
| * @ep:the endpoint associated with the request |
| * @req:the request being canceled |
| * |
| * If the request is still active on the endpoint, it is dequeued and |
| * eventually its completion routine is called (with status -ECONNRESET); |
| * else a negative error code is returned. This routine is asynchronous, |
| * that is, it may return before the completion routine runs. |
| * |
| * Note that some hardware can't clear out write fifos (to unlink the request |
| * at the head of the queue) except as part of disconnecting from usb. Such |
| * restrictions prevent drivers from supporting configuration changes, |
| * even to configuration zero (a "chapter 9" requirement). |
| * |
| * This routine may be called in interrupt context. |
| */ |
| int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) |
| { |
| int ret; |
| |
| ret = ep->ops->dequeue(ep, req); |
| trace_usb_ep_dequeue(ep, req, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_dequeue); |
| |
| /** |
| * usb_ep_set_halt - sets the endpoint halt feature. |
| * @ep: the non-isochronous endpoint being stalled |
| * |
| * Use this to stall an endpoint, perhaps as an error report. |
| * Except for control endpoints, |
| * the endpoint stays halted (will not stream any data) until the host |
| * clears this feature; drivers may need to empty the endpoint's request |
| * queue first, to make sure no inappropriate transfers happen. |
| * |
| * Note that while an endpoint CLEAR_FEATURE will be invisible to the |
| * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the |
| * current altsetting, see usb_ep_clear_halt(). When switching altsettings, |
| * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. |
| * |
| * This routine may be called in interrupt context. |
| * |
| * Returns zero, or a negative error code. On success, this call sets |
| * underlying hardware state that blocks data transfers. |
| * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any |
| * transfer requests are still queued, or if the controller hardware |
| * (usually a FIFO) still holds bytes that the host hasn't collected. |
| */ |
| int usb_ep_set_halt(struct usb_ep *ep) |
| { |
| int ret; |
| |
| ret = ep->ops->set_halt(ep, 1); |
| trace_usb_ep_set_halt(ep, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_set_halt); |
| |
| /** |
| * usb_ep_clear_halt - clears endpoint halt, and resets toggle |
| * @ep:the bulk or interrupt endpoint being reset |
| * |
| * Use this when responding to the standard usb "set interface" request, |
| * for endpoints that aren't reconfigured, after clearing any other state |
| * in the endpoint's i/o queue. |
| * |
| * This routine may be called in interrupt context. |
| * |
| * Returns zero, or a negative error code. On success, this call clears |
| * the underlying hardware state reflecting endpoint halt and data toggle. |
| * Note that some hardware can't support this request (like pxa2xx_udc), |
| * and accordingly can't correctly implement interface altsettings. |
| */ |
| int usb_ep_clear_halt(struct usb_ep *ep) |
| { |
| int ret; |
| |
| ret = ep->ops->set_halt(ep, 0); |
| trace_usb_ep_clear_halt(ep, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_clear_halt); |
| |
| /** |
| * usb_ep_set_wedge - sets the halt feature and ignores clear requests |
| * @ep: the endpoint being wedged |
| * |
| * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) |
| * requests. If the gadget driver clears the halt status, it will |
| * automatically unwedge the endpoint. |
| * |
| * This routine may be called in interrupt context. |
| * |
| * Returns zero on success, else negative errno. |
| */ |
| int usb_ep_set_wedge(struct usb_ep *ep) |
| { |
| int ret; |
| |
| if (ep->ops->set_wedge) |
| ret = ep->ops->set_wedge(ep); |
| else |
| ret = ep->ops->set_halt(ep, 1); |
| |
| trace_usb_ep_set_wedge(ep, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_set_wedge); |
| |
| /** |
| * usb_ep_fifo_status - returns number of bytes in fifo, or error |
| * @ep: the endpoint whose fifo status is being checked. |
| * |
| * FIFO endpoints may have "unclaimed data" in them in certain cases, |
| * such as after aborted transfers. Hosts may not have collected all |
| * the IN data written by the gadget driver (and reported by a request |
| * completion). The gadget driver may not have collected all the data |
| * written OUT to it by the host. Drivers that need precise handling for |
| * fault reporting or recovery may need to use this call. |
| * |
| * This routine may be called in interrupt context. |
| * |
| * This returns the number of such bytes in the fifo, or a negative |
| * errno if the endpoint doesn't use a FIFO or doesn't support such |
| * precise handling. |
| */ |
| int usb_ep_fifo_status(struct usb_ep *ep) |
| { |
| int ret; |
| |
| if (ep->ops->fifo_status) |
| ret = ep->ops->fifo_status(ep); |
| else |
| ret = -EOPNOTSUPP; |
| |
| trace_usb_ep_fifo_status(ep, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_fifo_status); |
| |
| /** |
| * usb_ep_fifo_flush - flushes contents of a fifo |
| * @ep: the endpoint whose fifo is being flushed. |
| * |
| * This call may be used to flush the "unclaimed data" that may exist in |
| * an endpoint fifo after abnormal transaction terminations. The call |
| * must never be used except when endpoint is not being used for any |
| * protocol translation. |
| * |
| * This routine may be called in interrupt context. |
| */ |
| void usb_ep_fifo_flush(struct usb_ep *ep) |
| { |
| if (ep->ops->fifo_flush) |
| ep->ops->fifo_flush(ep); |
| |
| trace_usb_ep_fifo_flush(ep, 0); |
| } |
| EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /** |
| * usb_gadget_frame_number - returns the current frame number |
