blob: 77fb87bf6e5a6fc12971be48212fd545422a68cf [file] [log] [blame]
/*
* Copyright (C) 1995 Linus Torvalds
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/highmem.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <asm/processor.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/crash_dump.h>
#include <linux/root_dev.h>
#include <linux/pci.h>
#include <linux/efi.h>
#include <linux/acpi.h>
#include <linux/kallsyms.h>
#include <linux/edd.h>
#include <linux/mmzone.h>
#include <linux/kexec.h>
#include <linux/cpufreq.h>
#include <linux/dmi.h>
#include <linux/dma-mapping.h>
#include <linux/ctype.h>
#include <linux/uaccess.h>
#include <linux/init_ohci1394_dma.h>
#include <asm/mtrr.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/vsyscall.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/msr.h>
#include <asm/desc.h>
#include <video/edid.h>
#include <asm/e820.h>
#include <asm/dma.h>
#include <asm/gart.h>
#include <asm/mpspec.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/setup.h>
#include <asm/mach_apic.h>
#include <asm/numa.h>
#include <asm/sections.h>
#include <asm/dmi.h>
#include <asm/cacheflush.h>
#include <asm/mce.h>
#include <asm/ds.h>
#include <asm/topology.h>
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
#define ARCH_SETUP
#endif
/*
* Machine setup..
*/
struct cpuinfo_x86 boot_cpu_data __read_mostly;
EXPORT_SYMBOL(boot_cpu_data);
__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
unsigned long mmu_cr4_features;
/* Boot loader ID as an integer, for the benefit of proc_dointvec */
int bootloader_type;
unsigned long saved_video_mode;
int force_mwait __cpuinitdata;
/*
* Early DMI memory
*/
int dmi_alloc_index;
char dmi_alloc_data[DMI_MAX_DATA];
/*
* Setup options
*/
struct screen_info screen_info;
EXPORT_SYMBOL(screen_info);
struct sys_desc_table_struct {
unsigned short length;
unsigned char table[0];
};
struct edid_info edid_info;
EXPORT_SYMBOL_GPL(edid_info);
extern int root_mountflags;
char __initdata command_line[COMMAND_LINE_SIZE];
struct resource standard_io_resources[] = {
{ .name = "dma1", .start = 0x00, .end = 0x1f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic1", .start = 0x20, .end = 0x21,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer0", .start = 0x40, .end = 0x43,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer1", .start = 0x50, .end = 0x53,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "keyboard", .start = 0x60, .end = 0x6f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic2", .start = 0xa0, .end = 0xa1,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma2", .start = 0xc0, .end = 0xdf,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "fpu", .start = 0xf0, .end = 0xff,
.flags = IORESOURCE_BUSY | IORESOURCE_IO }
};
#define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
static struct resource data_resource = {
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_RAM,
};
static struct resource code_resource = {
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_RAM,
};
static struct resource bss_resource = {
.name = "Kernel bss",
.start = 0,
.end = 0,
.flags = IORESOURCE_RAM,
};
static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
#ifdef CONFIG_PROC_VMCORE
/* elfcorehdr= specifies the location of elf core header
* stored by the crashed kernel. This option will be passed
* by kexec loader to the capture kernel.
*/
static int __init setup_elfcorehdr(char *arg)
{
char *end;
if (!arg)
return -EINVAL;
elfcorehdr_addr = memparse(arg, &end);
return end > arg ? 0 : -EINVAL;
}
early_param("elfcorehdr", setup_elfcorehdr);
#endif
#ifndef CONFIG_NUMA
static void __init
contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long bootmap_size, bootmap;
bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
if (bootmap == -1L)
panic("Cannot find bootmem map of size %ld\n", bootmap_size);
bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
e820_register_active_regions(0, start_pfn, end_pfn);
free_bootmem_with_active_regions(0, end_pfn);
reserve_bootmem(bootmap, bootmap_size);
}
#endif
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
struct edd edd;
#ifdef CONFIG_EDD_MODULE
EXPORT_SYMBOL(edd);
#endif
/**
* copy_edd() - Copy the BIOS EDD information
* from boot_params into a safe place.
