| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * SMP support for ppc. |
| * |
| * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great |
| * deal of code from the sparc and intel versions. |
| * |
| * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> |
| * |
| * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and |
| * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/sched/topology.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/cache.h> |
| #include <linux/err.h> |
| #include <linux/device.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| #include <linux/topology.h> |
| #include <linux/profile.h> |
| #include <linux/processor.h> |
| #include <linux/random.h> |
| #include <linux/stackprotector.h> |
| #include <linux/pgtable.h> |
| #include <linux/clockchips.h> |
| #include <linux/kexec.h> |
| |
| #include <asm/ptrace.h> |
| #include <linux/atomic.h> |
| #include <asm/irq.h> |
| #include <asm/hw_irq.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/dbell.h> |
| #include <asm/page.h> |
| #include <asm/smp.h> |
| #include <asm/time.h> |
| #include <asm/machdep.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cputhreads.h> |
| #include <asm/cputable.h> |
| #include <asm/mpic.h> |
| #include <asm/vdso_datapage.h> |
| #ifdef CONFIG_PPC64 |
| #include <asm/paca.h> |
| #endif |
| #include <asm/vdso.h> |
| #include <asm/debug.h> |
| #include <asm/cpu_has_feature.h> |
| #include <asm/ftrace.h> |
| #include <asm/kup.h> |
| #include <asm/fadump.h> |
| |
| #include <trace/events/ipi.h> |
| |
| #ifdef DEBUG |
| #include <asm/udbg.h> |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* State of each CPU during hotplug phases */ |
| static DEFINE_PER_CPU(int, cpu_state) = { 0 }; |
| #endif |
| |
| struct task_struct *secondary_current; |
| bool has_big_cores __ro_after_init; |
| bool coregroup_enabled __ro_after_init; |
| bool thread_group_shares_l2 __ro_after_init; |
| bool thread_group_shares_l3 __ro_after_init; |
| |
| DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); |
| DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); |
| DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); |
| DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); |
| static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); |
| |
| EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_core_map); |
| EXPORT_SYMBOL_GPL(has_big_cores); |
| |
| #define MAX_THREAD_LIST_SIZE 8 |
| #define THREAD_GROUP_SHARE_L1 1 |
| #define THREAD_GROUP_SHARE_L2_L3 2 |
| struct thread_groups { |
| unsigned int property; |
| unsigned int nr_groups; |
| unsigned int threads_per_group; |
| unsigned int thread_list[MAX_THREAD_LIST_SIZE]; |
| }; |
| |
| /* Maximum number of properties that groups of threads within a core can share */ |
| #define MAX_THREAD_GROUP_PROPERTIES 2 |
| |
| struct thread_groups_list { |
| unsigned int nr_properties; |
| struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES]; |
| }; |
| |
| static struct thread_groups_list tgl[NR_CPUS] __initdata; |
| /* |
| * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to |
| * the set its siblings that share the L1-cache. |
| */ |
| DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map); |
| |
| /* |
| * On some big-cores system, thread_group_l2_cache_map for each CPU |
| * corresponds to the set its siblings within the core that share the |
| * L2-cache. |
| */ |
| DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map); |
| |
| /* |
| * On P10, thread_group_l3_cache_map for each CPU is equal to the |
| * thread_group_l2_cache_map |
| */ |
| DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map); |
| |
| /* SMP operations for this machine */ |
| struct smp_ops_t *smp_ops; |
| |
| /* Can't be static due to PowerMac hackery */ |
| volatile unsigned int cpu_callin_map[NR_CPUS]; |
| |
| int smt_enabled_at_boot = 1; |
| |
| /* |
| * Returns 1 if the specified cpu should be brought up during boot. |
| * Used to inhibit booting threads if they've been disabled or |
| * limited on the command line |
| */ |
| int smp_generic_cpu_bootable(unsigned int nr) |
| { |
| /* Special case - we inhibit secondary thread startup |
| * during boot if the user requests it. |
| */ |
| if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { |
| if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) |
| return 0; |
| if (smt_enabled_at_boot |
| && cpu_thread_in_core(nr) >= smt_enabled_at_boot) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| |
| #ifdef CONFIG_PPC64 |
| int smp_generic_kick_cpu(int nr) |
| { |
| if (nr < 0 || nr >= nr_cpu_ids) |
| return -EINVAL; |
| |
| /* |
| * The processor is currently spinning, waiting for the |
| * cpu_start field to become non-zero After we set cpu_start, |
| * the processor will continue on to secondary_start |
| */ |
| if (!paca_ptrs[nr]->cpu_start) { |
| paca_ptrs[nr]->cpu_start = 1; |
| smp_mb(); |
| return 0; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* |
| * Ok it's not there, so it might be soft-unplugged, let's |
| * try to bring it back |
| */ |
| generic_set_cpu_up(nr); |
| smp_wmb(); |
| smp_send_reschedule(nr); |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| return 0; |
| } |
| #endif /* CONFIG_PPC64 */ |
| |
| static irqreturn_t call_function_action(int irq, void *data) |
| { |
| generic_smp_call_function_interrupt(); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t reschedule_action(int irq, void *data) |
| { |
| scheduler_ipi(); |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) |
| { |
| timer_broadcast_interrupt(); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| #ifdef CONFIG_NMI_IPI |
| static irqreturn_t nmi_ipi_action(int irq, void *data) |
| { |
| smp_handle_nmi_ipi(get_irq_regs()); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| static irq_handler_t smp_ipi_action[] = { |
| [PPC_MSG_CALL_FUNCTION] = call_function_action, |
| [PPC_MSG_RESCHEDULE] = reschedule_action, |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, |
| #endif |
| #ifdef CONFIG_NMI_IPI |
| [PPC_MSG_NMI_IPI] = nmi_ipi_action, |
| #endif |
| }; |
| |
| /* |
| * The NMI IPI is a fallback and not truly non-maskable. It is simpler |