| * @gadget: controller that reports the frame number |
| * |
| * Returns the usb frame number, normally eleven bits from a SOF packet, |
| * or negative errno if this device doesn't support this capability. |
| */ |
| int usb_gadget_frame_number(struct usb_gadget *gadget) |
| { |
| int ret; |
| |
| ret = gadget->ops->get_frame(gadget); |
| |
| trace_usb_gadget_frame_number(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_frame_number); |
| |
| /** |
| * usb_gadget_wakeup - tries to wake up the host connected to this gadget |
| * @gadget: controller used to wake up the host |
| * |
| * Returns zero on success, else negative error code if the hardware |
| * doesn't support such attempts, or its support has not been enabled |
| * by the usb host. Drivers must return device descriptors that report |
| * their ability to support this, or hosts won't enable it. |
| * |
| * This may also try to use SRP to wake the host and start enumeration, |
| * even if OTG isn't otherwise in use. OTG devices may also start |
| * remote wakeup even when hosts don't explicitly enable it. |
| */ |
| int usb_gadget_wakeup(struct usb_gadget *gadget) |
| { |
| int ret = 0; |
| |
| if (!gadget->ops->wakeup) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| ret = gadget->ops->wakeup(gadget); |
| |
| out: |
| trace_usb_gadget_wakeup(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_wakeup); |
| |
| /** |
| * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature. |
| * @gadget:the device being configured for remote wakeup |
| * @set:value to be configured. |
| * |
| * set to one to enable remote wakeup feature and zero to disable it. |
| * |
| * returns zero on success, else negative errno. |
| */ |
| int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set) |
| { |
| int ret = 0; |
| |
| if (!gadget->ops->set_remote_wakeup) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| ret = gadget->ops->set_remote_wakeup(gadget, set); |
| |
| out: |
| trace_usb_gadget_set_remote_wakeup(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup); |
| |
| /** |
| * usb_gadget_set_selfpowered - sets the device selfpowered feature. |
| * @gadget:the device being declared as self-powered |
| * |
| * this affects the device status reported by the hardware driver |
| * to reflect that it now has a local power supply. |
| * |
| * returns zero on success, else negative errno. |
| */ |
| int usb_gadget_set_selfpowered(struct usb_gadget *gadget) |
| { |
| int ret = 0; |
| |
| if (!gadget->ops->set_selfpowered) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| ret = gadget->ops->set_selfpowered(gadget, 1); |
| |
| out: |
| trace_usb_gadget_set_selfpowered(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); |
| |
| /** |
| * usb_gadget_clear_selfpowered - clear the device selfpowered feature. |
| * @gadget:the device being declared as bus-powered |
| * |
| * this affects the device status reported by the hardware driver. |
| * some hardware may not support bus-powered operation, in which |
| * case this feature's value can never change. |
| * |
| * returns zero on success, else negative errno. |
| */ |
| int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) |
| { |
| int ret = 0; |
| |
| if (!gadget->ops->set_selfpowered) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| ret = gadget->ops->set_selfpowered(gadget, 0); |
| |
| out: |
| trace_usb_gadget_clear_selfpowered(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); |
| |
| /** |
| * usb_gadget_vbus_connect - Notify controller that VBUS is powered |
| * @gadget:The device which now has VBUS power. |
| * Context: can sleep |
| * |
| * This call is used by a driver for an external transceiver (or GPIO) |
| * that detects a VBUS power session starting. Common responses include |
| * resuming the controller, activating the D+ (or D-) pullup to let the |
| * host detect that a USB device is attached, and starting to draw power |
| * (8mA or possibly more, especially after SET_CONFIGURATION). |
| * |
| * Returns zero on success, else negative errno. |
| */ |
| int usb_gadget_vbus_connect(struct usb_gadget *gadget) |
| { |
| int ret = 0; |
| |
| if (!gadget->ops->vbus_session) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| ret = gadget->ops->vbus_session(gadget, 1); |
| |
| out: |
| trace_usb_gadget_vbus_connect(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); |
| |
| /** |
| * usb_gadget_vbus_draw - constrain controller's VBUS power usage |
| * @gadget:The device whose VBUS usage is being described |
| * @mA:How much current to draw, in milliAmperes. This should be twice |
| * the value listed in the configuration descriptor bMaxPower field. |
| * |
| * This call is used by gadget drivers during SET_CONFIGURATION calls, |
| * reporting how much power the device may consume. For example, this |
| * could affect how quickly batteries are recharged. |
| * |
| * Returns zero on success, else negative errno. |
| */ |
| int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) |
| { |
| int ret = 0; |
| |
| if (!gadget->ops->vbus_draw) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| ret = gadget->ops->vbus_draw(gadget, mA); |
| if (!ret) |
| gadget->mA = mA; |
| |
| out: |
| trace_usb_gadget_vbus_draw(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); |
| |
| /** |
| * usb_gadget_vbus_disconnect - notify controller about VBUS session end |
| * @gadget:the device whose VBUS supply is being described |
| * Context: can sleep |
| * |
| * This call is used by a driver for an external transceiver (or GPIO) |
| * that detects a VBUS power session ending. Common responses include |
| * reversing everything done in usb_gadget_vbus_connect(). |
| * |