*
*/
static inline void copy_edd(void)
{
memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
sizeof(edd.mbr_signature));
memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
edd.edd_info_nr = boot_params.eddbuf_entries;
}
#else
static inline void copy_edd(void)
{
}
#endif
#ifdef CONFIG_KEXEC
static void __init reserve_crashkernel(void)
{
unsigned long long free_mem;
unsigned long long crash_size, crash_base;
int ret;
free_mem =
((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
ret = parse_crashkernel(boot_command_line, free_mem,
&crash_size, &crash_base);
if (ret == 0 && crash_size) {
if (crash_base > 0) {
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
"for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(free_mem >> 20));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
reserve_bootmem(crash_base, crash_size);
} else
printk(KERN_INFO "crashkernel reservation failed - "
"you have to specify a base address\n");
}
}
#else
static inline void __init reserve_crashkernel(void)
{}
#endif
/* Overridden in paravirt.c if CONFIG_PARAVIRT */
void __attribute__((weak)) __init memory_setup(void)
{
machine_specific_memory_setup();
}
/*
* setup_arch - architecture-specific boot-time initializations
*
* Note: On x86_64, fixmaps are ready for use even before this is called.
*/
void __init setup_arch(char **cmdline_p)
{
unsigned i;
printk(KERN_INFO "Command line: %s\n", boot_command_line);
ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
screen_info = boot_params.screen_info;
edid_info = boot_params.edid_info;
saved_video_mode = boot_params.hdr.vid_mode;
bootloader_type = boot_params.hdr.type_of_loader;
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
#endif
#ifdef CONFIG_EFI
if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
"EL64", 4))
efi_enabled = 1;
#endif
ARCH_SETUP
memory_setup();
copy_edd();
if (!boot_params.hdr.root_flags)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) &_text;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
code_resource.start = virt_to_phys(&_text);
code_resource.end = virt_to_phys(&_etext)-1;
data_resource.start = virt_to_phys(&_etext);
data_resource.end = virt_to_phys(&_edata)-1;
bss_resource.start = virt_to_phys(&__bss_start);
bss_resource.end = virt_to_phys(&__bss_stop)-1;
early_identify_cpu(&boot_cpu_data);
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
if (init_ohci1394_dma_early)
init_ohci1394_dma_on_all_controllers();
#endif
finish_e820_parsing();
early_gart_iommu_check();
e820_register_active_regions(0, 0, -1UL);
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
end_pfn = e820_end_of_ram();
/* update e820 for memory not covered by WB MTRRs */
mtrr_bp_init();
if (mtrr_trim_uncached_memory(end_pfn)) {
e820_register_active_regions(0, 0, -1UL);
end_pfn = e820_end_of_ram();
}
num_physpages = end_pfn;
check_efer();
init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
if (efi_enabled)
efi_init();
dmi_scan_machine();
io_delay_init();
#ifdef CONFIG_SMP
/* setup to use the early static init tables during kernel startup */
x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
#ifdef CONFIG_NUMA
x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
#endif
#endif
#ifdef CONFIG_ACPI
/*
* Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
* Call this early for SRAT node setup.
*/
acpi_boot_table_init();
#endif
/* How many end-of-memory variables you have, grandma! */
max_low_pfn = end_pfn;
max_pfn = end_pfn;
high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
/* Remove active ranges so rediscovery with NUMA-awareness happens */
remove_all_active_ranges();
#ifdef CONFIG_ACPI_NUMA
/*
* Parse SRAT to discover nodes.
*/
acpi_numa_init();
#endif
#ifdef CONFIG_NUMA
numa_initmem_init(0, end_pfn);
#else
contig_initmem_init(0, end_pfn);
#endif
early_res_to_bootmem();
#ifdef CONFIG_ACPI_SLEEP
/*
* Reserve low memory region for sleep support.
*/
acpi_reserve_bootmem();
#endif
if (efi_enabled)
efi_reserve_bootmem();
/*
* Find and reserve possible boot-time SMP configuration:
*/
find_smp_config();
#ifdef CONFIG_BLK_DEV_INITRD
if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
if (ramdisk_end <= end_of_mem) {
reserve_bootmem_generic(ramdisk_image, ramdisk_size);
initrd_start = ramdisk_image + PAGE_OFFSET;
initrd_end = initrd_start+ramdisk_size;
} else {
/* Assumes everything on node 0 */
free_bootmem(ramdisk_image, ramdisk_size);
printk(KERN_ERR "initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
ramdisk_end, end_of_mem);
initrd_start = 0;
}
}
#endif
reserve_crashkernel();
paging_init();
map_vsyscall();
early_quirks();
#ifdef CONFIG_ACPI
/*
* Read APIC and some other early information from ACPI tables.