| * than going through the call function infrastructure, and strongly |
| * serialized, so it is more appropriate for debugging. |
| */ |
| const char *smp_ipi_name[] = { |
| [PPC_MSG_CALL_FUNCTION] = "ipi call function", |
| [PPC_MSG_RESCHEDULE] = "ipi reschedule", |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", |
| #endif |
| #ifdef CONFIG_NMI_IPI |
| [PPC_MSG_NMI_IPI] = "nmi ipi", |
| #endif |
| }; |
| |
| /* optional function to request ipi, for controllers with >= 4 ipis */ |
| int smp_request_message_ipi(int virq, int msg) |
| { |
| int err; |
| |
| if (msg < 0 || msg > PPC_MSG_NMI_IPI) |
| return -EINVAL; |
| #ifndef CONFIG_NMI_IPI |
| if (msg == PPC_MSG_NMI_IPI) |
| return 1; |
| #endif |
| |
| err = request_irq(virq, smp_ipi_action[msg], |
| IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, |
| smp_ipi_name[msg], NULL); |
| WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", |
| virq, smp_ipi_name[msg], err); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_PPC_SMP_MUXED_IPI |
| struct cpu_messages { |
| long messages; /* current messages */ |
| }; |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); |
| |
| void smp_muxed_ipi_set_message(int cpu, int msg) |
| { |
| struct cpu_messages *info = &per_cpu(ipi_message, cpu); |
| char *message = (char *)&info->messages; |
| |
| /* |
| * Order previous accesses before accesses in the IPI handler. |
| */ |
| smp_mb(); |
| WRITE_ONCE(message[msg], 1); |
| } |
| |
| void smp_muxed_ipi_message_pass(int cpu, int msg) |
| { |
| smp_muxed_ipi_set_message(cpu, msg); |
| |
| /* |
| * cause_ipi functions are required to include a full barrier |
| * before doing whatever causes the IPI. |
| */ |
| smp_ops->cause_ipi(cpu); |
| } |
| |
| #ifdef __BIG_ENDIAN__ |
| #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) |
| #else |
| #define IPI_MESSAGE(A) (1uL << (8 * (A))) |
| #endif |
| |
| irqreturn_t smp_ipi_demux(void) |
| { |
| mb(); /* order any irq clear */ |
| |
| return smp_ipi_demux_relaxed(); |
| } |
| |
| /* sync-free variant. Callers should ensure synchronization */ |
| irqreturn_t smp_ipi_demux_relaxed(void) |
| { |
| struct cpu_messages *info; |
| unsigned long all; |
| |
| info = this_cpu_ptr(&ipi_message); |
| do { |
| all = xchg(&info->messages, 0); |
| #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) |
| /* |
| * Must check for PPC_MSG_RM_HOST_ACTION messages |
| * before PPC_MSG_CALL_FUNCTION messages because when |
| * a VM is destroyed, we call kick_all_cpus_sync() |
| * to ensure that any pending PPC_MSG_RM_HOST_ACTION |
| * messages have completed before we free any VCPUs. |
| */ |
| if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) |
| kvmppc_xics_ipi_action(); |
| #endif |
| if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) |
| generic_smp_call_function_interrupt(); |
| if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) |
| scheduler_ipi(); |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) |
| timer_broadcast_interrupt(); |
| #endif |
| #ifdef CONFIG_NMI_IPI |
| if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) |
| nmi_ipi_action(0, NULL); |
| #endif |
| } while (READ_ONCE(info->messages)); |
| |
| return IRQ_HANDLED; |
| } |
| #endif /* CONFIG_PPC_SMP_MUXED_IPI */ |
| |
| static inline void do_message_pass(int cpu, int msg) |
| { |
| if (smp_ops->message_pass) |
| smp_ops->message_pass(cpu, msg); |
| #ifdef CONFIG_PPC_SMP_MUXED_IPI |
| else |
| smp_muxed_ipi_message_pass(cpu, msg); |
| #endif |
| } |
| |
| void arch_smp_send_reschedule(int cpu) |
| { |
| if (likely(smp_ops)) |
| do_message_pass(cpu, PPC_MSG_RESCHEDULE); |
| } |
| EXPORT_SYMBOL_GPL(arch_smp_send_reschedule); |
| |
| void arch_send_call_function_single_ipi(int cpu) |
| { |
| do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); |
| } |
| |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| { |
| unsigned int cpu; |
| |
| for_each_cpu(cpu, mask) |
| do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); |
| } |
| |
| #ifdef CONFIG_NMI_IPI |
| |
| /* |
| * "NMI IPI" system. |
| * |
| * NMI IPIs may not be recoverable, so should not be used as ongoing part of |
| * a running system. They can be used for crash, debug, halt/reboot, etc. |
| * |
| * The IPI call waits with interrupts disabled until all targets enter the |
| * NMI handler, then returns. Subsequent IPIs can be issued before targets |
| * have returned from their handlers, so there is no guarantee about |
| * concurrency or re-entrancy. |
| * |
| * A new NMI can be issued before all targets exit the handler. |
| * |
| * The IPI call may time out without all targets entering the NMI handler. |
| * In that case, there is some logic to recover (and ignore subsequent |
| * NMI interrupts that may eventually be raised), but the platform interrupt |
| * handler may not be able to distinguish this from other exception causes, |
| * which may cause a crash. |
| */ |
| |
| static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); |
| static struct cpumask nmi_ipi_pending_mask; |
| static bool nmi_ipi_busy = false; |
| static void (*nmi_ipi_function)(struct pt_regs *) = NULL; |
| |
| noinstr static void nmi_ipi_lock_start(unsigned long *flags) |
| { |
| raw_local_irq_save(*flags); |
| hard_irq_disable(); |
| while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { |
| raw_local_irq_restore(*flags); |
| spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0); |
| raw_local_irq_save(*flags); |
| hard_irq_disable(); |
| } |
| } |
| |
| noinstr static void nmi_ipi_lock(void) |
| { |
| while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) |
| spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0); |
| } |
| |
| noinstr static void nmi_ipi_unlock(void) |
| { |
| smp_mb(); |
| WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1); |
| raw_atomic_set(&__nmi_ipi_lock, 0); |
| } |
| |
| noinstr static void nmi_ipi_unlock_end(unsigned long *flags) |
| { |
| nmi_ipi_unlock(); |
| raw_local_irq_restore(*flags); |
| } |
| |
| /* |
| * Platform NMI handler calls this to ack |
| */ |
| noinstr int smp_handle_nmi_ipi(struct pt_regs *regs) |
| { |
| void (*fn)(struct pt_regs *) = NULL; |