| * Returns zero on success, else negative errno. |
| */ |
| int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) |
| { |
| int ret = 0; |
| |
| if (!gadget->ops->vbus_session) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| ret = gadget->ops->vbus_session(gadget, 0); |
| |
| out: |
| trace_usb_gadget_vbus_disconnect(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); |
| |
| static int usb_gadget_connect_locked(struct usb_gadget *gadget) |
| __must_hold(&gadget->udc->connect_lock) |
| { |
| int ret = 0; |
| |
| if (!gadget->ops->pullup) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) { |
| /* |
| * If the gadget isn't usable (because it is deactivated, |
| * unbound, or not yet started), we only save the new state. |
| * The gadget will be connected automatically when it is |
| * activated/bound/started. |
| */ |
| gadget->connected = true; |
| goto out; |
| } |
| |
| ret = gadget->ops->pullup(gadget, 1); |
| if (!ret) |
| gadget->connected = 1; |
| |
| out: |
| trace_usb_gadget_connect(gadget, ret); |
| |
| return ret; |
| } |
| |
| /** |
| * usb_gadget_connect - software-controlled connect to USB host |
| * @gadget:the peripheral being connected |
| * |
| * Enables the D+ (or potentially D-) pullup. The host will start |
| * enumerating this gadget when the pullup is active and a VBUS session |
| * is active (the link is powered). |
| * |
| * Returns zero on success, else negative errno. |
| */ |
| int usb_gadget_connect(struct usb_gadget *gadget) |
| { |
| int ret; |
| |
| mutex_lock(&gadget->udc->connect_lock); |
| ret = usb_gadget_connect_locked(gadget); |
| mutex_unlock(&gadget->udc->connect_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_connect); |
| |
| static int usb_gadget_disconnect_locked(struct usb_gadget *gadget) |
| __must_hold(&gadget->udc->connect_lock) |
| { |
| int ret = 0; |
| |
| if (!gadget->ops->pullup) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (!gadget->connected) |
| goto out; |
| |
| if (gadget->deactivated || !gadget->udc->started) { |
| /* |
| * If gadget is deactivated we only save new state. |
| * Gadget will stay disconnected after activation. |
| */ |
| gadget->connected = false; |
| goto out; |
| } |
| |
| ret = gadget->ops->pullup(gadget, 0); |
| if (!ret) |
| gadget->connected = 0; |
| |
| mutex_lock(&udc_lock); |
| if (gadget->udc->driver) |
| gadget->udc->driver->disconnect(gadget); |
| mutex_unlock(&udc_lock); |
| |
| out: |
| trace_usb_gadget_disconnect(gadget, ret); |
| |
| return ret; |
| } |
| |
| /** |
| * usb_gadget_disconnect - software-controlled disconnect from USB host |
| * @gadget:the peripheral being disconnected |
| * |
| * Disables the D+ (or potentially D-) pullup, which the host may see |
| * as a disconnect (when a VBUS session is active). Not all systems |
| * support software pullup controls. |
| * |
| * Following a successful disconnect, invoke the ->disconnect() callback |
| * for the current gadget driver so that UDC drivers don't need to. |
| * |
| * Returns zero on success, else negative errno. |
| */ |
| int usb_gadget_disconnect(struct usb_gadget *gadget) |
| { |
| int ret; |
| |
| mutex_lock(&gadget->udc->connect_lock); |
| ret = usb_gadget_disconnect_locked(gadget); |
| mutex_unlock(&gadget->udc->connect_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_disconnect); |
| |
| /** |
| * usb_gadget_deactivate - deactivate function which is not ready to work |
| * @gadget: the peripheral being deactivated |
| * |
| * This routine may be used during the gadget driver bind() call to prevent |
| * the peripheral from ever being visible to the USB host, unless later |
| * usb_gadget_activate() is called. For example, user mode components may |
| * need to be activated before the system can talk to hosts. |
| * |
| * Returns zero on success, else negative errno. |
| */ |
| int usb_gadget_deactivate(struct usb_gadget *gadget) |
| { |
| int ret = 0; |
| |
| mutex_lock(&gadget->udc->connect_lock); |
| if (gadget->deactivated) |
| goto unlock; |
| |
| if (gadget->connected) { |
| ret = usb_gadget_disconnect_locked(gadget); |
| if (ret) |
| goto unlock; |
| |
| /* |
| * If gadget was being connected before deactivation, we want |
| * to reconnect it in usb_gadget_activate(). |
| */ |
| gadget->connected = true; |
| } |
| gadget->deactivated = true; |
| |
| unlock: |
| mutex_unlock(&gadget->udc->connect_lock); |
| trace_usb_gadget_deactivate(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_deactivate); |
| |
| /** |
| * usb_gadget_activate - activate function which is not ready to work |
| * @gadget: the peripheral being activated |
| * |
| * This routine activates gadget which was previously deactivated with |
| * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. |
| * |
| * Returns zero on success, else negative errno. |
| */ |
| int usb_gadget_activate(struct usb_gadget *gadget) |
| { |
| int ret = 0; |
| |
| mutex_lock(&gadget->udc->connect_lock); |
| if (!gadget->deactivated) |
| goto unlock; |
| |
| gadget->deactivated = false; |
| |
| /* |
| * If gadget has been connected before deactivation, or became connected |
| * while it was being deactivated, we call usb_gadget_connect(). |
| */ |
| if (gadget->connected) |
| ret = usb_gadget_connect_locked(gadget); |
| mutex_unlock(&gadget->udc->connect_lock); |
| |
| unlock: |
| mutex_unlock(&gadget->udc->connect_lock); |
| trace_usb_gadget_activate(gadget, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_activate); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| #ifdef CONFIG_HAS_DMA |
| |
| int usb_gadget_map_request_by_dev(struct device *dev, |
| struct usb_request *req, int is_in) |
| { |
| if (req->length == 0) |
| return 0; |
| |
| if (req->num_sgs) { |