*/
acpi_boot_init();
#endif
init_cpu_to_node();
/*
* get boot-time SMP configuration:
*/
if (smp_found_config)
get_smp_config();
init_apic_mappings();
ioapic_init_mappings();
/*
* We trust e820 completely. No explicit ROM probing in memory.
*/
e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
e820_mark_nosave_regions();
/* request I/O space for devices used on all i[345]86 PCs */
for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
request_resource(&ioport_resource, &standard_io_resources[i]);
e820_setup_gap();
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
}
static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
if (c->extended_cpuid_level < 0x80000004)
return 0;
v = (unsigned int *) c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
return 1;
}
static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, eax, ebx, ecx, edx;
n = c->extended_cpuid_level;
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
"D cache %dK (%d bytes/line)\n",
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
c->x86_cache_size = (ecx>>24) + (edx>>24);
/* On K8 L1 TLB is inclusive, so don't count it */
c->x86_tlbsize = 0;
}
if (n >= 0x80000006) {
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
ecx = cpuid_ecx(0x80000006);
c->x86_cache_size = ecx >> 16;
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
c->x86_cache_size, ecx & 0xFF);
}
if (n >= 0x80000008) {
cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
}
}
#ifdef CONFIG_NUMA
static int nearby_node(int apicid)
{
int i, node;
for (i = apicid - 1; i >= 0; i--) {
node = apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
node = apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
return first_node(node_online_map); /* Shouldn't happen */
}
#endif
/*
* On a AMD dual core setup the lower bits of the APIC id distingush the cores.
* Assumes number of cores is a power of two.
*/
static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
unsigned bits;
#ifdef CONFIG_NUMA
int cpu = smp_processor_id();
int node = 0;
unsigned apicid = hard_smp_processor_id();
#endif
bits = c->x86_coreid_bits;
/* Low order bits define the core id (index of core in socket) */
c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
/* Convert the APIC ID into the socket ID */
c->phys_proc_id = phys_pkg_id(bits);
#ifdef CONFIG_NUMA
node = c->phys_proc_id;
if (apicid_to_node[apicid] != NUMA_NO_NODE)
node = apicid_to_node[apicid];
if (!node_online(node)) {
/* Two possibilities here:
- The CPU is missing memory and no node was created.
In that case try picking one from a nearby CPU
- The APIC IDs differ from the HyperTransport node IDs
which the K8 northbridge parsing fills in.
Assume they are all increased by a constant offset,
but in the same order as the HT nodeids.
If that doesn't result in a usable node fall back to the
path for the previous case. */
int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
if (ht_nodeid >= 0 &&
apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
node = apicid_to_node[ht_nodeid];
/* Pick a nearby node */
if (!node_online(node))
node = nearby_node(apicid);
}
numa_set_node(cpu, node);
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
#endif
#endif
}
static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
unsigned bits, ecx;
/* Multi core CPU? */
if (c->extended_cpuid_level < 0x80000008)
return;
ecx = cpuid_ecx(0x80000008);
c->x86_max_cores = (ecx & 0xff) + 1;
/* CPU telling us the core id bits shift? */
bits = (ecx >> 12) & 0xF;
/* Otherwise recompute */
if (bits == 0) {
while ((1 << bits) < c->x86_max_cores)
bits++;
}
c->x86_coreid_bits = bits;
#endif
}
#define ENABLE_C1E_MASK 0x18000000
#define CPUID_PROCESSOR_SIGNATURE 1
#define CPUID_XFAM 0x0ff00000
#define CPUID_XFAM_K8 0x00000000
#define CPUID_XFAM_10H 0x00100000
#define CPUID_XFAM_11H 0x00200000
#define CPUID_XMOD 0x000f0000
#define CPUID_XMOD_REV_F 0x00040000
/* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
static __cpuinit int amd_apic_timer_broken(void)
{
u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
switch (eax & CPUID_XFAM) {
case CPUID_XFAM_K8:
if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
break;
case CPUID_XFAM_10H:
case CPUID_XFAM_11H:
rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
if (lo & ENABLE_C1E_MASK)
return 1;
break;
default:
/* err on the side of caution */
return 1;
}
return 0;
}
static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
{
early_init_amd_mc(c);
/* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