| unsigned long flags; |
| int me = raw_smp_processor_id(); |
| int ret = 0; |
| |
| /* |
| * Unexpected NMIs are possible here because the interrupt may not |
| * be able to distinguish NMI IPIs from other types of NMIs, or |
| * because the caller may have timed out. |
| */ |
| nmi_ipi_lock_start(&flags); |
| if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { |
| cpumask_clear_cpu(me, &nmi_ipi_pending_mask); |
| fn = READ_ONCE(nmi_ipi_function); |
| WARN_ON_ONCE(!fn); |
| ret = 1; |
| } |
| nmi_ipi_unlock_end(&flags); |
| |
| if (fn) |
| fn(regs); |
| |
| return ret; |
| } |
| |
| static void do_smp_send_nmi_ipi(int cpu, bool safe) |
| { |
| if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) |
| return; |
| |
| if (cpu >= 0) { |
| do_message_pass(cpu, PPC_MSG_NMI_IPI); |
| } else { |
| int c; |
| |
| for_each_online_cpu(c) { |
| if (c == raw_smp_processor_id()) |
| continue; |
| do_message_pass(c, PPC_MSG_NMI_IPI); |
| } |
| } |
| } |
| |
| /* |
| * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. |
| * - fn is the target callback function. |
| * - delay_us > 0 is the delay before giving up waiting for targets to |
| * begin executing the handler, == 0 specifies indefinite delay. |
| */ |
| static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), |
| u64 delay_us, bool safe) |
| { |
| unsigned long flags; |
| int me = raw_smp_processor_id(); |
| int ret = 1; |
| |
| BUG_ON(cpu == me); |
| BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); |
| |
| if (unlikely(!smp_ops)) |
| return 0; |
| |
| nmi_ipi_lock_start(&flags); |
| while (nmi_ipi_busy) { |
| nmi_ipi_unlock_end(&flags); |
| spin_until_cond(!nmi_ipi_busy); |
| nmi_ipi_lock_start(&flags); |
| } |
| nmi_ipi_busy = true; |
| nmi_ipi_function = fn; |
| |
| WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); |
| |
| if (cpu < 0) { |
| /* ALL_OTHERS */ |
| cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); |
| cpumask_clear_cpu(me, &nmi_ipi_pending_mask); |
| } else { |
| cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); |
| } |
| |
| nmi_ipi_unlock(); |
| |
| /* Interrupts remain hard disabled */ |
| |
| do_smp_send_nmi_ipi(cpu, safe); |
| |
| nmi_ipi_lock(); |
| /* nmi_ipi_busy is set here, so unlock/lock is okay */ |
| while (!cpumask_empty(&nmi_ipi_pending_mask)) { |
| nmi_ipi_unlock(); |
| udelay(1); |
| nmi_ipi_lock(); |
| if (delay_us) { |
| delay_us--; |
| if (!delay_us) |
| break; |
| } |
| } |
| |
| if (!cpumask_empty(&nmi_ipi_pending_mask)) { |
| /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ |
| ret = 0; |
| cpumask_clear(&nmi_ipi_pending_mask); |
| } |
| |
| nmi_ipi_function = NULL; |
| nmi_ipi_busy = false; |
| |
| nmi_ipi_unlock_end(&flags); |
| |
| return ret; |
| } |
| |
| int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) |
| { |
| return __smp_send_nmi_ipi(cpu, fn, delay_us, false); |
| } |
| |
| int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) |
| { |
| return __smp_send_nmi_ipi(cpu, fn, delay_us, true); |
| } |
| #endif /* CONFIG_NMI_IPI */ |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| void tick_broadcast(const struct cpumask *mask) |
| { |
| unsigned int cpu; |
| |
| for_each_cpu(cpu, mask) |
| do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); |
| } |
| #endif |
| |
| #ifdef CONFIG_DEBUGGER |
| static void debugger_ipi_callback(struct pt_regs *regs) |
| { |
| debugger_ipi(regs); |
| } |
| |
| void smp_send_debugger_break(void) |
| { |
| smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); |
| } |
| #endif |
| |
| #ifdef CONFIG_KEXEC_CORE |
| void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) |
| { |
| int cpu; |
| |
| smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); |
| if (kdump_in_progress() && crash_wake_offline) { |
| for_each_present_cpu(cpu) { |
| if (cpu_online(cpu)) |
| continue; |
| /* |
| * crash_ipi_callback will wait for |
| * all cpus, including offline CPUs. |
| * We don't care about nmi_ipi_function. |
| * Offline cpus will jump straight into |
| * crash_ipi_callback, we can skip the |
| * entire NMI dance and waiting for |
| * cpus to clear pending mask, etc. |
| */ |
| do_smp_send_nmi_ipi(cpu, false); |
| } |
| } |
| } |
| #endif |
| |
| void crash_smp_send_stop(void) |
| { |
| static bool stopped = false; |
| |
| /* |
| * In case of fadump, register data for all CPUs is captured by f/w |
| * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before |
| * this rtas call to avoid tricky post processing of those CPUs' |
| * backtraces. |
| */ |
| if (should_fadump_crash()) |
| return; |
| |
| if (stopped) |
| return; |
| |
| stopped = true; |
| |
| #ifdef CONFIG_KEXEC_CORE |
| if (kexec_crash_image) { |
| crash_kexec_prepare(); |
| return; |
| } |
| #endif |
| |
| smp_send_stop(); |
| } |
| |
| #ifdef CONFIG_NMI_IPI |
| static void nmi_stop_this_cpu(struct pt_regs *regs) |
| { |
| /* |
| * IRQs are already hard disabled by the smp_handle_nmi_ipi. |
| */ |
| set_cpu_online(smp_processor_id(), false); |
| |
| spin_begin(); |
| while (1) |
| spin_cpu_relax(); |
| } |
| |
| void smp_send_stop(void) |
| { |
| smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); |
| } |
| |
| #else /* CONFIG_NMI_IPI */ |
| |
| static void stop_this_cpu(void *dummy) |
| { |
| hard_irq_disable(); |
| |
| /* |
| * Offlining CPUs in stop_this_cpu can result in scheduler warnings, |
| * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants |
| * to know other CPUs are offline before it breaks locks to flush |
| * printk buffers, in case we panic()ed while holding the lock. |
| */ |
| set_cpu_online(smp_processor_id(), false); |
| |
| spin_begin(); |
| while (1) |
| spin_cpu_relax(); |
| } |
| |
| void smp_send_stop(void) |
| { |
| static bool stopped = false; |
| |
| /* |
| * Prevent waiting on csd lock from a previous smp_send_stop. |
| * This is racy, but in general callers try to do the right |
| * thing and only fire off one smp_send_stop (e.g., see |
| * kernel/panic.c) |
| */ |
| if (stopped) |
| return; |
| |
| stopped = true; |
| |
| smp_call_function(stop_this_cpu, NULL, 0); |
| } |
| #endif /* CONFIG_NMI_IPI */ |
| |
| static struct task_struct *current_set[NR_CPUS]; |