| int mapped; |
| |
| mapped = dma_map_sg(dev, req->sg, req->num_sgs, |
| is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| if (mapped == 0) { |
| dev_err(dev, "failed to map SGs\n"); |
| return -EFAULT; |
| } |
| |
| req->num_mapped_sgs = mapped; |
| } else { |
| if (is_vmalloc_addr(req->buf)) { |
| dev_err(dev, "buffer is not dma capable\n"); |
| return -EFAULT; |
| } else if (object_is_on_stack(req->buf)) { |
| dev_err(dev, "buffer is on stack\n"); |
| return -EFAULT; |
| } |
| |
| req->dma = dma_map_single(dev, req->buf, req->length, |
| is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| |
| if (dma_mapping_error(dev, req->dma)) { |
| dev_err(dev, "failed to map buffer\n"); |
| return -EFAULT; |
| } |
| |
| req->dma_mapped = 1; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); |
| |
| int usb_gadget_map_request(struct usb_gadget *gadget, |
| struct usb_request *req, int is_in) |
| { |
| return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_map_request); |
| |
| void usb_gadget_unmap_request_by_dev(struct device *dev, |
| struct usb_request *req, int is_in) |
| { |
| if (req->length == 0) |
| return; |
| |
| if (req->num_mapped_sgs) { |
| dma_unmap_sg(dev, req->sg, req->num_sgs, |
| is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| |
| req->num_mapped_sgs = 0; |
| } else if (req->dma_mapped) { |
| dma_unmap_single(dev, req->dma, req->length, |
| is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| req->dma_mapped = 0; |
| } |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); |
| |
| void usb_gadget_unmap_request(struct usb_gadget *gadget, |
| struct usb_request *req, int is_in) |
| { |
| usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); |
| |
| #endif /* CONFIG_HAS_DMA */ |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /** |
| * usb_gadget_giveback_request - give the request back to the gadget layer |
| * @ep: the endpoint to be used with with the request |
| * @req: the request being given back |
| * |
| * This is called by device controller drivers in order to return the |
| * completed request back to the gadget layer. |
| */ |
| void usb_gadget_giveback_request(struct usb_ep *ep, |
| struct usb_request *req) |
| { |
| if (likely(req->status == 0)) |
| usb_led_activity(USB_LED_EVENT_GADGET); |
| |
| trace_usb_gadget_giveback_request(ep, req, 0); |
| |
| req->complete(ep, req); |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /** |
| * gadget_find_ep_by_name - returns ep whose name is the same as sting passed |
| * in second parameter or NULL if searched endpoint not found |
| * @g: controller to check for quirk |
| * @name: name of searched endpoint |
| */ |
| struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) |
| { |
| struct usb_ep *ep; |
| |
| gadget_for_each_ep(ep, g) { |
| if (!strcmp(ep->name, name)) |
| return ep; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| int usb_gadget_ep_match_desc(struct usb_gadget *gadget, |
| struct usb_ep *ep, struct usb_endpoint_descriptor *desc, |
| struct usb_ss_ep_comp_descriptor *ep_comp) |
| { |
| u8 type; |
| u16 max; |
| int num_req_streams = 0; |
| |
| /* endpoint already claimed? */ |
| if (ep->claimed) |
| return 0; |
| |
| type = usb_endpoint_type(desc); |
| max = usb_endpoint_maxp(desc); |
| |
| if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) |
| return 0; |
| if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) |
| return 0; |
| |
| if (max > ep->maxpacket_limit) |
| return 0; |
| |
| /* "high bandwidth" works only at high speed */ |
| if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) |
| return 0; |
| |
| switch (type) { |
| case USB_ENDPOINT_XFER_CONTROL: |
| /* only support ep0 for portable CONTROL traffic */ |
| return 0; |
| case USB_ENDPOINT_XFER_ISOC: |
| if (!ep->caps.type_iso) |
| return 0; |
| /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ |
| if (!gadget_is_dualspeed(gadget) && max > 1023) |
| return 0; |
| break; |
| case USB_ENDPOINT_XFER_BULK: |
| if (!ep->caps.type_bulk) |
| return 0; |
| if (ep_comp && gadget_is_superspeed(gadget)) { |
| /* Get the number of required streams from the |
| * EP companion descriptor and see if the EP |
| * matches it |
| */ |
| num_req_streams = ep_comp->bmAttributes & 0x1f; |
| if (num_req_streams > ep->max_streams) |
| return 0; |
| } |
| break; |
| case USB_ENDPOINT_XFER_INT: |
| /* Bulk endpoints handle interrupt transfers, |
| * except the toggle-quirky iso-synch kind |
| */ |
| if (!ep->caps.type_int && !ep->caps.type_bulk) |
| return 0; |
| /* INT: limit 64 bytes full speed, 1024 high/super speed */ |
| if (!gadget_is_dualspeed(gadget) && max > 64) |
| return 0; |
| break; |
| } |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); |
| |
| /** |
| * usb_gadget_check_config - checks if the UDC can support the binded |
| * configuration |
| * @gadget: controller to check the USB configuration |
| * |
| * Ensure that a UDC is able to support the requested resources by a |
| * configuration, and that there are no resource limitations, such as |
| * internal memory allocated to all requested endpoints. |
| * |
| * Returns zero on success, else a negative errno. |
| */ |
| int usb_gadget_check_config(struct usb_gadget *gadget) |
| { |
| if (gadget->ops->check_config) |
| return gadget->ops->check_config(gadget); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_check_config); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| static void usb_gadget_state_work(struct work_struct *work) |
| { |
| struct usb_gadget *gadget = work_to_gadget(work); |
| struct usb_udc *udc = gadget->udc; |
| |
| if (udc) |
| sysfs_notify(&udc->dev.kobj, NULL, "state"); |
| } |
| |
| void usb_gadget_set_state(struct usb_gadget *gadget, |