if (c->x86_power & (1<<8))
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
}
static void __cpuinit init_amd(struct cpuinfo_x86 *c)
{
unsigned level;
#ifdef CONFIG_SMP
unsigned long value;
/*
* Disable TLB flush filter by setting HWCR.FFDIS on K8
* bit 6 of msr C001_0015
*
* Errata 63 for SH-B3 steppings
* Errata 122 for all steppings (F+ have it disabled by default)
*/
if (c->x86 == 15) {
rdmsrl(MSR_K8_HWCR, value);
value |= 1 << 6;
wrmsrl(MSR_K8_HWCR, value);
}
#endif
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
/* On C+ stepping K8 rep microcode works well for copy/memset */
level = cpuid_eax(1);
if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
level >= 0x0f58))
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
if (c->x86 == 0x10 || c->x86 == 0x11)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
/* Enable workaround for FXSAVE leak */
if (c->x86 >= 6)
set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
level = get_model_name(c);
if (!level) {
switch (c->x86) {
case 15:
/* Should distinguish Models here, but this is only
a fallback anyways. */
strcpy(c->x86_model_id, "Hammer");
break;
}
}
display_cacheinfo(c);
/* Multi core CPU? */
if (c->extended_cpuid_level >= 0x80000008)
amd_detect_cmp(c);
if (c->extended_cpuid_level >= 0x80000006 &&
(cpuid_edx(0x80000006) & 0xf000))
num_cache_leaves = 4;
else
num_cache_leaves = 3;
if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
set_cpu_cap(c, X86_FEATURE_K8);
/* MFENCE stops RDTSC speculation */
set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
if (amd_apic_timer_broken())
disable_apic_timer = 1;
}
void __cpuinit detect_ht(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
u32 eax, ebx, ecx, edx;
int index_msb, core_bits;
cpuid(1, &eax, &ebx, &ecx, &edx);
if (!cpu_has(c, X86_FEATURE_HT))
return;
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
goto out;
smp_num_siblings = (ebx & 0xff0000) >> 16;
if (smp_num_siblings == 1) {
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
} else if (smp_num_siblings > 1) {
if (smp_num_siblings > NR_CPUS) {
printk(KERN_WARNING "CPU: Unsupported number of "
"siblings %d", smp_num_siblings);
smp_num_siblings = 1;
return;
}
index_msb = get_count_order(smp_num_siblings);
c->phys_proc_id = phys_pkg_id(index_msb);
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
index_msb = get_count_order(smp_num_siblings);
core_bits = get_count_order(c->x86_max_cores);
c->cpu_core_id = phys_pkg_id(index_msb) &
((1 << core_bits) - 1);
}
out:
if ((c->x86_max_cores * smp_num_siblings) > 1) {
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
c->phys_proc_id);
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
c->cpu_core_id);
}
#endif
}
/*
* find out the number of processor cores on the die
*/
static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
{
unsigned int eax, t;
if (c->cpuid_level < 4)
return 1;
cpuid_count(4, 0, &eax, &t, &t, &t);
if (eax & 0x1f)
return ((eax >> 26) + 1);
else
return 1;
}
static void srat_detect_node(void)
{
#ifdef CONFIG_NUMA
unsigned node;
int cpu = smp_processor_id();
int apicid = hard_smp_processor_id();
/* Don't do the funky fallback heuristics the AMD version employs
for now. */
node = apicid_to_node[apicid];
if (node == NUMA_NO_NODE)
node = first_node(node_online_map);
numa_set_node(cpu, node);
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
#endif
}
static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
{
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
(c->x86 == 0x6 && c->x86_model >= 0x0e))
set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
}
static void __cpuinit init_intel(struct cpuinfo_x86 *c)
{
/* Cache sizes */
unsigned n;
init_intel_cacheinfo(c);
if (c->cpuid_level > 9) {
unsigned eax = cpuid_eax(10);
/* Check for version and the number of counters */
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
}
if (cpu_has_ds) {
unsigned int l1, l2;
rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
if (!(l1 & (1<<11)))
set_cpu_cap(c, X86_FEATURE_BTS);
if (!(l1 & (1<<12)))
set_cpu_cap(c, X86_FEATURE_PEBS);
}
if (cpu_has_bts)
ds_init_intel(c);
n = c->extended_cpuid_level;
if (n >= 0x80000008) {
unsigned eax = cpuid_eax(0x80000008);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
/* CPUID workaround for Intel 0F34 CPU */
if (c->x86_vendor == X86_VENDOR_INTEL &&
c->x86 == 0xF && c->x86_model == 0x3 &&
c->x86_mask == 0x4)
c->x86_phys_bits = 36;
}
if (c->x86 == 15)
c->x86_cache_alignment = c->x86_clflush_size * 2;