| |
| static void smp_store_cpu_info(int id) |
| { |
| per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); |
| #ifdef CONFIG_PPC_E500 |
| per_cpu(next_tlbcam_idx, id) |
| = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; |
| #endif |
| } |
| |
| /* |
| * Relationships between CPUs are maintained in a set of per-cpu cpumasks so |
| * rather than just passing around the cpumask we pass around a function that |
| * returns the that cpumask for the given CPU. |
| */ |
| static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) |
| { |
| cpumask_set_cpu(i, get_cpumask(j)); |
| cpumask_set_cpu(j, get_cpumask(i)); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void set_cpus_unrelated(int i, int j, |
| struct cpumask *(*get_cpumask)(int)) |
| { |
| cpumask_clear_cpu(i, get_cpumask(j)); |
| cpumask_clear_cpu(j, get_cpumask(i)); |
| } |
| #endif |
| |
| /* |
| * Extends set_cpus_related. Instead of setting one CPU at a time in |
| * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. |
| */ |
| static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), |
| struct cpumask *(*dstmask)(int)) |
| { |
| struct cpumask *mask; |
| int k; |
| |
| mask = srcmask(j); |
| for_each_cpu(k, srcmask(i)) |
| cpumask_or(dstmask(k), dstmask(k), mask); |
| |
| if (i == j) |
| return; |
| |
| mask = srcmask(i); |
| for_each_cpu(k, srcmask(j)) |
| cpumask_or(dstmask(k), dstmask(k), mask); |
| } |
| |
| /* |
| * parse_thread_groups: Parses the "ibm,thread-groups" device tree |
| * property for the CPU device node @dn and stores |
| * the parsed output in the thread_groups_list |
| * structure @tglp. |
| * |
| * @dn: The device node of the CPU device. |
| * @tglp: Pointer to a thread group list structure into which the parsed |
| * output of "ibm,thread-groups" is stored. |
| * |
| * ibm,thread-groups[0..N-1] array defines which group of threads in |
| * the CPU-device node can be grouped together based on the property. |
| * |
| * This array can represent thread groupings for multiple properties. |
| * |
| * ibm,thread-groups[i + 0] tells us the property based on which the |
| * threads are being grouped together. If this value is 1, it implies |
| * that the threads in the same group share L1, translation cache. If |
| * the value is 2, it implies that the threads in the same group share |
| * the same L2 cache. |
| * |
| * ibm,thread-groups[i+1] tells us how many such thread groups exist for the |
| * property ibm,thread-groups[i] |
| * |
| * ibm,thread-groups[i+2] tells us the number of threads in each such |
| * group. |
| * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then, |
| * |
| * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by |
| * "ibm,ppc-interrupt-server#s" arranged as per their membership in |
| * the grouping. |
| * |
| * Example: |
| * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15] |
| * This can be decomposed up into two consecutive arrays: |
| * a) [1,2,4,8,10,12,14,9,11,13,15] |
| * b) [2,2,4,8,10,12,14,9,11,13,15] |
| * |
| * where in, |
| * |
| * a) provides information of Property "1" being shared by "2" groups, |
| * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of |
| * the first group is {8,10,12,14} and the |
| * "ibm,ppc-interrupt-server#s" of the second group is |
| * {9,11,13,15}. Property "1" is indicative of the thread in the |
| * group sharing L1 cache, translation cache and Instruction Data |
| * flow. |
| * |
| * b) provides information of Property "2" being shared by "2" groups, |
| * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of |
| * the first group is {8,10,12,14} and the |
| * "ibm,ppc-interrupt-server#s" of the second group is |
| * {9,11,13,15}. Property "2" indicates that the threads in each |
| * group share the L2-cache. |
| * |
| * Returns 0 on success, -EINVAL if the property does not exist, |
| * -ENODATA if property does not have a value, and -EOVERFLOW if the |
| * property data isn't large enough. |
| */ |
| static int parse_thread_groups(struct device_node *dn, |
| struct thread_groups_list *tglp) |
| { |
| unsigned int property_idx = 0; |
| u32 *thread_group_array; |
| size_t total_threads; |
| int ret = 0, count; |
| u32 *thread_list; |
| int i = 0; |
| |
| count = of_property_count_u32_elems(dn, "ibm,thread-groups"); |
| thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL); |
| ret = of_property_read_u32_array(dn, "ibm,thread-groups", |
| thread_group_array, count); |
| if (ret) |
| goto out_free; |
| |
| while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) { |
| int j; |
| struct thread_groups *tg = &tglp->property_tgs[property_idx++]; |
| |
| tg->property = thread_group_array[i]; |
| tg->nr_groups = thread_group_array[i + 1]; |
| tg->threads_per_group = thread_group_array[i + 2]; |
| total_threads = tg->nr_groups * tg->threads_per_group; |
| |
| thread_list = &thread_group_array[i + 3]; |
| |
| for (j = 0; j < total_threads; j++) |
| tg->thread_list[j] = thread_list[j]; |
| i = i + 3 + total_threads; |
| } |
| |
| tglp->nr_properties = property_idx; |
| |
| out_free: |
| kfree(thread_group_array); |
| return ret; |
| } |
| |
| /* |
| * get_cpu_thread_group_start : Searches the thread group in tg->thread_list |
| * that @cpu belongs to. |
| * |
| * @cpu : The logical CPU whose thread group is being searched. |
| * @tg : The thread-group structure of the CPU node which @cpu belongs |
| * to. |
| * |
| * Returns the index to tg->thread_list that points to the start |
| * of the thread_group that @cpu belongs to. |
| * |
| * Returns -1 if cpu doesn't belong to any of the groups pointed to by |
| * tg->thread_list. |
| */ |
| static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) |
| { |
| int hw_cpu_id = get_hard_smp_processor_id(cpu); |
| int i, j; |
| |
| for (i = 0; i < tg->nr_groups; i++) { |
| int group_start = i * tg->threads_per_group; |
| |
| for (j = 0; j < tg->threads_per_group; j++) { |
| int idx = group_start + j; |
| |
| if (tg->thread_list[idx] == hw_cpu_id) |
| return group_start; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static struct thread_groups *__init get_thread_groups(int cpu, |
| int group_property, |