| enum usb_device_state state) |
| { |
| gadget->state = state; |
| schedule_work(&gadget->work); |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_set_state); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* Acquire connect_lock before calling this function. */ |
| static void usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock) |
| { |
| if (udc->vbus) |
| usb_gadget_connect_locked(udc->gadget); |
| else |
| usb_gadget_disconnect_locked(udc->gadget); |
| } |
| |
| static void vbus_event_work(struct work_struct *work) |
| { |
| struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work); |
| |
| mutex_lock(&udc->connect_lock); |
| usb_udc_connect_control_locked(udc); |
| mutex_unlock(&udc->connect_lock); |
| } |
| |
| /** |
| * usb_udc_vbus_handler - updates the udc core vbus status, and try to |
| * connect or disconnect gadget |
| * @gadget: The gadget which vbus change occurs |
| * @status: The vbus status |
| * |
| * The udc driver calls it when it wants to connect or disconnect gadget |
| * according to vbus status. |
| * |
| * This function can be invoked from interrupt context by irq handlers of |
| * the gadget drivers, however, usb_udc_connect_control() has to run in |
| * non-atomic context due to the following: |
| * a. Some of the gadget driver implementations expect the ->pullup |
| * callback to be invoked in non-atomic context. |
| * b. usb_gadget_disconnect() acquires udc_lock which is a mutex. |
| * Hence offload invocation of usb_udc_connect_control() to workqueue. |
| */ |
| void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) |
| { |
| struct usb_udc *udc = gadget->udc; |
| |
| if (udc) { |
| udc->vbus = status; |
| schedule_work(&udc->vbus_work); |
| } |
| } |
| EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); |
| |
| /** |
| * usb_gadget_udc_reset - notifies the udc core that bus reset occurs |
| * @gadget: The gadget which bus reset occurs |
| * @driver: The gadget driver we want to notify |
| * |
| * If the udc driver has bus reset handler, it needs to call this when the bus |
| * reset occurs, it notifies the gadget driver that the bus reset occurs as |
| * well as updates gadget state. |
| */ |
| void usb_gadget_udc_reset(struct usb_gadget *gadget, |
| struct usb_gadget_driver *driver) |
| { |
| driver->reset(gadget); |
| usb_gadget_set_state(gadget, USB_STATE_DEFAULT); |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); |
| |
| /** |
| * usb_gadget_udc_start_locked - tells usb device controller to start up |
| * @udc: The UDC to be started |
| * |
| * This call is issued by the UDC Class driver when it's about |
| * to register a gadget driver to the device controller, before |
| * calling gadget driver's bind() method. |
| * |
| * It allows the controller to be powered off until strictly |
| * necessary to have it powered on. |
| * |
| * Returns zero on success, else negative errno. |
| * |
| * Caller should acquire connect_lock before invoking this function. |
| */ |
| static inline int usb_gadget_udc_start_locked(struct usb_udc *udc) |
| __must_hold(&udc->connect_lock) |
| { |
| int ret; |
| |
| if (udc->started) { |
| dev_err(&udc->dev, "UDC had already started\n"); |
| return -EBUSY; |
| } |
| |
| ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver); |
| if (!ret) |
| udc->started = true; |
| |
| return ret; |
| } |
| |
| /** |
| * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore |
| * @udc: The UDC to be stopped |
| * |
| * This call is issued by the UDC Class driver after calling |
| * gadget driver's unbind() method. |
| * |
| * The details are implementation specific, but it can go as |
| * far as powering off UDC completely and disable its data |
| * line pullups. |
| * |
| * Caller should acquire connect lock before invoking this function. |
| */ |
| static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc) |
| __must_hold(&udc->connect_lock) |
| { |
| if (!udc->started) { |
| dev_err(&udc->dev, "UDC had already stopped\n"); |
| return; |
| } |
| |
| udc->gadget->ops->udc_stop(udc->gadget); |
| udc->started = false; |
| } |
| |
| /** |
| * usb_gadget_udc_set_speed - tells usb device controller speed supported by |
| * current driver |
| * @udc: The device we want to set maximum speed |
| * @speed: The maximum speed to allowed to run |
| * |
| * This call is issued by the UDC Class driver before calling |
| * usb_gadget_udc_start() in order to make sure that we don't try to |
| * connect on speeds the gadget driver doesn't support. |
| */ |
| static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, |
| enum usb_device_speed speed) |
| { |
| struct usb_gadget *gadget = udc->gadget; |
| enum usb_device_speed s; |
| |
| if (speed == USB_SPEED_UNKNOWN) |
| s = gadget->max_speed; |
| else |
| s = min(speed, gadget->max_speed); |
| |
| if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate) |
| gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate); |
| else if (gadget->ops->udc_set_speed) |
| gadget->ops->udc_set_speed(gadget, s); |
| } |
| |
| /** |
| * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks |
| * @udc: The UDC which should enable async callbacks |
| * |
| * This routine is used when binding gadget drivers. It undoes the effect |
| * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs |
| * (if necessary) and resume issuing callbacks. |
| * |
| * This routine will always be called in process context. |
| */ |
| static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc) |
| { |
| struct usb_gadget *gadget = udc->gadget; |
| |
| if (gadget->ops->udc_async_callbacks) |
| gadget->ops->udc_async_callbacks(gadget, true); |
| } |
| |
| /** |
| * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks |
| * @udc: The UDC which should disable async callbacks |
| * |
| * This routine is used when unbinding gadget drivers. It prevents a race: |
| * The UDC driver doesn't know when the gadget driver's ->unbind callback |
| * runs, so unless it is told to disable asynchronous callbacks, it might |
| * issue a callback (such as ->disconnect) after the unbind has completed. |
| * |
| * After this function runs, the UDC driver must suppress all ->suspend, |
| * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver |
| * until async callbacks are again enabled. A simple-minded but effective |
| * way to accomplish this is to tell the UDC hardware not to generate any |
| * more IRQs. |
| * |
| * Request completion callbacks must still be issued. However, it's okay |
| * to defer them until the request is cancelled, since the pull-up will be |
| * turned off during the time period when async callbacks are disabled. |
| * |
| * This routine will always be called in process context. |
| */ |
| static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc) |
| { |
| struct usb_gadget *gadget = udc->gadget; |
| |
| if (gadget->ops->udc_async_callbacks) |
| gadget->ops->udc_async_callbacks(gadget, false); |
| } |
| |
| /** |
| * usb_udc_release - release the usb_udc struct |
| * @dev: the dev member within usb_udc |
| * |
| * This is called by driver's core in order to free memory once the last |
| * reference is released. |
| */ |
| static void usb_udc_release(struct device *dev) |
| { |
| struct usb_udc *udc; |
| |
| udc = container_of(dev, struct usb_udc, dev); |
| dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); |
| kfree(udc); |
| } |
| |
| static const struct attribute_group *usb_udc_attr_groups[]; |
| |
| static void usb_udc_nop_release(struct device *dev) |
| { |
| dev_vdbg(dev, "%s\n", __func__); |
| } |
| |
| /** |
| * usb_initialize_gadget - initialize a gadget and its embedded struct device |
| * @parent: the parent device to this udc. Usually the controller driver's |
| * device. |
| * @gadget: the gadget to be initialized. |
| * @release: a gadget release function. |
| */ |
| void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, |
| void (*release)(struct device *dev)) |
| { |
| INIT_WORK(&gadget->work, usb_gadget_state_work); |
| gadget->dev.parent = parent; |
| |
| if (release) |
| gadget->dev.release = release; |
| else |
| gadget->dev.release = usb_udc_nop_release; |
| |
| device_initialize(&gadget->dev); |
| gadget->dev.bus = &gadget_bus_type; |
| } |
| EXPORT_SYMBOL_GPL(usb_initialize_gadget); |
| |
| /** |
| * usb_add_gadget - adds a new gadget to the udc class driver list |
| * @gadget: the gadget to be added to the list. |
| * |
| * Returns zero on success, negative errno otherwise. |
| * Does not do a final usb_put_gadget() if an error occurs. |
| */ |
| int usb_add_gadget(struct usb_gadget *gadget) |
| { |
| struct usb_udc *udc; |
| int ret = -ENOMEM; |
| |
| udc = kzalloc(sizeof(*udc), GFP_KERNEL); |
| if (!udc) |
| goto error; |
| |
| device_initialize(&udc->dev); |
| udc->dev.release = usb_udc_release; |
| udc->dev.class = udc_class; |
| udc->dev.groups = usb_udc_attr_groups; |
| udc->dev.parent = gadget->dev.parent; |
| ret = dev_set_name(&udc->dev, "%s", |
| kobject_name(&gadget->dev.parent->kobj)); |
| if (ret) |
| goto err_put_udc; |
| |
| udc->gadget = gadget; |
| gadget->udc = udc; |
| mutex_init(&udc->connect_lock); |
| |
| udc->started = false; |
| |
| mutex_lock(&udc_lock); |
| list_add_tail(&udc->list, &udc_list); |
| mutex_unlock(&udc_lock); |
| INIT_WORK(&udc->vbus_work, vbus_event_work); |
| |
| ret = device_add(&udc->dev); |
| if (ret) |
| goto err_unlist_udc; |
| |
| usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); |
| udc->vbus = true; |
| |
| ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL); |
| if (ret < 0) |
| goto err_del_udc; |
| gadget->id_number = ret; |
| dev_set_name(&gadget->dev, "gadget.%d", ret); |
| |
| ret = device_add(&gadget->dev); |
| if (ret) |
| goto err_free_id; |
| |
| return 0; |
| |
| err_free_id: |
| ida_free(&gadget_id_numbers, gadget->id_number); |
| |
| err_del_udc: |
| flush_work(&gadget->work); |
| device_del(&udc->dev); |
| |
| err_unlist_udc: |
| mutex_lock(&udc_lock); |
| list_del(&udc->list); |
| mutex_unlock(&udc_lock); |
| |
| err_put_udc: |
| put_device(&udc->dev); |
| |
| error: |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_add_gadget); |
| |
| /** |
| * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list |
| * @parent: the parent device to this udc. Usually the controller driver's |
| * device. |
| * @gadget: the gadget to be added to the list. |
| * @release: a gadget release function. |
| * |
| * Returns zero on success, negative errno otherwise. |
| * Calls the gadget release function in the latter case. |
| */ |
| int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, |
| void (*release)(struct device *dev)) |
| { |
| int ret; |
| |
| usb_initialize_gadget(parent, gadget, release); |
| ret = usb_add_gadget(gadget); |
| if (ret) |
| usb_put_gadget(gadget); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); |
| |
| /** |
| * usb_get_gadget_udc_name - get the name of the first UDC controller |
| * This functions returns the name of the first UDC controller in the system. |
| * Please note that this interface is usefull only for legacy drivers which |
| * assume that there is only one UDC controller in the system and they need to |
| * get its name before initialization. There is no guarantee that the UDC |
| * of the returned name will be still available, when gadget driver registers |
| * itself. |
| * |
| * Returns pointer to string with UDC controller name on success, NULL |