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
(c->x86 == 0x6 && c->x86_model >= 0x0e))
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
if (c->x86 == 6)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
c->x86_max_cores = intel_num_cpu_cores(c);
srat_detect_node();
}
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
if (!strcmp(v, "AuthenticAMD"))
c->x86_vendor = X86_VENDOR_AMD;
else if (!strcmp(v, "GenuineIntel"))
c->x86_vendor = X86_VENDOR_INTEL;
else
c->x86_vendor = X86_VENDOR_UNKNOWN;
}
/* Do some early cpuid on the boot CPU to get some parameter that are
needed before check_bugs. Everything advanced is in identify_cpu
below. */
static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
{
u32 tfms, xlvl;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = -1;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->x86_model = c->x86_mask = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
c->x86_clflush_size = 64;
c->x86_cache_alignment = c->x86_clflush_size;
c->x86_max_cores = 1;
c->x86_coreid_bits = 0;
c->extended_cpuid_level = 0;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
/* Get vendor name */
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
(unsigned int *)&c->x86_vendor_id[0],
(unsigned int *)&c->x86_vendor_id[8],
(unsigned int *)&c->x86_vendor_id[4]);
get_cpu_vendor(c);
/* Initialize the standard set of capabilities */
/* Note that the vendor-specific code below might override */
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
__u32 misc;
cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
&c->x86_capability[0]);
c->x86 = (tfms >> 8) & 0xf;
c->x86_model = (tfms >> 4) & 0xf;
c->x86_mask = tfms & 0xf;
if (c->x86 == 0xf)
c->x86 += (tfms >> 20) & 0xff;
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xF) << 4;
if (c->x86_capability[0] & (1<<19))
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
} else {
/* Have CPUID level 0 only - unheard of */
c->x86 = 4;
}
#ifdef CONFIG_SMP
c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
#endif
/* AMD-defined flags: level 0x80000001 */
xlvl = cpuid_eax(0x80000000);
c->extended_cpuid_level = xlvl;
if ((xlvl & 0xffff0000) == 0x80000000) {
if (xlvl >= 0x80000001) {
c->x86_capability[1] = cpuid_edx(0x80000001);
c->x86_capability[6] = cpuid_ecx(0x80000001);
}
if (xlvl >= 0x80000004)
get_model_name(c); /* Default name */
}
/* Transmeta-defined flags: level 0x80860001 */
xlvl = cpuid_eax(0x80860000);
if ((xlvl & 0xffff0000) == 0x80860000) {
/* Don't set x86_cpuid_level here for now to not confuse. */
if (xlvl >= 0x80860001)
c->x86_capability[2] = cpuid_edx(0x80860001);
}
c->extended_cpuid_level = cpuid_eax(0x80000000);
if (c->extended_cpuid_level >= 0x80000007)
c->x86_power = cpuid_edx(0x80000007);
switch (c->x86_vendor) {
case X86_VENDOR_AMD:
early_init_amd(c);
break;
case X86_VENDOR_INTEL:
early_init_intel(c);
break;
}
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
{
int i;
early_identify_cpu(c);
init_scattered_cpuid_features(c);
c->apicid = phys_pkg_id(0);
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
switch (c->x86_vendor) {
case X86_VENDOR_AMD:
init_amd(c);
break;
case X86_VENDOR_INTEL:
init_intel(c);
break;
case X86_VENDOR_UNKNOWN:
default:
display_cacheinfo(c);
break;
}
detect_ht(c);
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if (c != &boot_cpu_data) {
/* AND the already accumulated flags with these */
for (i = 0; i < NCAPINTS; i++)
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
}
/* Clear all flags overriden by options */
for (i = 0; i < NCAPINTS; i++)
c->x86_capability[i] ^= cleared_cpu_caps[i];
#ifdef CONFIG_X86_MCE
mcheck_init(c);
#endif
select_idle_routine(c);
if (c != &boot_cpu_data)
mtrr_ap_init();
#ifdef CONFIG_NUMA
numa_add_cpu(smp_processor_id());
#endif
}
static __init int setup_noclflush(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
return 1;
}
__setup("noclflush", setup_noclflush);
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
{
if (c->x86_model_id[0])
printk(KERN_INFO "%s", c->x86_model_id);
if (c->x86_mask || c->cpuid_level >= 0)
printk(KERN_CONT " stepping %02x\n", c->x86_mask);
else
printk(KERN_CONT "\n");
}
static __init int setup_disablecpuid(char *arg)
{
int bit;
if (get_option(&arg, &bit) && bit < NCAPINTS*32)
setup_clear_cpu_cap(bit);
else
return 0;
return 1;
}
__setup("clearcpuid=", setup_disablecpuid);
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
struct cpuinfo_x86 *c = v;
int cpu = 0, i;
/*
* These flag bits must match the definitions in <asm/cpufeature.h>.