| int *err) |
| { |
| struct device_node *dn = of_get_cpu_node(cpu, NULL); |
| struct thread_groups_list *cpu_tgl = &tgl[cpu]; |
| struct thread_groups *tg = NULL; |
| int i; |
| *err = 0; |
| |
| if (!dn) { |
| *err = -ENODATA; |
| return NULL; |
| } |
| |
| if (!cpu_tgl->nr_properties) { |
| *err = parse_thread_groups(dn, cpu_tgl); |
| if (*err) |
| goto out; |
| } |
| |
| for (i = 0; i < cpu_tgl->nr_properties; i++) { |
| if (cpu_tgl->property_tgs[i].property == group_property) { |
| tg = &cpu_tgl->property_tgs[i]; |
| break; |
| } |
| } |
| |
| if (!tg) |
| *err = -EINVAL; |
| out: |
| of_node_put(dn); |
| return tg; |
| } |
| |
| static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, |
| int cpu, int cpu_group_start) |
| { |
| int first_thread = cpu_first_thread_sibling(cpu); |
| int i; |
| |
| zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu)); |
| |
| for (i = first_thread; i < first_thread + threads_per_core; i++) { |
| int i_group_start = get_cpu_thread_group_start(i, tg); |
| |
| if (unlikely(i_group_start == -1)) { |
| WARN_ON_ONCE(1); |
| return -ENODATA; |
| } |
| |
| if (i_group_start == cpu_group_start) |
| cpumask_set_cpu(i, *mask); |
| } |
| |
| return 0; |
| } |
| |
| static int __init init_thread_group_cache_map(int cpu, int cache_property) |
| |
| { |
| int cpu_group_start = -1, err = 0; |
| struct thread_groups *tg = NULL; |
| cpumask_var_t *mask = NULL; |
| |
| if (cache_property != THREAD_GROUP_SHARE_L1 && |
| cache_property != THREAD_GROUP_SHARE_L2_L3) |
| return -EINVAL; |
| |
| tg = get_thread_groups(cpu, cache_property, &err); |
| |
| if (!tg) |
| return err; |
| |
| cpu_group_start = get_cpu_thread_group_start(cpu, tg); |
| |
| if (unlikely(cpu_group_start == -1)) { |
| WARN_ON_ONCE(1); |
| return -ENODATA; |
| } |
| |
| if (cache_property == THREAD_GROUP_SHARE_L1) { |
| mask = &per_cpu(thread_group_l1_cache_map, cpu); |
| update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); |
| } |
| else if (cache_property == THREAD_GROUP_SHARE_L2_L3) { |
| mask = &per_cpu(thread_group_l2_cache_map, cpu); |
| update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); |
| mask = &per_cpu(thread_group_l3_cache_map, cpu); |
| update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); |
| } |
| |
| |
| return 0; |
| } |
| |
| static bool shared_caches __ro_after_init; |
| |
| #ifdef CONFIG_SCHED_SMT |
| /* cpumask of CPUs with asymmetric SMT dependency */ |
| static int powerpc_smt_flags(void) |
| { |
| int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; |
| |
| if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { |
| printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); |
| flags |= SD_ASYM_PACKING; |
| } |
| return flags; |
| } |
| #endif |
| |
| /* |
| * On shared processor LPARs scheduled on a big core (which has two or more |
| * independent thread groups per core), prefer lower numbered CPUs, so |
| * that workload consolidates to lesser number of cores. |
| */ |
| static __ro_after_init DEFINE_STATIC_KEY_FALSE(splpar_asym_pack); |
| |
| /* |
| * P9 has a slightly odd architecture where pairs of cores share an L2 cache. |
| * This topology makes it *much* cheaper to migrate tasks between adjacent cores |
| * since the migrated task remains cache hot. We want to take advantage of this |
| * at the scheduler level so an extra topology level is required. |
| */ |
| static int powerpc_shared_cache_flags(void) |
| { |
| if (static_branch_unlikely(&splpar_asym_pack)) |
| return SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING; |
| |
| return SD_SHARE_PKG_RESOURCES; |
| } |
| |
| static int powerpc_shared_proc_flags(void) |
| { |
| if (static_branch_unlikely(&splpar_asym_pack)) |
| return SD_ASYM_PACKING; |
| |
| return 0; |
| } |
| |
| /* |
| * We can't just pass cpu_l2_cache_mask() directly because |
| * returns a non-const pointer and the compiler barfs on that. |
| */ |
| static const struct cpumask *shared_cache_mask(int cpu) |
| { |
| return per_cpu(cpu_l2_cache_map, cpu); |
| } |
| |
| #ifdef CONFIG_SCHED_SMT |
| static const struct cpumask *smallcore_smt_mask(int cpu) |
| { |
| return cpu_smallcore_mask(cpu); |
| } |
| #endif |
| |
| static struct cpumask *cpu_coregroup_mask(int cpu) |
| { |
| return per_cpu(cpu_coregroup_map, cpu); |
| } |
| |
| static bool has_coregroup_support(void) |
| { |
| /* Coregroup identification not available on shared systems */ |
| if (is_shared_processor()) |
| return 0; |
| |
| return coregroup_enabled; |
| } |
| |
| static const struct cpumask *cpu_mc_mask(int cpu) |
| { |
| return cpu_coregroup_mask(cpu); |
| } |
| |
| static int __init init_big_cores(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1); |
| |
| if (err) |
| return err; |
| |
| zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), |
| GFP_KERNEL, |
| cpu_to_node(cpu)); |
| } |
| |
| has_big_cores = true; |
| |
| for_each_possible_cpu(cpu) { |
| int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3); |
| |
| if (err) |
| return err; |
| } |
| |
| thread_group_shares_l2 = true; |
| thread_group_shares_l3 = true; |
| pr_debug("L2/L3 cache only shared by the threads in the small core\n"); |
| |
| return 0; |
| } |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| unsigned int cpu, num_threads; |
| |
| DBG("smp_prepare_cpus\n"); |
| |
| /* |
| * setup_cpu may need to be called on the boot cpu. We haven't |
| * spun any cpus up but lets be paranoid. |
| */ |
| BUG_ON(boot_cpuid != smp_processor_id()); |
| |
| /* Fixup boot cpu */ |
| smp_store_cpu_info(boot_cpuid); |
| cpu_callin_map[boot_cpuid] = 1; |
| |
| for_each_possible_cpu(cpu) { |
| zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| if (has_coregroup_support()) |
| zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * numa_node_id() works after this. |
| */ |
| if (cpu_present(cpu)) { |
| set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); |
| set_cpu_numa_mem(cpu, |
| local_memory_node(numa_cpu_lookup_table[cpu])); |
| } |
| #endif |
| } |
| |
| /* Init the cpumasks so the boot CPU is related to itself */ |
| cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); |
| cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); |
| cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); |
| |
| if (has_coregroup_support()) |
| cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); |
| |
| init_big_cores(); |
| if (has_big_cores) { |
| cpumask_set_cpu(boot_cpuid, |
| cpu_smallcore_mask(boot_cpuid)); |
| } |
| |
| if (cpu_to_chip_id(boot_cpuid) != -1) { |
| int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); |
| |
| /* |
| * All threads of a core will all belong to the same core, |
| * chip_id_lookup_table will have one entry per core. |
| * Assumption: if boot_cpuid doesn't have a chip-id, then no |
| * other CPUs, will also not have chip-id. |
| */ |
| chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL); |
| if (chip_id_lookup_table) |
| memset(chip_id_lookup_table, -1, sizeof(int) * idx); |
| } |
| |
| if (smp_ops && smp_ops->probe) |
| smp_ops->probe(); |
| |
| // Initalise the generic SMT topology support |
| num_threads = 1; |
| if (smt_enabled_at_boot) |
| num_threads = smt_enabled_at_boot; |
| cpu_smt_set_num_threads(num_threads, threads_per_core); |
| } |
| |
| void smp_prepare_boot_cpu(void) |
| { |
| BUG_ON(smp_processor_id() != boot_cpuid); |
| #ifdef CONFIG_PPC64 |
| paca_ptrs[boot_cpuid]->__current = current; |
| #endif |
| set_numa_node(numa_cpu_lookup_table[boot_cpuid]); |
| current_set[boot_cpuid] = current; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| int generic_cpu_disable(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| if (cpu == boot_cpuid) |
| return -EBUSY; |
| |
| set_cpu_online(cpu, false); |
| #ifdef CONFIG_PPC64 |
| vdso_data->processorCount--; |
| #endif |
| /* Update affinity of all IRQs previously aimed at this CPU */ |
| irq_migrate_all_off_this_cpu(); |
| |
| /* |
| * Depending on the details of the interrupt controller, it's possible |
| * that one of the interrupts we just migrated away from this CPU is |
| * actually already pending on this CPU. If we leave it in that state |
| * the interrupt will never be EOI'ed, and will never fire again. So |
| * temporarily enable interrupts here, to allow any pending interrupt to |
| * be received (and EOI'ed), before we take this CPU offline. |
| */ |
| local_irq_enable(); |
| mdelay(1); |
| local_irq_disable(); |
| |
| return 0; |
| } |
| |
| void generic_cpu_die(unsigned int cpu) |
| { |
| int i; |
| |
| for (i = 0; i < 100; i++) { |
| smp_rmb(); |
| if (is_cpu_dead(cpu)) |
| return; |
| msleep(100); |
| } |
| printk(KERN_ERR "CPU%d didn't die...\n", cpu); |
| } |
| |
| void generic_set_cpu_dead(unsigned int cpu) |
| { |
| per_cpu(cpu_state, cpu) = CPU_DEAD; |
| } |
| |
| /* |
| * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise |
| * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), |
| * which makes the delay in generic_cpu_die() not happen. |
| */ |
| void generic_set_cpu_up(unsigned int cpu) |
| { |
| per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; |
| } |
| |
| int generic_check_cpu_restart(unsigned int cpu) |
| { |
| return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; |
| } |
| |
| int is_cpu_dead(unsigned int cpu) |
| { |
| return per_cpu(cpu_state, cpu) == CPU_DEAD; |
| } |
| |
| static bool secondaries_inhibited(void) |
| { |
| return kvm_hv_mode_active(); |
| } |
| |
| #else /* HOTPLUG_CPU */ |
| |
| #define secondaries_inhibited() 0 |
| |
| #endif |
| |
| static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) |
| { |
| #ifdef CONFIG_PPC64 |
| paca_ptrs[cpu]->__current = idle; |
| paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + |
| THREAD_SIZE - STACK_FRAME_MIN_SIZE; |
| #endif |
| task_thread_info(idle)->cpu = cpu; |
| secondary_current = current_set[cpu] = idle; |
| } |
| |
| int __cpu_up(unsigned int cpu, struct task_struct *tidle) |
| { |
| const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC; |
| const bool booting = system_state < SYSTEM_RUNNING; |
| const unsigned long hp_spin_ms = 1; |
| unsigned long deadline; |
| int rc; |
| const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms; |
| |
| /* |
| * Don't allow secondary threads to come online if inhibited |
| */ |
| if (threads_per_core > 1 && secondaries_inhibited() && |
| cpu_thread_in_subcore(cpu)) |
| return -EBUSY; |
| |
| if (smp_ops == NULL || |
| (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) |
| return -EINVAL; |
| |
| cpu_idle_thread_init(cpu, tidle); |
| |
| /* |
| * The platform might need to allocate resources prior to bringing |
| * up the CPU |
| */ |
| if (smp_ops->prepare_cpu) { |
| rc = smp_ops->prepare_cpu(cpu); |
| if (rc) |
| return rc; |
| } |
| |
| /* Make sure callin-map entry is 0 (can be leftover a CPU |
| * hotplug |
| */ |
| cpu_callin_map[cpu] = 0; |
| |
| /* The information for processor bringup must |
| * be written out to main store before we release |
| * the processor. |
| */ |
| smp_mb(); |
| |
| /* wake up cpus */ |
| DBG("smp: kicking cpu %d\n", cpu); |
| rc = smp_ops->kick_cpu(cpu); |
| if (rc) { |
| pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); |
| return rc; |
| } |
| |
| /* |
| * At boot time, simply spin on the callin word until the |
| * deadline passes. |
| * |
| * At run time, spin for an optimistic amount of time to avoid |
| * sleeping in the common case. |
| */ |
| deadline = jiffies + msecs_to_jiffies(spin_wait_ms); |
| spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline)); |
| |
| if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) { |
| const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC; |
| const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC; |
| |
| deadline = jiffies + msecs_to_jiffies(sleep_wait_ms); |
| while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline)) |
| fsleep(sleep_interval_us); |
| } |
| |
| if (!cpu_callin_map[cpu]) { |
| printk(KERN_ERR "Processor %u is stuck.\n", cpu); |
| return -ENOENT; |
| } |
| |
| DBG("Processor %u found.\n", cpu); |
| |
| if (smp_ops->give_timebase) |
| smp_ops->give_timebase(); |
| |
| /* Wait until cpu puts itself in the online & active maps */ |
| spin_until_cond(cpu_online(cpu)); |
| |
| return 0; |
| } |
| |
| /* Return the value of the reg property corresponding to the given |