| * otherwise. Caller should kfree() returned string. |
| */ |
| char *usb_get_gadget_udc_name(void) |
| { |
| struct usb_udc *udc; |
| char *name = NULL; |
| |
| /* For now we take the first available UDC */ |
| mutex_lock(&udc_lock); |
| list_for_each_entry(udc, &udc_list, list) { |
| if (!udc->driver) { |
| name = kstrdup(udc->gadget->name, GFP_KERNEL); |
| break; |
| } |
| } |
| mutex_unlock(&udc_lock); |
| return name; |
| } |
| EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); |
| |
| /** |
| * usb_add_gadget_udc - adds a new gadget to the udc class driver list |
| * @parent: the parent device to this udc. Usually the controller |
| * driver's device. |
| * @gadget: the gadget to be added to the list |
| * |
| * Returns zero on success, negative errno otherwise. |
| */ |
| int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) |
| { |
| return usb_add_gadget_udc_release(parent, gadget, NULL); |
| } |
| EXPORT_SYMBOL_GPL(usb_add_gadget_udc); |
| |
| /** |
| * usb_del_gadget - deletes a gadget and unregisters its udc |
| * @gadget: the gadget to be deleted. |
| * |
| * This will unbind @gadget, if it is bound. |
| * It will not do a final usb_put_gadget(). |
| */ |
| void usb_del_gadget(struct usb_gadget *gadget) |
| { |
| struct usb_udc *udc = gadget->udc; |
| |
| if (!udc) |
| return; |
| |
| dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); |
| |
| mutex_lock(&udc_lock); |
| list_del(&udc->list); |
| mutex_unlock(&udc_lock); |
| |
| kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); |
| flush_work(&gadget->work); |
| device_del(&gadget->dev); |
| ida_free(&gadget_id_numbers, gadget->id_number); |
| cancel_work_sync(&udc->vbus_work); |
| device_unregister(&udc->dev); |
| } |
| EXPORT_SYMBOL_GPL(usb_del_gadget); |
| |
| /** |
| * usb_del_gadget_udc - unregisters a gadget |
| * @gadget: the gadget to be unregistered. |
| * |
| * Calls usb_del_gadget() and does a final usb_put_gadget(). |
| */ |
| void usb_del_gadget_udc(struct usb_gadget *gadget) |
| { |
| usb_del_gadget(gadget); |
| usb_put_gadget(gadget); |
| } |
| EXPORT_SYMBOL_GPL(usb_del_gadget_udc); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| static int gadget_match_driver(struct device *dev, struct device_driver *drv) |
| { |
| struct usb_gadget *gadget = dev_to_usb_gadget(dev); |
| struct usb_udc *udc = gadget->udc; |
| struct usb_gadget_driver *driver = container_of(drv, |
| struct usb_gadget_driver, driver); |
| |
| /* If the driver specifies a udc_name, it must match the UDC's name */ |
| if (driver->udc_name && |
| strcmp(driver->udc_name, dev_name(&udc->dev)) != 0) |
| return 0; |
| |
| /* If the driver is already bound to a gadget, it doesn't match */ |
| if (driver->is_bound) |
| return 0; |
| |
| /* Otherwise any gadget driver matches any UDC */ |
| return 1; |
| } |
| |
| static int gadget_bind_driver(struct device *dev) |
| { |
| struct usb_gadget *gadget = dev_to_usb_gadget(dev); |
| struct usb_udc *udc = gadget->udc; |
| struct usb_gadget_driver *driver = container_of(dev->driver, |
| struct usb_gadget_driver, driver); |
| int ret = 0; |
| |
| mutex_lock(&udc_lock); |
| if (driver->is_bound) { |
| mutex_unlock(&udc_lock); |
| return -ENXIO; /* Driver binds to only one gadget */ |
| } |
| driver->is_bound = true; |
| udc->driver = driver; |
| mutex_unlock(&udc_lock); |
| |
| dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function); |
| |
| usb_gadget_udc_set_speed(udc, driver->max_speed); |
| |
| ret = driver->bind(udc->gadget, driver); |
| if (ret) |
| goto err_bind; |
| |
| mutex_lock(&udc->connect_lock); |
| ret = usb_gadget_udc_start_locked(udc); |
| if (ret) { |
| mutex_unlock(&udc->connect_lock); |
| goto err_start; |
| } |
| usb_gadget_enable_async_callbacks(udc); |
| udc->allow_connect = true; |
| usb_udc_connect_control_locked(udc); |
| mutex_unlock(&udc->connect_lock); |
| |
| kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); |
| return 0; |
| |
| err_start: |
| driver->unbind(udc->gadget); |
| |
| err_bind: |
| if (ret != -EISNAM) |
| dev_err(&udc->dev, "failed to start %s: %d\n", |
| driver->function, ret); |
| |
| mutex_lock(&udc_lock); |
| udc->driver = NULL; |
| driver->is_bound = false; |
| mutex_unlock(&udc_lock); |
| |
| return ret; |
| } |
| |
| static void gadget_unbind_driver(struct device *dev) |
| { |
| struct usb_gadget *gadget = dev_to_usb_gadget(dev); |
| struct usb_udc *udc = gadget->udc; |
| struct usb_gadget_driver *driver = udc->driver; |
| |
| dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function); |
| |
| kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); |
| |
| udc->allow_connect = false; |
| cancel_work_sync(&udc->vbus_work); |
| mutex_lock(&udc->connect_lock); |
| usb_gadget_disconnect_locked(gadget); |
| usb_gadget_disable_async_callbacks(udc); |
| if (gadget->irq) |
| synchronize_irq(gadget->irq); |
| udc->driver->unbind(gadget); |
| usb_gadget_udc_stop_locked(udc); |
| mutex_unlock(&udc->connect_lock); |
| |
| mutex_lock(&udc_lock); |
| driver->is_bound = false; |
| udc->driver = NULL; |
| mutex_unlock(&udc_lock); |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver, |
| struct module *owner, const char *mod_name) |
| { |
| int ret; |
| |
| if (!driver || !driver->bind || !driver->setup) |
| return -EINVAL; |
| |
| driver->driver.bus = &gadget_bus_type; |
| driver->driver.owner = owner; |
| driver->driver.mod_name = mod_name; |
| ret = driver_register(&driver->driver); |
| if (ret) { |
| pr_warn("%s: driver registration failed: %d\n", |
| driver->function, ret); |
| return ret; |
| } |
| |
| mutex_lock(&udc_lock); |
| if (!driver->is_bound) { |
| if (driver->match_existing_only) { |
| pr_warn("%s: couldn't find an available UDC or it's busy\n", |
