| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| * Copyright (C) 2000, 2003 Maciej W. Rozycki |
| * |
| * This file contains the time handling details for PC-style clocks as |
| * found in some MIPS systems. |
| * |
| */ |
| #include <linux/bcd.h> |
| #include <linux/init.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/param.h> |
| |
| #include <asm/cpu-features.h> |
| #include <asm/ds1287.h> |
| #include <asm/time.h> |
| #include <asm/dec/interrupts.h> |
| #include <asm/dec/ioasic.h> |
| #include <asm/dec/machtype.h> |
| |
| void read_persistent_clock64(struct timespec64 *ts) |
| { |
| unsigned int year, mon, day, hour, min, sec, real_year; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| |
| do { |
| sec = CMOS_READ(RTC_SECONDS); |
| min = CMOS_READ(RTC_MINUTES); |
| hour = CMOS_READ(RTC_HOURS); |
| day = CMOS_READ(RTC_DAY_OF_MONTH); |
| mon = CMOS_READ(RTC_MONTH); |
| year = CMOS_READ(RTC_YEAR); |
| /* |
| * The PROM will reset the year to either '72 or '73. |
| * Therefore we store the real year separately, in one |
| * of unused BBU RAM locations. |
| */ |
| real_year = CMOS_READ(RTC_DEC_YEAR); |
| } while (sec != CMOS_READ(RTC_SECONDS)); |
| |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| |
| if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
| sec = bcd2bin(sec); |
| min = bcd2bin(min); |
| hour = bcd2bin(hour); |
| day = bcd2bin(day); |
| mon = bcd2bin(mon); |
| year = bcd2bin(year); |
| } |
| |
| year += real_year - 72 + 2000; |
| |
| ts->tv_sec = mktime64(year, mon, day, hour, min, sec); |
| ts->tv_nsec = 0; |
| } |
| |
| /* |
| * In order to set the CMOS clock precisely, update_persistent_clock64 has to |
| * be called 500 ms after the second nowtime has started, because when |
| * nowtime is written into the registers of the CMOS clock, it will |
| * jump to the next second precisely 500 ms later. Check the Dallas |
| * DS1287 data sheet for details. |
| */ |
| int update_persistent_clock64(struct timespec64 now) |
| { |
| time64_t nowtime = now.tv_sec; |
| int retval = 0; |
| int real_seconds, real_minutes, cmos_minutes; |
| unsigned char save_control, save_freq_select; |
| |
| /* irq are locally disabled here */ |
| spin_lock(&rtc_lock); |
| /* tell the clock it's being set */ |
| save_control = CMOS_READ(RTC_CONTROL); |
| CMOS_WRITE((save_control | RTC_SET), RTC_CONTROL); |
| |
| /* stop and reset prescaler */ |
| save_freq_select = CMOS_READ(RTC_FREQ_SELECT); |
| CMOS_WRITE((save_freq_select | RTC_DIV_RESET2), RTC_FREQ_SELECT); |
| |
| cmos_minutes = CMOS_READ(RTC_MINUTES); |
| if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) |
| cmos_minutes = bcd2bin(cmos_minutes); |
| |
| /* |
| * since we're only adjusting minutes and seconds, |
| * don't interfere with hour overflow. This avoids |
| * messing with unknown time zones but requires your |
| * RTC not to be off by more than 15 minutes |
| */ |
| real_minutes = div_s64_rem(nowtime, 60, &real_seconds); |
| if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1) |
| real_minutes += 30; /* correct for half hour time zone */ |
| real_minutes %= 60; |
| |
| if (abs(real_minutes - cmos_minutes) < 30) { |
| if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
| real_seconds = bin2bcd(real_seconds); |
| real_minutes = bin2bcd(real_minutes); |
| } |
| CMOS_WRITE(real_seconds, RTC_SECONDS); |
| CMOS_WRITE(real_minutes, RTC_MINUTES); |
| } else { |
| printk_once(KERN_NOTICE |
| "set_rtc_mmss: can't update from %d to %d\n", |
| cmos_minutes, real_minutes); |
| retval = -1; |
| } |
| |
| /* The following flags have to be released exactly in this order, |
| * otherwise the DS1287 will not reset the oscillator and will not |
| * update precisely 500 ms later. You won't find this mentioned |
| * in the Dallas Semiconductor data sheets, but who believes data |
| * sheets anyway ... -- Markus Kuhn |
| */ |
| CMOS_WRITE(save_control, RTC_CONTROL); |
| CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); |
| spin_unlock(&rtc_lock); |
| |
| return retval; |
| } |
| |
| void __init plat_time_init(void) |
| { |
| int ioasic_clock = 0; |
| u32 start, end; |
| int i = HZ / 8; |
| |
| /* Set up the rate of periodic DS1287 interrupts. */ |
| ds1287_set_base_clock(HZ); |
| |
| /* On some I/O ASIC systems we have the I/O ASIC's counter. */ |
| if (IOASIC) |
| ioasic_clock = dec_ioasic_clocksource_init() == 0; |
| if (cpu_has_counter) { |
| ds1287_timer_state(); |
| while (!ds1287_timer_state()) |
| ; |
| |
| start = read_c0_count(); |
| |
| while (i--) |
| while (!ds1287_timer_state()) |
| ; |
| |
| end = read_c0_count(); |
| |
| mips_hpt_frequency = (end - start) * 8; |
| printk(KERN_INFO "MIPS counter frequency %dHz\n", |
| mips_hpt_frequency); |
| |
| /* |
| * All R4k DECstations suffer from the CP0 Count erratum, |
| * so we can't use the timer as a clock source, and a clock |
| * event both at a time. An accurate wall clock is more |
| * important than a high-precision interval timer so only |
| * use the timer as a clock source, and not a clock event |
| * if there's no I/O ASIC counter available to serve as a |
| * clock source. |
| */ |
| if (!ioasic_clock) { |
| init_r4k_clocksource(); |
| mips_hpt_frequency = 0; |
| } |
| } |
| |
| ds1287_clockevent_init(dec_interrupt[DEC_IRQ_RTC]); |
| } |