| * logical cpu. |
| */ |
| int cpu_to_core_id(int cpu) |
| { |
| struct device_node *np; |
| int id = -1; |
| |
| np = of_get_cpu_node(cpu, NULL); |
| if (!np) |
| goto out; |
| |
| id = of_get_cpu_hwid(np, 0); |
| out: |
| of_node_put(np); |
| return id; |
| } |
| EXPORT_SYMBOL_GPL(cpu_to_core_id); |
| |
| /* Helper routines for cpu to core mapping */ |
| int cpu_core_index_of_thread(int cpu) |
| { |
| return cpu >> threads_shift; |
| } |
| EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); |
| |
| int cpu_first_thread_of_core(int core) |
| { |
| return core << threads_shift; |
| } |
| EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); |
| |
| /* Must be called when no change can occur to cpu_present_mask, |
| * i.e. during cpu online or offline. |
| */ |
| static struct device_node *cpu_to_l2cache(int cpu) |
| { |
| struct device_node *np; |
| struct device_node *cache; |
| |
| if (!cpu_present(cpu)) |
| return NULL; |
| |
| np = of_get_cpu_node(cpu, NULL); |
| if (np == NULL) |
| return NULL; |
| |
| cache = of_find_next_cache_node(np); |
| |
| of_node_put(np); |
| |
| return cache; |
| } |
| |
| static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) |
| { |
| struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; |
| struct device_node *l2_cache, *np; |
| int i; |
| |
| if (has_big_cores) |
| submask_fn = cpu_smallcore_mask; |
| |
| /* |
| * If the threads in a thread-group share L2 cache, then the |
| * L2-mask can be obtained from thread_group_l2_cache_map. |
| */ |
| if (thread_group_shares_l2) { |
| cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu)); |
| |
| for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) { |
| if (cpu_online(i)) |
| set_cpus_related(i, cpu, cpu_l2_cache_mask); |
| } |
| |
| /* Verify that L1-cache siblings are a subset of L2 cache-siblings */ |
| if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) && |
| !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) { |
| pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n", |
| cpu); |
| } |
| |
| return true; |
| } |
| |
| l2_cache = cpu_to_l2cache(cpu); |
| if (!l2_cache || !*mask) { |
| /* Assume only core siblings share cache with this CPU */ |
| for_each_cpu(i, cpu_sibling_mask(cpu)) |
| set_cpus_related(cpu, i, cpu_l2_cache_mask); |
| |
| return false; |
| } |
| |
| cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); |
| |
| /* Update l2-cache mask with all the CPUs that are part of submask */ |
| or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); |
| |
| /* Skip all CPUs already part of current CPU l2-cache mask */ |
| cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); |
| |
| for_each_cpu(i, *mask) { |
| /* |
| * when updating the marks the current CPU has not been marked |
| * online, but we need to update the cache masks |
| */ |
| np = cpu_to_l2cache(i); |
| |
| /* Skip all CPUs already part of current CPU l2-cache */ |
| if (np == l2_cache) { |
| or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); |
| cpumask_andnot(*mask, *mask, submask_fn(i)); |
| } else { |
| cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); |
| } |
| |
| of_node_put(np); |
| } |
| of_node_put(l2_cache); |
| |
| return true; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void remove_cpu_from_masks(int cpu) |
| { |
| struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; |
| int i; |
| |
| unmap_cpu_from_node(cpu); |
| |
| if (shared_caches) |
| mask_fn = cpu_l2_cache_mask; |
| |
| for_each_cpu(i, mask_fn(cpu)) { |
| set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); |
| set_cpus_unrelated(cpu, i, cpu_sibling_mask); |
| if (has_big_cores) |
| set_cpus_unrelated(cpu, i, cpu_smallcore_mask); |
| } |
| |
| for_each_cpu(i, cpu_core_mask(cpu)) |
| set_cpus_unrelated(cpu, i, cpu_core_mask); |
| |
| if (has_coregroup_support()) { |
| for_each_cpu(i, cpu_coregroup_mask(cpu)) |
| set_cpus_unrelated(cpu, i, cpu_coregroup_mask); |
| } |
| } |
| #endif |
| |
| static inline void add_cpu_to_smallcore_masks(int cpu) |
| { |
| int i; |
| |
| if (!has_big_cores) |
| return; |
| |
| cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); |
| |
| for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) { |
| if (cpu_online(i)) |
| set_cpus_related(i, cpu, cpu_smallcore_mask); |
| } |
| } |
| |
| static void update_coregroup_mask(int cpu, cpumask_var_t *mask) |
| { |
| struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; |
| int coregroup_id = cpu_to_coregroup_id(cpu); |
| int i; |
| |
| if (shared_caches) |
| submask_fn = cpu_l2_cache_mask; |
| |
| if (!*mask) { |
| /* Assume only siblings are part of this CPU's coregroup */ |
| for_each_cpu(i, submask_fn(cpu)) |
| set_cpus_related(cpu, i, cpu_coregroup_mask); |
| |
| return; |
| } |
| |
| cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); |
| |
| /* Update coregroup mask with all the CPUs that are part of submask */ |
| or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); |
| |
| /* Skip all CPUs already part of coregroup mask */ |
| cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); |
| |
| for_each_cpu(i, *mask) { |
| /* Skip all CPUs not part of this coregroup */ |
| if (coregroup_id == cpu_to_coregroup_id(i)) { |
| or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); |
| cpumask_andnot(*mask, *mask, submask_fn(i)); |
| } else { |
| cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); |
| } |
| } |
| } |
| |
| static void add_cpu_to_masks(int cpu) |
| { |
| struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; |
| int first_thread = cpu_first_thread_sibling(cpu); |
| cpumask_var_t mask; |
| int chip_id = -1; |
| bool ret; |
| int i; |
| |
| /* |
| * This CPU will not be in the online mask yet so we need to manually |
| * add it to it's own thread sibling mask. |
| */ |
| map_cpu_to_node(cpu, cpu_to_node(cpu)); |
| cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); |
| cpumask_set_cpu(cpu, cpu_core_mask(cpu)); |
| |
| for (i = first_thread; i < first_thread + threads_per_core; i++) |
| if (cpu_online(i)) |
| set_cpus_related(i, cpu, cpu_sibling_mask); |
| |
| add_cpu_to_smallcore_masks(cpu); |
| |