| driver->function); |
| ret = -EBUSY; |
| } else { |
| pr_info("%s: couldn't find an available UDC\n", |
| driver->function); |
| ret = 0; |
| } |
| } |
| mutex_unlock(&udc_lock); |
| |
| if (ret) |
| driver_unregister(&driver->driver); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner); |
| |
| int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) |
| { |
| if (!driver || !driver->unbind) |
| return -EINVAL; |
| |
| driver_unregister(&driver->driver); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| static ssize_t srp_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t n) |
| { |
| struct usb_udc *udc = container_of(dev, struct usb_udc, dev); |
| |
| if (sysfs_streq(buf, "1")) |
| usb_gadget_wakeup(udc->gadget); |
| |
| return n; |
| } |
| static DEVICE_ATTR_WO(srp); |
| |
| static ssize_t soft_connect_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t n) |
| { |
| struct usb_udc *udc = container_of(dev, struct usb_udc, dev); |
| ssize_t ret; |
| |
| device_lock(&udc->gadget->dev); |
| if (!udc->driver) { |
| dev_err(dev, "soft-connect without a gadget driver\n"); |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (sysfs_streq(buf, "connect")) { |
| mutex_lock(&udc->connect_lock); |
| usb_gadget_udc_start_locked(udc); |
| usb_gadget_connect_locked(udc->gadget); |
| mutex_unlock(&udc->connect_lock); |
| } else if (sysfs_streq(buf, "disconnect")) { |
| mutex_lock(&udc->connect_lock); |
| usb_gadget_disconnect_locked(udc->gadget); |
| usb_gadget_udc_stop_locked(udc); |
| mutex_unlock(&udc->connect_lock); |
| } else { |
| dev_err(dev, "unsupported command '%s'\n", buf); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = n; |
| out: |
| device_unlock(&udc->gadget->dev); |
| return ret; |
| } |
| static DEVICE_ATTR_WO(soft_connect); |
| |
| static ssize_t state_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct usb_udc *udc = container_of(dev, struct usb_udc, dev); |
| struct usb_gadget *gadget = udc->gadget; |
| |
| return sprintf(buf, "%s\n", usb_state_string(gadget->state)); |
| } |
| static DEVICE_ATTR_RO(state); |
| |
| static ssize_t function_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct usb_udc *udc = container_of(dev, struct usb_udc, dev); |
| struct usb_gadget_driver *drv; |
| int rc = 0; |
| |
| mutex_lock(&udc_lock); |
| drv = udc->driver; |
| if (drv && drv->function) |
| rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); |
| mutex_unlock(&udc_lock); |
| return rc; |
| } |
| static DEVICE_ATTR_RO(function); |
| |
| #define USB_UDC_SPEED_ATTR(name, param) \ |
| ssize_t name##_show(struct device *dev, \ |
| struct device_attribute *attr, char *buf) \ |
| { \ |
| struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ |
| return scnprintf(buf, PAGE_SIZE, "%s\n", \ |
| usb_speed_string(udc->gadget->param)); \ |
| } \ |
| static DEVICE_ATTR_RO(name) |
| |
| static USB_UDC_SPEED_ATTR(current_speed, speed); |
| static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); |
| |
| #define USB_UDC_ATTR(name) \ |
| ssize_t name##_show(struct device *dev, \ |
| struct device_attribute *attr, char *buf) \ |
| { \ |
| struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ |
| struct usb_gadget *gadget = udc->gadget; \ |
| \ |
| return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ |
| } \ |
| static DEVICE_ATTR_RO(name) |
| |
| static USB_UDC_ATTR(is_otg); |
| static USB_UDC_ATTR(is_a_peripheral); |
| static USB_UDC_ATTR(b_hnp_enable); |
| static USB_UDC_ATTR(a_hnp_support); |
| static USB_UDC_ATTR(a_alt_hnp_support); |
| static USB_UDC_ATTR(is_selfpowered); |
| |
| static struct attribute *usb_udc_attrs[] = { |
| &dev_attr_srp.attr, |
| &dev_attr_soft_connect.attr, |
| &dev_attr_state.attr, |
| &dev_attr_function.attr, |
| &dev_attr_current_speed.attr, |
| &dev_attr_maximum_speed.attr, |
| |
| &dev_attr_is_otg.attr, |
| &dev_attr_is_a_peripheral.attr, |
| &dev_attr_b_hnp_enable.attr, |
| &dev_attr_a_hnp_support.attr, |
| &dev_attr_a_alt_hnp_support.attr, |
| &dev_attr_is_selfpowered.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group usb_udc_attr_group = { |
| .attrs = usb_udc_attrs, |
| }; |
| |
| static const struct attribute_group *usb_udc_attr_groups[] = { |
| &usb_udc_attr_group, |
| NULL, |
| }; |
| |
| static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env) |
| { |
| const struct usb_udc *udc = container_of(dev, struct usb_udc, dev); |
| int ret; |
| |
| ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); |
| if (ret) { |
| dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); |
| return ret; |
| } |
| |
| mutex_lock(&udc_lock); |
| if (udc->driver) |
| ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", |
| udc->driver->function); |
| mutex_unlock(&udc_lock); |
| if (ret) { |
| dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct bus_type gadget_bus_type = { |
| .name = "gadget", |
| .probe = gadget_bind_driver, |
| .remove = gadget_unbind_driver, |
| .match = gadget_match_driver, |
| }; |
| |
| static int __init usb_udc_init(void) |
| { |
| int rc; |
| |
| udc_class = class_create("udc"); |
| if (IS_ERR(udc_class)) { |
| pr_err("failed to create udc class --> %ld\n", |
| PTR_ERR(udc_class)); |
| return PTR_ERR(udc_class); |
| } |
| |
| udc_class->dev_uevent = usb_udc_uevent; |
| |
| rc = bus_register(&gadget_bus_type); |
| if (rc) |
| class_destroy(udc_class); |
| return rc; |
| } |
| subsys_initcall(usb_udc_init); |
| |
| static void __exit usb_udc_exit(void) |
| { |
| bus_unregister(&gadget_bus_type); |
| class_destroy(udc_class); |
| } |
| module_exit(usb_udc_exit); |
| |
| MODULE_DESCRIPTION("UDC Framework"); |
| MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); |
| MODULE_LICENSE("GPL v2"); |