* NULL means this bit is undefined or reserved; either way it doesn't
* have meaning as far as Linux is concerned. Note that it's important
* to realize there is a difference between this table and CPUID -- if
* applications want to get the raw CPUID data, they should access
* /dev/cpu/<cpu_nr>/cpuid instead.
*/
static const char *const x86_cap_flags[] = {
/* Intel-defined */
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
"fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
/* AMD-defined */
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
"3dnowext", "3dnow",
/* Transmeta-defined */
"recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Other (Linux-defined) */
"cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
NULL, NULL, NULL, NULL,
"constant_tsc", "up", NULL, "arch_perfmon",
"pebs", "bts", NULL, "sync_rdtsc",
"rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Intel-defined (#2) */
"pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* VIA/Cyrix/Centaur-defined */
NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
"ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* AMD-defined (#2) */
"lahf_lm", "cmp_legacy", "svm", "extapic",
"cr8_legacy", "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", "ibs", "sse5",
"skinit", "wdt", NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Auxiliary (Linux-defined) */
"ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
static const char *const x86_power_flags[] = {
"ts", /* temperature sensor */
"fid", /* frequency id control */
"vid", /* voltage id control */
"ttp", /* thermal trip */
"tm",
"stc",
"100mhzsteps",
"hwpstate",
"", /* tsc invariant mapped to constant_tsc */
/* nothing */
};
#ifdef CONFIG_SMP
cpu = c->cpu_index;
#endif
seq_printf(m, "processor\t: %u\n"
"vendor_id\t: %s\n"
"cpu family\t: %d\n"
"model\t\t: %d\n"
"model name\t: %s\n",
(unsigned)cpu,
c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
c->x86,
(int)c->x86_model,
c->x86_model_id[0] ? c->x86_model_id : "unknown");
if (c->x86_mask || c->cpuid_level >= 0)
seq_printf(m, "stepping\t: %d\n", c->x86_mask);
else
seq_printf(m, "stepping\t: unknown\n");
if (cpu_has(c, X86_FEATURE_TSC)) {
unsigned int freq = cpufreq_quick_get((unsigned)cpu);
if (!freq)
freq = cpu_khz;
seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
freq / 1000, (freq % 1000));
}
/* Cache size */
if (c->x86_cache_size >= 0)
seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
#ifdef CONFIG_SMP
if (smp_num_siblings * c->x86_max_cores > 1) {
seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
seq_printf(m, "siblings\t: %d\n",
cpus_weight(per_cpu(cpu_core_map, cpu)));
seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
}
#endif
seq_printf(m,
"fpu\t\t: yes\n"
"fpu_exception\t: yes\n"
"cpuid level\t: %d\n"
"wp\t\t: yes\n"
"flags\t\t:",
c->cpuid_level);
for (i = 0; i < 32*NCAPINTS; i++)
if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
seq_printf(m, " %s", x86_cap_flags[i]);
seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
c->loops_per_jiffy/(500000/HZ),
(c->loops_per_jiffy/(5000/HZ)) % 100);
if (c->x86_tlbsize > 0)
seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
c->x86_phys_bits, c->x86_virt_bits);
seq_printf(m, "power management:");
for (i = 0; i < 32; i++) {
if (c->x86_power & (1 << i)) {
if (i < ARRAY_SIZE(x86_power_flags) &&
x86_power_flags[i])
seq_printf(m, "%s%s",
x86_power_flags[i][0]?" ":"",
x86_power_flags[i]);
else
seq_printf(m, " [%d]", i);
}
}
seq_printf(m, "\n\n");
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
if (*pos == 0) /* just in case, cpu 0 is not the first */
*pos = first_cpu(cpu_online_map);
if ((*pos) < NR_CPUS && cpu_online(*pos))
return &cpu_data(*pos);
return NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
*pos = next_cpu(*pos, cpu_online_map);
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};