| /* In CPU-hotplug path, hence use GFP_ATOMIC */ |
| ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); |
| update_mask_by_l2(cpu, &mask); |
| |
| if (has_coregroup_support()) |
| update_coregroup_mask(cpu, &mask); |
| |
| if (chip_id_lookup_table && ret) |
| chip_id = cpu_to_chip_id(cpu); |
| |
| if (shared_caches) |
| submask_fn = cpu_l2_cache_mask; |
| |
| /* Update core_mask with all the CPUs that are part of submask */ |
| or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); |
| |
| /* Skip all CPUs already part of current CPU core mask */ |
| cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); |
| |
| /* If chip_id is -1; limit the cpu_core_mask to within PKG */ |
| if (chip_id == -1) |
| cpumask_and(mask, mask, cpu_cpu_mask(cpu)); |
| |
| for_each_cpu(i, mask) { |
| if (chip_id == cpu_to_chip_id(i)) { |
| or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); |
| cpumask_andnot(mask, mask, submask_fn(i)); |
| } else { |
| cpumask_andnot(mask, mask, cpu_core_mask(i)); |
| } |
| } |
| |
| free_cpumask_var(mask); |
| } |
| |
| /* Activate a secondary processor. */ |
| __no_stack_protector |
| void start_secondary(void *unused) |
| { |
| unsigned int cpu = raw_smp_processor_id(); |
| |
| /* PPC64 calls setup_kup() in early_setup_secondary() */ |
| if (IS_ENABLED(CONFIG_PPC32)) |
| setup_kup(); |
| |
| mmgrab_lazy_tlb(&init_mm); |
| current->active_mm = &init_mm; |
| VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm))); |
| cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); |
| inc_mm_active_cpus(&init_mm); |
| |
| smp_store_cpu_info(cpu); |
| set_dec(tb_ticks_per_jiffy); |
| rcutree_report_cpu_starting(cpu); |
| cpu_callin_map[cpu] = 1; |
| |
| if (smp_ops->setup_cpu) |
| smp_ops->setup_cpu(cpu); |
| if (smp_ops->take_timebase) |
| smp_ops->take_timebase(); |
| |
| secondary_cpu_time_init(); |
| |
| #ifdef CONFIG_PPC64 |
| if (system_state == SYSTEM_RUNNING) |
| vdso_data->processorCount++; |
| |
| vdso_getcpu_init(); |
| #endif |
| set_numa_node(numa_cpu_lookup_table[cpu]); |
| set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); |
| |
| /* Update topology CPU masks */ |
| add_cpu_to_masks(cpu); |
| |
| /* |
| * Check for any shared caches. Note that this must be done on a |
| * per-core basis because one core in the pair might be disabled. |
| */ |
| if (!shared_caches) { |
| struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; |
| struct cpumask *mask = cpu_l2_cache_mask(cpu); |
| |
| if (has_big_cores) |
| sibling_mask = cpu_smallcore_mask; |
| |
| if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) |
| shared_caches = true; |
| } |
| |
| smp_wmb(); |
| notify_cpu_starting(cpu); |
| set_cpu_online(cpu, true); |
| |
| boot_init_stack_canary(); |
| |
| local_irq_enable(); |
| |
| /* We can enable ftrace for secondary cpus now */ |
| this_cpu_enable_ftrace(); |
| |
| cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); |
| |
| BUG(); |
| } |
| |
| static struct sched_domain_topology_level powerpc_topology[6]; |
| |
| static void __init build_sched_topology(void) |
| { |
| int i = 0; |
| |
| if (is_shared_processor() && has_big_cores) |
| static_branch_enable(&splpar_asym_pack); |
| |
| #ifdef CONFIG_SCHED_SMT |
| if (has_big_cores) { |
| pr_info("Big cores detected but using small core scheduling\n"); |
| powerpc_topology[i++] = (struct sched_domain_topology_level){ |
| smallcore_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) |
| }; |
| } else { |
| powerpc_topology[i++] = (struct sched_domain_topology_level){ |
| cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) |
| }; |
| } |
| #endif |
| if (shared_caches) { |
| powerpc_topology[i++] = (struct sched_domain_topology_level){ |
| shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) |
| }; |
| } |
| if (has_coregroup_support()) { |
| powerpc_topology[i++] = (struct sched_domain_topology_level){ |
| cpu_mc_mask, powerpc_shared_proc_flags, SD_INIT_NAME(MC) |
| }; |
| } |
| powerpc_topology[i++] = (struct sched_domain_topology_level){ |
| cpu_cpu_mask, powerpc_shared_proc_flags, SD_INIT_NAME(PKG) |
| }; |
| |
| /* There must be one trailing NULL entry left. */ |
| BUG_ON(i >= ARRAY_SIZE(powerpc_topology) - 1); |
| |
| set_sched_topology(powerpc_topology); |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| /* |
| * We are running pinned to the boot CPU, see rest_init(). |
| */ |
| if (smp_ops && smp_ops->setup_cpu) |
| smp_ops->setup_cpu(boot_cpuid); |
| |
| if (smp_ops && smp_ops->bringup_done) |
| smp_ops->bringup_done(); |
| |
| dump_numa_cpu_topology(); |
| build_sched_topology(); |
| } |
| |
| /* |
| * For asym packing, by default lower numbered CPU has higher priority. |
| * On shared processors, pack to lower numbered core. However avoid moving |
| * between thread_groups within the same core. |
| */ |
| int arch_asym_cpu_priority(int cpu) |
| { |
| if (static_branch_unlikely(&splpar_asym_pack)) |
| return -cpu / threads_per_core; |
| |
| return -cpu; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| int __cpu_disable(void) |
| { |
| int cpu = smp_processor_id(); |
| int err; |
| |
| if (!smp_ops->cpu_disable) |
| return -ENOSYS; |
| |
| this_cpu_disable_ftrace(); |
| |
| err = smp_ops->cpu_disable(); |
| if (err) |
| return err; |
| |
| /* Update sibling maps */ |
| remove_cpu_from_masks(cpu); |
| |
| return 0; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| /* |
| * This could perhaps be a generic call in idlea_task_dead(), but |
| * that requires testing from all archs, so first put it here to |
| */ |
| VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm))); |
| dec_mm_active_cpus(&init_mm); |
| cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); |
| |
| if (smp_ops->cpu_die) |
| smp_ops->cpu_die(cpu); |
| } |
| |
| void __noreturn arch_cpu_idle_dead(void) |
| { |
| /* |
| * Disable on the down path. This will be re-enabled by |
| * start_secondary() via start_secondary_resume() below |
| */ |
| this_cpu_disable_ftrace(); |
| |
| if (smp_ops->cpu_offline_self) |
| smp_ops->cpu_offline_self(); |
| |
| /* If we return, we re-enter start_secondary */ |
| start_secondary_resume(); |
| } |
| |
| #endif |